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Within the framework of systems biology, functional analyses at all ’omic levels have seen 
an intense level of activity during the first decade of the twenty-first century. These include 
genomics, transcriptomics, proteomics, metabolomics and lipidomics. It could be said that 
metabolomics offers some unique advantages over the other ’omics disciplines and one of 
the core approaches of metabolomics for disease diagnostics is metabolic fingerprinting. 
This review provides an overview of the main metabolic fingerprinting approaches used 
for disease diagnostics and includes: infrared and Raman spectroscopy, Nuclear magnetic 
resonance (NMR) spectroscopy, followed by an introduction to a wide range of novel mass 
spectrometry-based methods, which are currently under intense investigation and 
developmental activity in laboratories worldwide. It is hoped that this review will act as a 
springboard for researchers and clinicians across a wide range of disciplines in this exciting 
era of multidisciplinary and novel approaches to disease diagnostics.
Within the systems biology framework, func-
tional analyses at all ’omic levels have seen an
intense level of activity during the first decade of
the twenty-first century. These include transcrip-
tomics (the measurement of mRNA levels for
quantifying gene expression), proteomics (pro-
tein translation, including post-translational
modifications) and metabolomics. In a metabo-
lomics experiment, one aims to use an array of
analytical platforms [1] to quantify as many
metabolites in a cellular system (cell or tissue)
under a set of defined states and at different time
points (see Table 1 for a definition of terms used in
this review). This approach not only allows one
to separate subjects with disease from healthy
matched controls, but also permits the dynamics
of any biotic, abiotic or genetic perturbation to
be accurately assessed. 

Figure 1 highlights how the area of metabo-
lomics is becoming increasingly popular, and
this is in part due to the ability to measure mul-
tiple metabolites directly from complex biologi-
cal systems with excellent accuracy and
precision. In addition, metabolism is closer to
the organism’s phenotype, and will be affected
by disease, and so it makes sense to measure the
metabolites themselves. As a single metabolite
can be a substrate for a number of different
enzymes, this linkage of metabolites through
complex metabolic neighborhoods [2,3] makes
unraveling changes in mRNA products and pro-
teins very difficult, especially when hierarchical
and metabolic control are evident [4]. Thus,
measuring the metabolome is more attractive,

especially when one considers that only 2766
metabolites are estimated to be derived from
man [5] compared with the 31,897 genes found
in man [301], and the 106 different proteins esti-
mated from gene expression, alternative splicing
and post-translational modifications [6,7].

For disease diagnostic purposes, one would
ideally want a system that was easy to use, gave
probabilistic outcomes, was quantitative and
produced results that could be readily inter-
preted in biological terms. As highlighted above,
we believe that metabolomics offers some unique
advantages over the other ’omics disciplines [8],
and one of the core approaches of metabolomics
for disease diagnostics is metabolic finger-
printing. In this approach, a rapid biochemical
snapshot [9] from a human body fluid or tissue
under disease perturbation (Figure 2) is measured
and changes from ‘normality’ are detected and
correlated with disease progression or remission;
the latter may be nutritional, pharmacological or
surgical intervention.

This review provides an overview of the main
metabolomics approaches that have been
applied to disease diagnostics. This starts with
Fourier transform infrared spectroscopy and
Raman microspectroscopy, which have a long
history in this field. This is followed by a discus-
sion of nuclear magnetic resonance (NMR)-
based metabolomics for disease diagnostics.
Finally, a wide range of contemporary mass
spectrometry (MS)-based methods are intro-
duced that are currently under intense investiga-
tion within many laboratories. This is because
 2007 Future Medicine Ltd  ISSN 1462-2416 Pharmacogenomics (2007)  8(9), 1243–1266 1243



REVIEW – Ellis, Dunn, Griffin, Allwood & Goodacre 

1244

Table 1. Definitions

Term

Metabolome

Metabolomics

Metabolic profiling

Metabolic fingerprinting

Metabolic footprinting 

Metabolite target analys

Metabonomics

Lipidomics
MS offers exquisite sensitivity and the ability to
readily identify many hundreds of metabolites
in a single analytical run.

Vibrational spectroscopy
Fourier transform infrared spectroscopy
Fourier transform infrared (FT-IR) spectroscopy
has a significant and ongoing history of research
into its potential as a diagnostic tool and allows
for the extremely rapid, high-throughput and
nondestructive analysis of a wide range of sample
types. The technique is based on the principle
that when a sample is interrogated with an infra-
red beam, functional groups within the sample
will absorb this radiation and vibrate in one of a
number of recognized ways (such as stretching or
bending vibrations) [10], and these vibra-
tions/absorptions can be correlated directly with
(bio)chemical species. The resultant infrared
absorbance spectrum can therefore be described
as a ‘fingerprint’, as it is characteristic of the par-
ticular sample under analysis and, hence, every
chemical or biochemical substance will have its
own unique infrared ‘fingerprint’. 

In terms of disease diagnosis, much of the
work undertaken has concentrated on the mid-
infrared (IR) part of the electromagnetic spec-
trum (from 4000–600 cm), as this part of the
spectrum is where the fundamental vibration is
seen, as opposed to the overtone or harmonic in
near-IR (for reviews on the diagnostic potential
of near-IR see [11–13]), and is particularly
information rich. With relevance to biological

applications the mid-IR can be further broken
down into regions, or windows, of biological
interest such as CH2 and CH3 stretching vibra-
tions from fatty acids (3050–2800 cm), C=O,
NH and C-N from proteins and peptides
(1750–1500 cm) and C-O, C-O-C from
polysaccharides (1200–900 cm). 

While it has been recognized that FT-IR is not
as specific and sensitive as some of the hyphenated
chromatographic techniques, such as gas chroma-
tography/time-of-flight mass spectrometry (GC-
TOF-MS) [14–18], the rapidity and reproducibility
of FT-IR is demonstrable through the large body
of research published using this technology. Fur-
thermore, owing to its holistic nature, FT-IR has
been recognized as a valuable tool for metabolic
fingerprinting as it is able to analyze carbohydrates,
amino acids, fatty acids, lipids, proteins, nucleic
acids and polysaccharides rapidly and simultane-
ously with a minimum amount of sample prepara-
tion [1,19–22]. One of the potential limitations of
FT-IR is that the absorption of water is very
intense but this problem can be overcome either by
dehydration of samples, subtraction of the water
signal, or using attenuated total reflectance (ATR)
as a sampling method [19,23–25]. Alternatively, one
may use the related vibrational technique, Raman
spectroscopy (vide infra). Another perceived disad-
vantage is that as a holistic measurement is made
with biochemical information spread across the
whole of the IR (or Raman) spectrum, validated
and robust chemometrics must be used in order to
turn data into information [12,26,27].

 of terms used in metabolomics and related approaches.

Definition

The complete set of all low-molecular-weight metabolites (i.e., metabolic intermediates, hormones 
and other signaling molecules, and secondary metabolites) to be found in a biological sample, such 
as a single organism, which are the end products of gene expression

The nonbiased identification and quantification of all metabolites in a biological system

Identification and quantification of a selective number of predefined metabolites, which are 
generally related to a specific metabolic pathway

Global, high-throughput, rapid analysis to provide sample classification. Also utilized as a screening 
tool to discriminate between samples from different biological status or origin (i.e., case/control, 
disease/healthy)

Analysis of the (exo)metabolites secreted/excreted by an organism; if the organism is growing in 
culture this will include its environmental and growth substances

is Qualitative and quantitative analysis of one, or several, metabolites related to a specific 
metabolic reaction

Quantitative analysis of metabolites in response to biological perturbation (i.e., disease or 
therapeutic treatment) or genetic modification

Analysis of all lipids, and the molecules with which they interact, and their function within 
biological systems
Pharmacogenomics (2007)  8(9) future science groupfuture science group
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Raman spectroscopy
Whereas FT-IR measures the absorption of
energy, Raman spectroscopy measures the
exchange of energy with electromagnetic (EM)
radiation of a particular wavelength, usually pro-
vided by a laser in the visible to near-IR part of
the EM. From the exchange in EM energy, a
measurable Raman shift in the wavelength of
incident laser light is observed; this is also
referred to as the inelastic light scattering effect
[28–30], and one usually measures the Stokes shift
as this has a higher probability of occurring com-
pared with anti-Stokes. Significantly, it should
be noted that this shift is complementary to IR
absorption, according to various selection rules
(see for details [28,30]) and a metabolic ‘finger-
print’ of the same sample analyzed by FT-IR can
be constructed via Raman spectroscopy. Whilst
the absorption of water is very intense with
FT-IR, this is not generally the case with Raman
spectroscopy as visible lasers are used (so no light
is absorbed), and in all events water is a very
weak scatterer [12]. Importantly, this allows for
Raman measurements to be collected directly
from biofluids, and further, there are several
reports of in vivo measurements collected from
both organs and blood vessels such as the cervix
[31–33], bladder and prostate [34], esophagus
[35–37], skin [38–41] and arteries [42].

What could be described as one of the limita-
tions of Raman spectroscopy is the fact that the
Raman effect is relatively weak with typically
only as little as 1 in 106–108 photons undergoing
an inelastic light scattering event, with the result
that collection times can be in the order of

several minutes. One other limitation is that
Raman spectra collected from samples of bio-
logical origin can contain significant amounts of
fluorescence, which, as they are much broader,
can detract from sharp Raman peaks, and there-
fore frequently need to be removed mathemati-
cally, or by moving the laser wavelength to the
near infrared part of the EM. However, it is pos-
sible to enhance the Raman signal and this can
typically be achieved by one of two methods.
The first of these methods is based on resonance
enhancement, which occurs owing to the fact
that the laser wavelength used to excite the
Raman spectrum lies beneath an intense elec-
tronic absorption band of a chromophore
[12,43,44]. This can result in an enhancement of
Raman scattering, to the point where some of
the band intensities are increased by a factor of
103–105. As this method uses chromophores,
this knowledge can be used to the researcher’s
advantage, whereby resonance Raman spectros-
copy can be targeted to selected chemical species.
Examples of this include the deep UV, 227 nm,
which is used to enhance selectively aromatic
amino acids, and 244 nm, predominantly lead-
ing to enhancement from nucleic acids [12,43,45].

The second method to enhance the Raman
signal is surfaced-enhanced Raman spectroscopy
(SERS) [46], which is reliant on the absorption or
close proximity of the analyte to a roughened
metal surface, colloidal solution or roughened
electrode [47–51], with the coinage metals Ag, Au
and Cu being most popular. Using SERS can
result in an enhancement of the order of 103–106

(with some claims up to 1014 which allow single
molecule detection [52]), and this can also be
combined with a chromophore to effect sur-
face-enhanced resonance Raman spectroscopy
(SERRS) [53,54].

Disease diagnostics with 
vibrational spectroscopy
In terms of mortality, cancers are the most impor-
tant range of diseases where rapid and/or early
diagnosis would seem to be the most beneficial.
This would include the correct identification and
early diagnosis of (pre)cancer, enabling prompt
therapeutic intervention, leading to a desirable
prognosis. A significant number of studies have
been undertaken using vibrational spectroscopic
techniques to detect several forms of cancers with
varying degrees of success. However, it must be
stated that it is extremely important that if these
studies are to be taken seriously then they should
be supported with sufficiently validated
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histopathological data on the assayed biological
samples [12]. Furthermore, it is also of paramount
importance that characteristic wavenumber
absorptions/shifts are assigned correctly, as at least
one previous study has shown how characteristic
absorptions of collagen could potentially be
misassigned as DNA phosphate absorptions [55].

Whilst widespread screening programs exist
for cervical cancer, it is still a significant public
health problem worldwide and a major cause of
death in females, with mortality rates estimated
at approximately 30% [56,57]. Cervical cancer is
also the second most prevalent cancer in females
after skin cancer, and in terms of the present
screening method, it has been stated that the
Papanicolaou (PAP) smear and histopathology is
tedious, and prone to human error [58]. More-
over, it is prohibitively expensive, labor-intensive
and subject to inaccuracies that give rise to
significant numbers of false negatives [25].

Several spectroscopic studies have been under-
taken on cervical cancer, and within the field of
clinical obstetrics and gynecology, spectroscopy
has been identified as an emergent technology in
cervical cancer screening [59]. Cohenford’s group
has undertaken a number of studies, including
the analysis of cervical smears, and demonstrated
that in addition to aiding in the diagnosis of

cervical cancer, FT-IR spectroscopy could also
result in information into its pathogenesis [60,61].
Results from the analysis of spectra from one
study of over 2000 cells showed a continuum of
changes, which, the authors stated, paralleled the
transition from normalcy to malignancy. This
was illustrated by the fact that the ratio of the
peak of cancerous samples at 1026 cm (ascriba-
ble to glycogen) was less than half that of the
control group, and these ratios were observed to
decrease progressively from normal (1.77)
through dysplasia (1.17) to cancer (0.77) [60,62].
Other studies of interest include: the analysis of
cell maturation in cervical tissue resulting in the
observation that the different stages of cell matu-
ration could be associated with changes in glyco-
gen concentration [63–65], microspectroscopic
analyses of individual cultured cervical cancer
cells [66,67], and spectral mapping of the squa-
mous and glandular cervical epithelium and the
cervical transformation zone [68].

Raman spectroscopy has also been used to
investigate cervical cancer, and with linear dis-
criminant analysis was able to differentiate
between cervical precancers from normal tis-
sues, as well as diagnosing low-grade from high-
grade precancers [31,32,69]. In relation to one of
these studies, Utzinger and colleagues showed

Figure 2. The development and progression of disease from healthy state, to 
homeostatic perturbation, to onset of disease and beyond.
 

With the utility of early biomarker discovery (possible through metabolic fingerprinting approaches) and 
rapid therapeutic intervention clearly illustrated. 
Adapted from Van der Greef and colleagues [238,239] with kind permission. ©2003, Kluwer Academic 
Publishers.
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that the ratios of Raman peak intensities at
1454 cm:1656 cm (ascribable to collagen and
phospholipids) were greater for squamous dys-
plasia than all other tissue types, whilst the ratio
of peak intensities at 1330 cm to 1454 cm (a
region associated with DNA) was lower for
samples with squamous dysplasia than all other
cell types [32]. Furthermore, this group applied
an algorithm based on these two peak intensi-
ties ratios with the result that they were able to
discriminate high-grade squamous dysplasia
from all other sample types, with only one sam-
ple being misclassified from a total of
312 in vivo measurements. More recently,
Krishna and colleagues [70] have used Raman
spectroscopy to discriminate between normal
and malignant cervical tissue and reported very
high sensitivity and specificity (99.5%) when
using their multiparametic approach. 

Epidemiologically, prostate cancer is the sec-
ond most common cancer in the Western world
after skin cancer [71], with mortality rates in the
UK, for example, of over 10,000 recorded deaths
in 2003 [302]. The main diagnostic method for
prostate cancer is the prostate-specific antigen
(PSA) test, which has received considerable
attention in the literature as to its efficacy [71–73]

and its routine use has been questioned due to a
lack of specificity [74]. A significant number of
studies have been undertaken on tissues, cell
lines and DNA from subjects with normal and
malignant prostates, and benign prostate hyper-
plasia (BPH) using FT-IR [75–80] and Raman
spectroscopy [34,80–86,302]. 

Of these studies, Gazi and colleagues analyzed
prostate cancer cell lines from a variety of meta-
static sites, as well as tissue samples from both
BPH and Gleason-graded malignant prostate tis-
sue [87]. They reported that the ratio of peak
areas ascribed to glycogen and phosphate vibra-
tions (1030 cm and 1080 cm), suggested a
potential method for the differentiation of
benign and malignant cells. Furthermore, they
demonstrated that the use of this ratio, in associ-
ation with FT-IR imaging, could also provide a
basis for the estimation of malignant tissue
within defined regions of a specimen [87]. More
in-depth studies revealed that the extent to
which the clusters were separated suggested that
this may be associated with the invasive proper-
ties of each cell line [76]. It was also suggested that
the cluster plots could be used to elucidate
whether inorganic ions had an effect on invasive-
ness as a consequence of this ion uptake, and
that this could be subsequently confirmed and

quantified using imaging time-of-flight second-
ary ion mass spectrometry (TOF-SIMS) [76].
This same group has also demonstrated for the
first time that FT-IR spectra of prostate cancer
tissue could be used to predict the Gleason score
[88] and the clinical stage of the tumor at the time
of biopsy, concluding that there is a correlation
between tissue architecture using Gleason score
with tissue biochemistry using FT-IR and linear
discriminant analysis (LDA) [89]. A very recent
study, also from this group, has applied FT-IR
photoacoustic spectroscopy and principal com-
ponents analysis (PCA) to differentiate prostate
cancer cell lines [90].

Analysis of prostate DNA by FT-IR has
inferred that progression from normal prostate
tissue to BPH to malignancy involves structural
alterations. The separation of these sample
groups was said to be possible using two regions
of the infrared spectra, namely 1174–1000 cm
(assigned to strong stretching vibrations of the
PO2 and C-O groups of the phosphodiester-
deoxyribose structure) and 1499–1310 cm
(assigned to weak NH vibrations and CH in-
plane deformations of nucleic acids) and that
these mutagenic alterations were due to the
hydroxyl radical [78]. More recent work by this
same group demonstrated with FT-IR that a
cancer DNA phenotype is produced well in
advance of palpable tumors and that this is a
potential early indicator of tumor formation,
and further postulated that agents capable of
inhibiting this phenotype may delay or prevent
carcinogenesis [91]. Fernandez and colleagues
coupled FT-IR imaging with statistical pattern
recognition and demonstrated the potential for
automated histopathologic characterization of
prostatic tissue, without any requirement for
dyes or molecular probes (which would nor-
mally be used for histology), which was able to
differentiate benign from malignant prostatic
epithelium [75].

Raman spectroscopy has also been used to
investigate both prostate and bladder cancer
[83,86]. Indeed, Stone’s group have been particu-
larly active within the area of disease diagnostics
using Raman spectroscopy, with a significant
number of studies undertaken [34,80–86,92,93]. For
the investigation of bladder and prostate cancer a
total of 220 and 197 Raman spectra were col-
lected with a fiberoptic probe from the bladder
and prostate samples, respectively, using a
785 nm diode laser for excitation. The 785 nm
wavelength was used as it was said to provide a
compromise among the Raman signal strength,
1247www.futuremedicine.com
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detector sensitivity and fluorescence intensity.
The spectra were correlated with histological fea-
tures and used to construct separate diagnostic
algorithms for the bladder (benign [normal and
cystitis]) versus malignant (transitional cell carci-
noma) and prostate (benign [BPH and prostati-
tis]) versus malignant (prostate cancer). Results
showed an overall accuracy of 84% for bladder
samples and 86% for prostate, with the authors
concluding that this study demonstrates that a
clinical Raman system provides an accurate and
objective method to diagnose prostate and blad-
der cancer in vivo [83]. Other studies by this
group have centered on the differentiation
between different cell lines using PCA and LDA
[34,80,82], as well as an investigation of the ability
of Raman spectroscopy to grade cancers,
achieving an overall accuracy of 89% [84]. 

The most frequent form of cancer in children
and adults below the age of 30 is leukemia, and
investigations into the diagnostic potential of
FT-IR for leukemia have been undertaken for
over a decade, through the analysis of normal
and leukemic lymphocytes [94–99], with only a
few studies applying Raman spectroscopy
[100–103]. Extensive investigations of chronic lym-
phocytic leukemia (CLL) have been undertaken
by Schultz and colleagues, who compared CLL
cells to normal cells and observed differences in
the amide region, as well as a reduction in lipid
content, and major spectral differences were
observed primarily from absorptions ascribed to
the DNA backbone region (900–1300 cm) [98].
It was further reported that it was possible to
separate the CLL cells further into subclusters,
based on their different DNA content, and sug-
gested that this may provide the basis for a diag-
nostic tool for staging (disease progression) and
multiple clone detection [99].

Investigations of the effect of chemotherapeutic
agents such as etoposide have been undertaken
with results suggesting that FT-IR has the poten-
tial as a clinical utility for the rapid and reagent-
free assessment of chemotherapeutic efficacy in
leukemia patients [95,96,104]. Several features were
observed in the difference spectra [105], which dis-
criminated between control cells and those treated
with etoposide; these included a shift from
1635 cm in control cells to 1657 cm in treated
cells, and significant changes in the region of the
amide I band (shift from β-sheet to unordered),
the amide II band (∼1545 cm) and the band at
1517 cm, arising from tyrosine in protein side
chains [96]. Another study used FT-IR in an

attempt to discriminate between sensitive and
multiresistant K562 cells with results as accurate
as 93% [106]. Whilst leukemia results in the unre-
strained proliferation of white blood cells, a group
of diseases known as myelodysplastic syndrome
(MDS) involves the disruption of any (and in the
worst cases all) blood cells by the bone marrow.
Malins and colleagues have employed statistical
models based on FT-IR spectra to discriminate
between the DNA of normal granulocytes and
samples from MDS patients. These models were
said to allow for the high sensitivity and specificity
prediction of case and control granulocytes with
the authors proposing that this method could be
used as the basis for the development of a diagnos-
tic blood test for MDS, for which there is
currently a paucity of molecular markers [107].

Whilst few studies have used Raman spectros-
copy to investigate leukemia [100], one very recent
study has used both FT-IR and Raman to analyze
normal, benign and malignant ovarian tissue with
some success. It was stated that spectra from nor-
mal and benign tissue contained more proteins
and less DNA and lipids in comparison with spec-
tra from malignant tissue. The first derivative
Raman spectra in the 700–1700 cm range
resulted in two clear groups and second derivative
FT-IR spectra from two combined regions
(1540–1680 and 1720–1780 cm) had similar
results to the Raman cluster plots [108].

These discussions on vibrational spectroscopic
investigations of cancers only highlight a small part
of the intense activity in this and other biological
areas in terms of disease diagnosis. With perhaps
the most exciting aspect being the ability to use
FT-IR and Raman spectrometry to generate
chemical images from tissue slices. In addition to
those already noted, further studies have been
undertaken on a range of cancers including:
breast [109–114], brain [115], bladder [116], thyroid
tumors [117–119], colorectal adenocarcinoma sec-
tions [120–122], gastric cancer [123–125], in situ meas-
urements for Barrett’s esophagus (a preindicator
for esophageal cancer) [35,85], and studies of pre-
cancers and cancers of the larynx [92,93,126]. Outside
of the field of cancer diagnostics a wealth of other
diseases/disorders have also been investigated,
including diabetes [127–129], arthritis [130–132],
reproductive biology [133] and transmissible spong-
iform encephalopathies (TSEs) [134–138], amongst
many others. For further and perhaps more
detailed background into the biomedical applica-
tions of vibrational spectroscopy, the reader is
directed to the following reviews [12,20,139–142].
Pharmacogenomics (2007)  8(9) future science groupfuture science group
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Advances in measurement technology
Continual advances in optical measurement sci-
ence and technology have resulted in the devel-
opment of portable, hand-held and micro-
devices which are already commercially available.
These devices include both infrared and Raman
mobile spectrometers [143–148] and infrared filto-
meters [149,150]. Theoretically, once robustly vali-
dated research has been undertaken as to which
wavenumbers, wavenumber regions or Raman
shifts are relevant to the metabolic fingerprint of
a specific disease or disorder, then such miniatur-
ized devices can be calibrated with this informa-
tion. It would then be possible to obtain rapid
measurements with these portable diagnostic
tools wherever required, such as hospital wards,
clinics, doctor’s surgeries or even field hospitals.
In addition, FT-IR, owing to its rapidity (<10 s
per sample is readily achievable), is an ideal can-
didate technology for high-throughput screen-
ing, as it is possible to measure thousands of
samples per day and obtain information-rich
spectra using as little as 0.5 µl of a biofluid (i.e.,
plasma) per sample.

Nuclear magnetic 
resonance spectroscopy
NMR spectroscopy is an ideal analytical tool in
many respects for metabolomics. Most elements
possess at least one isotope that has a magnetic
spin number greater than zero necessary for the
NMR effect. The NMR transitions detected
when a sample is placed in a magnetic field are
induced by radiation in the radiofrequency
region of the EM spectrum. This radiation can
readily travel through material, including soft
biological tissues, with often minimal heating
effects and thus providing a noninvasive analyti-
cal tool. The technique is also exquisitely sensi-
tive to different chemical environments,
allowing the easy distinction of a wide range of
chemicals in a mixture. Furthermore, lacking
moving parts and relying on the observation of
one physical effect in a highly regulated environ-
ment (the centre of a magnet), the approach is
also highly robust, reproducing the same spec-
trum for a given sample across extended time
periods. However, perhaps the biggest bugbear
of any NMR spectroscopist is the inherent lack
of sensitivity of the approach. Relying on nuclear
transitions, that have an energy difference of the
order of thermal energy at room temperature,
mean that for most nuclei the population differ-
ence that is observed is very small, and typically
less than one part in 100,000.

Of the most common nuclei that are observed
by NMR spectroscopy, 1H NMR spectroscopy is
the most sensitive, and as a result it is also the
most common nuclei used in NMR-based
metabolomics. The proton is an ideal nucleus for
metabolomics, as by definition all organic mole-
cules must possess a proton and, hence, can be
observed by 1H NMR spectroscopy, which has
made it a powerful functional genomic tool.
Raamsdonk and colleagues used NMR spectro-
scopy to monitor the metabolic fingerprints of
yeast extracts, and demonstrated that this
approach could be used to distinguish different
yeast mutants according to the functional role of
the gene, clustering mutants associated with oxi-
dative phosphorylation and glycolysis [151]. This
approach has since been extended by Bundy and
colleagues to examine the structure of metabolic
pathways and the network of metabolism in
yeast [152].

Samples are usually prepared in the solution
state to allow metabolites to freely rotate, with
this tumbling producing sharp resonances in the
NMR spectrum. For the analysis of urinary
metabolites and tissue extracts this is easily
achieved, but for blood plasma and sera, metabo-
lites may be bound to lipoprotein particles, pro-
ducing line broadening, which in the extreme can
make metabolites ‘NMR invisible’ unless the
metabolites are extracted. Slow tumbling metab-
olites produce NMR resonances that decay rela-
tively quickly and can be ‘edited’ out by specific
pulse sequences such as the Carr Purcell Mei-
boom and Gill (CPMG) pulse sequence. Thus,
for many metabolomic studies of blood plasma;
a range of pulse sequences may be used to opti-
mize the observation of different metabolites
depending on their size and environment [153,154].

NMR spectroscopy, in vitro, in vivo & 
in situ metabolomics 
The robustness and relative cheapness on a per-
sample basis of NMR spectroscopy as an analyti-
cal tool has allowed the acquisition of relatively
large datasets in metabolomics from its incep-
tion. With improvements in automation, sample
throughput for metabolite rich fluids, such as
urine and blood plasma, is as high as 300 sam-
ples per day, with no significant costs or time
associated with sample preparation. Hence, the
tool has been widely used in the drug safety
assessment area of toxicology [155]. Using such an
approach, the consortium for metabonomic tox-
icology (COMET) consisting of Imperial Col-
lege London, UK, Bristol-Myers Squibb, Eli Lily
1249www.futuremedicine.com
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and Company, Hoffman-LaRoche, NovoNord-
isk, Pfizer Incorporated and the Pharmacia Cor-
poration, investigated approximately 150 model
liver and kidney toxins through NMR analysis of
urinary metabolites over a 3-year period [156,157].
It is hoped that such an approach will allow the
generation of expert systems where liver and kid-
ney toxicity can be predicted for model drug
compounds, with the databases being easily
transferable between laboratories. It has even
been suggested that NMR-based metabolomics
could be used to predict an individual’s response
to a given drug. Clayton and colleagues recently
showed that the use of an individual rat meta-
bolic profile could provide a strong correlation
with the extent of acetaminophen-metabolizing
capability and the associated liver toxicity [158].
This preliminary study also showed the outcome
of galactosamine toxicity (known to show a high
degree of variability) had a strong correlation
with the pre-dose metabolome. 

In addition, the approach has also been used
to screen human populations to understand dis-
ease processes. Brindle and colleagues used 1H
NMR spectroscopy to follow changes in the
composition of blood plasma to predict the
occurrence and severity of coronary artery dis-
ease [159]. Their work suggested that such a diag-
nostic test could be more than 90% successful in
terms of detecting coronary artery disease.
However, this study had a definite gender bias,
as well as some of the patients being treated by
statins, widely used lipid-lowering drugs used to
treat atherosclerosis. In a more recent study, Kir-
schenlohr and colleagues demonstrated that
gender and statin treatment are both confound-
ing factors for pattern recognition models to
detect the presence and severity of coronary
artery disease [160]. They showed that even in
stratified datasets, where classification of disease
status or presence was confined to one gender
and treatment, predictions were poorer, being as
low as approximately 60%.

The high-throughput capability of NMR
spectroscopy for the analysis of urinary metabo-
lites has also been used to monitor changes in
animal models of Type 2 diabetes and compare
these changes with human sufferers. Salek and
colleagues used a range of univariate and multi-
variate statistics to cross compare metabolite
changes in the db/db mouse and the Zucker fatty
rat, both animal models that lack the leptin
receptor, with humans who had Type 2 diabetes
but controlled their blood glucose concentration
by largely dietary control [161]. In addition to a

range of metabolic perturbations associated with
glucose metabolism, glycolysis and the citric acid
cycle, nucleotide metabolism was also
profoundly altered (Figure 3).

Others have used the NMR-based metabo-
lomic approach to monitor the effects of diet,
either to understand biological variation in clini-
cal studies, or as a means to understand the
impact that different diets have on human health.
Lenz and colleagues compared the variability
between urine samples across a group of British
and Swedish volunteers [162]. The effects of diet
and lifestyle were noted to have the greatest influ-
ence on the urinary metabolomic profile, to such
an extent as to obscure the variability due to gen-
der. Indeed, some diets, such as the Atkins diet,
meant those volunteers were classed as outliers in
the subsequent pattern recognition.

Direct observation of metabolites within tis-
sues is impaired by a number of physical proc-
esses that serve to broaden spectral resonances.
Relaxation times are often short giving rise to
broader lines, and anisotropic NMR parameters
are not averaged completely to zero, also causing
line broadening. For 1H NMR spectroscopy,
dipolar coupling and diamagnetic susceptibility
effects are the two processes that cause line-
broadening. Both effects vary in magnitude
according to the angle the sample makes within
the magnetic field, and at the magic angle
(54.7°), these terms are averaged to zero if the
sample is spun (typically faster than 1 kHz),
resulting in high-resolution spectra, comparable
with the solution state [163]. 

This approach, referred to as high-resolution
magic-angle spinning (HRMAS) 1H NMR
spectroscopy, has been used to examine a range of
intact tissues, and in particular tumors. Cheng and
colleagues demonstrated that this approach could
produce high-resolution spectra from intact tissues
that allowed the classification of different types of
brain tumors [164]. By measuring the concentra-
tion of 11 metabolites and the relaxation proper-
ties for the resonances associated with these
metabolites, they were able to distinguish glioblas-
tomas, schwannomas and meningiomas from nor-
mal tissue. In addition, Cheng and colleagues have
also demonstrated that this approach is highly
complementary to histopathology within tumour
tissue, capable of monitoring microheterogeniety
in human glioblastoma [165]. 

Griffin and colleagues have used the ability to
measure both aqueous and lipid metabolites simul-
taneously by HRMAS 1H NMR spectroscopy to
monitor the accumulation of polyunsaturated
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lipids during apoptosis in glioma obtained from
rats [166]. By examining the line widths of these lip-
ids at different temperatures and spinning rates,
and measuring diffusion rates for the lipids, it was
established that these metabolites were found in
cytoplasmic vesicles seen by electron microscopy. 

HRMAS 1H NMR spectroscopy has also been
used to follow the progression of fatty liver dis-
ease in rats exposed to orotic acid [167,168]. While
it is known that orotic acid supplementation dis-
rupts the production of various Apo proteins by
the liver, the exact mechanism by which orotic
acid exposure results in this disruption of lipid
transport is unknown. Griffin and colleagues
used a combined metabolomic and transcrip-
tomic approach to understand the metabolic
changes that occur during the development of
fatty liver disease [168]. In particular, HRMAS 1H
NMR spectroscopy was used to monitor the
increase in concentration of mobile, metaboli-
cally active lipids found in the cytosol. This
approach not only identified changes associated
with the exposure time to orotic acid, but it also
distinguished the two rat strains examined.
Kyoto rats possessed more ‘HRMAS observable’
lipids than Wistar rats, suggesting that the rea-
son that Kyoto rats are predisposed to fatty liver
disease relates to the animals possessing higher
baseline concentrations of cytosolic lipids.

If one is willing to forgo some sensitivity and
resolution, NMR metabolomics can even be per-
formed in vivo. NMR is often referred to as mag-
netic resonance spectroscopy (MRS) when
performed in vivo. The approach has proven to
be particularly useful at following cancer metab-
olism. In one such example, the effects of
hypoxia-induced factor-1β (HIF-1β, a constitu-
ent of the transcription factor HIF-1) deficiency
on tumor metabolism and growth have been
analyzed in vivo and in vitro using MRS in liver
tumors [169,170]. HIF-1β is upregulated in several
cancer types as a consequence of hypoxia, result-
ing in the increased expression of proteins
involved in glucose transport, glycolysis and
growth factors to counteract hypoxia. The
in vivo approach demonstrated that tumors with
HIF-1β knocked out had reduced ATP content,
reduced glycolysis and reduced nucleotide syn-
thesis. Metabolomic studies of this type could be
used to identify metabolic pathways that could
be targeted therapeutically to undermine the
bioenergetic status of the tumor.

The application of in vivo MRS has also been
applied to human sufferers of brain cancer.
Hagberg and colleagues proposed a set of

multidimensional statistical methods for
processing in vivo 1H NMR spectra to classify
human glial tumors [171]. Usenius and col-
leagues coined the term MRS metabolic pheno-
type [172,173] after using simplified 1H NMR
spectra from healthy brain and tumors com-
prising of six metabolites (choline-containing
metabolites, creatine, N-acetyl aspartate,
alanine, lactate and lipid resonances) in con-
junction with an artificial neural network to
classify the tumor types and grades. This
approach has shown a high degree of accuracy,
predicting 104 out of 105 cases correctly [172].
This has been further demonstrated by a
number of other in vivo studies [174–176].

Recent technological developments have sig-
nificantly improved the sensitivity of the NMR
experiment. Cryogenic probes improve sensitiv-
ity by reducing the contribution that electronic
and thermal noise make by cooling the
receiver/transmitter coil in liquid helium, result-
ing in an approximate four-times improvement
in sensitivity as determined by signal/noise
ratios. Such increased sensitivity has the added
benefit of allowing the use of nuclei with a lower
gyromagnetic ratio than 1H, which would nor-
mally be prohibited owing to the time required
to acquire sufficient signal [177]. For small-sized
samples, miniature NMR probe coils can be
used to allow the analysis of volumes as low as
1–3 µl, such as mouse cerebrospinal fluid [178]. 

Direct-injection mass spectrometry
Mass spectrometry is a complex analytical tech-
nique focused on the measurement of mass and is
employed for quantification and identification of
biological or chemical entities. The molecular
weight of intact metabolites (correlated to the ele-
mental composition) and the mass pattern of frag-
mented metabolites (correlated to chemical
structure) are experimentally determined. The
array of mass spectrometers commercially available
operate with analogous experimental approaches
[179–181]: sample introduction, ion formation in an
ion source, separation of ions according to
mass:charge ratio (m/z) in a mass analyzer, and
detection of spatially or temporally separated ions.
The technique provides high sensitivity to allow
detection of metabolites at physiological concen-
trations (typically µM/l). High selectivity allows
the specific detection and, more importantly, con-
firmation of identification, of metabolites in com-
plex biological systems without extensive sample
preparation. Selectivity is normally provided by
tandem mass spectrometry [180–182] and accurate
1251www.futuremedicine.com
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Figure 3. High-resolution 700 MHz 1H NMR spectrum of an aqueous urine sample 
from a healthy control volunteer with the relevant resonance assignments shown.
 

(A) Each resonance corresponds to a chemical moiety within a particular metabolite, with the intensity 
proportional to the concentration of that metabolite. 1: g-hydroxybutyrate/valerate; 
2: Amino acids; 3: Valerate; 4: Unassigned; 5: γ-hydroxybutyrate; 6: Lactate; 7: Alanine; 8: Amino 
acids/ornithine; 9: N-acetyl groups/aspartate/glutamate; 10: Methionine; 11: Oxalacetate/pyruvate; 
12: γ-hydroxybutyrate/glutamine/glutamate; 13: Citrate; 14: Dimethylamine; 15: 
Trimethylamine/dimethylglycine; 16: Creatine/creatinine; 17: Taurine; 18: Polyalkylene glycol; 19: Hippurate; 
20: Creatine/creatinine; 21: Uridine bases; 22: nmN acid; 23: Allantoin; 24: Unassiged pyrimidine; 
25: 3-hydroxypropionic acid/tyrosine?; 26: mHPPA sulphate/indoxyl sulfate; 27: PAG; 28: 2PY; 29: nmN 
amide; 30: Formate; 31: nmN amide/NMN acid. (B) Partial least square discriminant analysis score plot of the 
healthy subjects compared with the Type 2 diabetes mellitus patients following analysis of urine from 
individuals in a clinical trial. All diabetics had well controlled blood glucose concentrations according to 
dietary, rather than drug, intervention and the glucose containing region of the spectrum was excluded from 
the analysis.
Adapted from [161].
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mass measurements [183]. These factors can be
achieved with and without the requirement for
chromatographic separations prior to detection
[184] and resulted in the development of direct
infusion (or injection) mass spectrometry
(DIMS). Here, samples are directly introduced to
electrospray ionization mass spectrometers in a
rapid and automated manner using flow-injection
technologies [185]. 

Many developments in biology correlate to
advances in analytical instrumentation. Clinical
diagnostic capabilities have progressed from the
development of electrospray ionization [186,187]

and its combination with tandem mass spectro-
metry [182]. The latter two advances were the
drivers for the development of high-throughput
(HT) screening programs. These developments
enabled the application of metabolic finger-
printing, and DIMS is a perfect tool for screen-
ing of samples for disease diagnostics, or
classification studies, as it lends itself to full-
automation, is rapid, allows quantification and
identification of metabolites and is applicable for
screening of large (>10000) sample sets. Difficul-
ties arising from matrix effects in complex sam-
ples [188] and the nonuniversal detection of all
metabolites can be easily overcome with the
correct experimental design.

The application of DIMS to 
clinical diagnosis
Today, mass spectrometry is the most frequently
applied of all the technologies discussed in this
review to the diagnosis of single or multidisorder
diseases, the majority of screens being performed
on neonatals. The application of DIMS for new-
born screening has expanded rapidly worldwide
in the previous decade (study numbers in paren-
theses) including in the USA (700,000) [189],
Australia (362,000) [190], Germany
(382,000) [191] and Japan (23,000) [192]. With its
widescale uptake, new diagnostic tests are being
developed for a number of disorders, including
galactosemia, peroxisomal disorders and creatine
deficiency, as well as other specific metabolite
classes such as bile acids [193]. 

Inborn metabolic disorders (IMD), otherwise
referred to as inborn errors of metabolism
(IEM), are a collection of more than 200 sin-
gle-gene disorders that are normally, but not
exclusively, inherited from parents as autosomal
recessive traits [194,195]. Box 1 highlights a wide
range of these disorders, although this is not
comprehensive. These include the most fre-
quently screened disorders of fatty acid oxidation

defects, organic acidemias, urea cycle defects and
disorders of amino acid metabolism, which all
result in abnormal catabolism. The disorders are
caused by the impaired activity of enzymes,
transporters or cofactors resulting in accumula-
tion of abnormal metabolites proximal to the
metabolic block. 

Alternatively, the reduction or accumulation
of byproducts produced by utilization of alterna-
tive pathways can result from these impaired
activities. Metabolic symptoms are a result of
increasing metabolite concentrations rising to
toxic levels because of the loss of their routes for
elimination from the body. Clinical symptoms
(presenting hours to months after birth) include
lethargy, nausea, failure to thrive, acute and pro-
gressive encephalopathy (seizures, mental retar-
dation and physical handicaps) and organ failure
and can ultimately lead to fatality. Toxicity is not
normally observed in prenatals, as most of the
toxic metabolites traverse the placenta and are
therefore cleared maternally during gestation,
resulting in infants appearing normal at birth. 

Measurement of metabolites (amino acids and
organic acids) directly or as conjugates with car-
nitine (acylcarnitines) is the basis of high-
throughput, multidisorder screening of newborns
today [194–199]. The objective is to diagnose in a
presymptomatic or early symptomatic stage
(before severe clinical outcome) to reduce mor-
bidity and mortality, to provide proper therapeu-
tic or dietary intervention and enable a favorable
prognosis (Figure 2). It has been statistically shown
that detection rates have increased since the
introduction of screening programs when com-
pared with clinical diagnosis, especially for fatty
acid oxidation disorders (FAODs) [200–202]. Com-
monly, the detection of up to 65 metabolites for
the screening of more than 40 metabolic disor-
ders is performed on average [193,196], with rapid
analysis times (less than 3 min). Furthermore, in
excess of 500 samples/day can be automatically
prepared, with more than 1000 samples analyzed
between instrument maintenance [195]. 

Guthrie produced the seminal work of new-
born screening in the 1960s, employing bacte-
rial inhibition assays for diagnosis of
phenylketonuria [203]. Millington and col-
leagues first suggested using tandem mass spec-
trometry for neonatal analyses, and this has
been the most striking recent advance in new-
born screening [204]. Initial developments in the
1990s were centered around the Millington and
Chace groups at Duke University in the USA,
who employed fast atom bombardment (FAB)
1253www.futuremedicine.com
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Further information can be
Resource Center [305].
for profiling acylcarnitines (ACs), and subse-
quently amino acids (AAs; acidic, basic and
neutral amino acids) in dried blood spots on fil-
ter paper or plasma [205,206]. However, difficul-
ties arose from the use of glycerol. The
commercial introduction of electrospray ioniza-
tion has overcome these problems with up to
1000 samples being analyzed between source
cleaning [195]. The most common approach is
that of screening acylcarnitines and amino acids
from one blood spot using electrospray ioniza-
tion and tandem mass spectrometry for the
screening of amino acid, organic acid (OA) and
fatty acid (FA) disorders in one analysis. To
expand screening programs, the use of urine is
required and has been discussed for both AAs
and ACs in positive ion mode and OAs in neg-
ative ion mode [207], with a turnaround time of
2.1 min. 

Typically, triple quadrupole instruments
(QQQ) are employed to undertake tandem mass
spectrometry to obtain suitable sensitivity and
selectivity [179–181,193,196]. Normally, a blood sam-
ple taken from a heel prick is used traditionally
followed by derivatization according to Milling-
ton’s protocol [204] to synthesize butyl esters,
though derivatization is not necessarily
essential [208]. Quantification is undertaken using
isotope-dilution techniques. Automated disease
recognition using advanced automated algorithms
has also increased throughput and accuracy
[192,209]. Diagnosis of diseases can be performed by
a single concentration falling outside the ‘normal
range’, or by the relative ratios (molar ratios) of
different metabolites, for example phenyl-
ketourinuria, where tyrosine/phenylalanine ratios
are assessed [210]. 

The objective of this review is not to discuss
all disorders, and so the reader is referred to a
number of excellent reviews for further informa-
tion [193–197,199]. The IMDs related to FAODs
will be discussed in more detail as a typical
example. A further diagrammatic illustration is
shown (Figure 4) detailing phenylketonuria. Fatty
acid oxidation plays a major role in energy pro-
duction in increased-demand states (stress, fast-
ing and disease) where glycogen and glucose
levels are low and result in mobilization of lipids
from adipose tissues and its use in the liver, heart
and muscle for energy production via ketone-
body formation. Fatty acid β-oxidation in mito-
chondria involves more than 20 steps, of which
not all are enzymatic. Short- (<C10) and
medium-chain (C10–C14) fatty acids freely
traverse the mitochondrial membrane, whilst
long-chain fatty acids (C16–C20) require conju-
gation with carnitine. Mitochondrial fatty acid
oxidation defects result in the accumulation of
toxic levels of acyl-coenzyme esters (acyl-CoA)
in the mitochondria. 

In both these disorders, carnitine acts as a
route for acyl-CoA elimination via the forma-
tion of AC esters, thus releasing CoA and pro-
viding homeostatis in the mitochondria.
Problems with the metabolism [193,194,196] of
these conjugated or free fatty acids in the mito-
chondria results in increased acylcarnitine con-
centrations in the circulatory system and urine,
especially long-chain fatty acid acylcarnitines.
This allows for a method for newborn screening.
Plasma ACs and carnitine, concomitant with an
increase of certain organic acids in urine are typ-
ical phenotypes and are used to evaluate patients
presenting with hypoglycemia. This includes
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Figure 4. Schematic
to phenylketonuria
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increases in unsaturated dicarboxylic acids (in
the presence of a non-excess of 3-hydroxybu-
tyric acid) produced from microsomal oxidation
of fatty acids not metabolized in the mitochon-
dria. Specific ACs and OAs clarify the specific
FAOD metabolic disorder [194]. Symptoms can
be periodic and, therefore, asymptomatic
patients do not necessarily exhibit a metabolic
phenotype in their ACs and OAs profile, though
newborn screening is highly successful in detec-
tion of various FAODs. Medium-chain acid dis-
orders (MCAD) appear to be the most common
FAOD in the Western world, with a frequency
of less than one in 10,000 births [194]. MCADS
have discriminatory AC profiles, with increases
in C6–C10 ACs and elevated C8:C2 and
C8:C10 molar ratios. Urinary organic acids
show increases in adipic, suberic and sebacic
acids. Early diagnosis and treatment normally
results in a good prognosis and quality of life.

Future applications 
Lipids are increasingly being highlighted as
playing important roles in a range of diseases
including diabetes, obesity, cardiovascular dis-
ease, inflammatory diseases, cancer and Alzhe-
imer’s disease [211–213]. Changes in lipid
regulation and metabolism are highly relevant
in the etiology of these diseases, although true
detection of all lipid classes in the complex lipi-
dome is difficult. However, new approaches
including shotgun lipidomics and intrasource
separation of lipids, combined with accurate
mass measurements and tandem mass spectro-
metry to unravel the complexity of the samples,
will become more frequently applied in the
future [211–213].

As discussed, advances in analytical instru-
mentation drive new applications and overcome
thresholds of biological knowledge. There are a
number of promising technologies and method-
ologies that will provide new applications in the
future. Desorption electrospray ionization mass
spectrometry (DESI-MS) has been applied, in
combination with NMR, to the analysis of urine
from patients with six IMDs and showed prom-
ise in discriminating controls from these disor-
ders in multivariate space [214]. Of specific
interest is the ability to image biological tissues
in an informative manner. DESI allows this to be
performed with minimal sample preparation and
at atmospheric pressures, while other comple-
mentary imaging techniques are performed with
greater requirements for sample preparation and
operated at vacuum pressures. A recent article
highlighted the advantages of DESI for semi-
quantitative imaging of rat brain tissue, with
examples of lipid analysis described [215]. A fur-
ther study showed the ability of DESI to differ-
entiate between nontumor and tumor regions of
a liver tissue section through the different inten-
sity distributions of sphingomyelin species [216].
One very recent study also applied TOF-SIMS
(using C60 as the primary ion source) to gener-
ate 3D biomolecular images of a Xenopus laevis
oocyte with high sensitivities and minimal
chemical damage. This was the first demonstra-
tion of 3D biomolecular imaging within an
actual biological system using TOF-SIMS [217].

Traditionally, chromatography-mass spectro-
metry has been applied in metabolic profiling
studies for biomarker studies to detect and identify
previously unrecognized metabolic biomarkers of
diseases [15,18]. These employ long analysis times,
although advances in chromatographic instrumen-
tation have provided sub-three-minute analysis
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times, equivalent to the DIMS applications
described above. New applications are expected in
the future [218,219].

Laser desorption ionization 
mass spectrometry 
The roots of laser desorption ionization (LDI)
stem from matrix-assisted laser desorption ioni-
zation (MALDI). MALDI is a soft ionization
mass spectrometry technique, which has become
an extremely popular method for the analysis of
a wide variety of compounds, most commonly
proteins, polymers and nucleic acids [220]. The
greatest hindrance to widespread use of MALDI
is that it is extremely difficult to analyze low-
molecular-weight compounds (<500 m/z) with
any confidence. This is due to the matrices
applied in typical MALDI experiments, that
facilitate the samples initial absorption and sub-
sequent ionization. Most matrices are organic
acids which produce low m/z analytes (e.g., H+,
Na+ or K+ cation adducts) that interfere with the
low-mass range of the analytes of interest,
metabolites being the prime example. One strat-
egy to open up the analysis of low-mass species
has been to apply a high-molecular-weight
matrix; however, problems occurred relating to
the matrix not co-crystallizing efficiently with
the sample (efficient co-crystallization being a
prerequisite for successful ionization) [221]. Con-
sequently, in recent years there have been con-
siderable efforts put towards developing
‘matrix-free’ LDI techniques that are more
applicable to the analysis of metabolites [222].
However, further developments in MALDI
matrices have also proven fruitful for both qual-
itative and quantitative metabolite analysis, a
prime example being the 9-aminoacridine
matrix [223]. 

Both LDI and MALDI function by interro-
gating either the sample alone (LDI) or co-
crystallized sample and matrix (MALDI) with
a laser (commonly a UV nitrogen 337 nm
laser, although IR variants are also available).
In the case of MALDI, the laser transfers
energy to the matrix, resulting in it and the
sample’s transition from solid to gas phase; the
matrix in turn transfers the energy to the gase-
ous sample molecules, thus leading to their
ionization [224,225]. By contrast, in LDI the
plate surface must be capable of transferring
the laser energy directly to the sample for the
molecules to become gaseous and ionized. Fig-

ure 5 illustrates the LDI ionization process.
Within both techniques, ionization is usually

achieved by proton transfer. Once the samples
molecules have been ionized it is possible to
analyze them via mass spectrometry.

The Siuzdak group were the first to develop a
truly ‘matrix-free’ LDI-MS method, which
involved placing the sample on a porous silicon
plate, produced by electrochemical etching of sil-
icon wafers in HF to generate a nanocrystalline
surface [226]. They successfully demonstrated the
method by analyzing antiviral drugs, des-arg-
bradykin, and several small peptides. The tech-
nique was subsequently coined desorption
ionization on porous silicon (DIOS). The per-
formance of DIOS is determined by the type of
silicon (p or n) and the etching conditions that
are used [227], as well as the conditions that the
porous silicon is produced under [228]. 

Since the emergence of DIOS, several other
‘matrix-free’ LDI surfaces have been developed.
These include inorganic sol gels that are poly-
meric in structure and are formed from micellar
concentrations of ‘pore-filling’ alkyl quaternary
ammonium cations with subsequent condensa-
tion and polymerization with a silica precursor,
resulting in a siloxane (SiO) backbone with
hydrophilic Si-OH headgroups. The first appli-
cation of sol gels to LDI, involved the incorpora-
tion of an immobilized matrix compound into
the gel, thus producing a surface that was capa-
ble of directly transferring laser energy to the
sample molecules, leading to their ionization
[229]. A range of carbon-based polymers and
porous polymer monoliths have also been
applied as LDI surfaces, with varying degrees of
success [222]. 

Mesoporous nanostructures (with pore sizes
ranging from 2–50 nm) are also ever increasing
in popularity for use as ‘matrix-free’ surfaces for
LDI. Primarily, research focused upon carbon
nanotube and silicon wire-based surfaces. These
were found to produce minimal background
S/N interference within spectra and required
much lower laser powers to induce sample ioni-
zation when compared to DIOS and MALDI, as
well as permitting the routine detection of
metabolites at attomole concentrations [230,231].
However, the generation of these nanostructure
surfaces unfortunately requires highly experi-
enced synthetic chemists. Alternative approaches
have been to use mesoporous ‘acid-base’ pairing
of tungsten and titanium oxide precursors, yield-
ing structures with a well-defined 2D hexagonal
mesostructure, which again showed high sample
ionization at low laser powers. An even more
recent approach has applied the use of thiol
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stabilized gold nanoparticles to produce 10-6 m
thick mesoporous thin films with evenly distrib-
uted particles. Gold particles of 2–5 nm have
been shown to induce ionization at much greater
levels than the larger-sized carbon and silicon
nanoparticles [232].

LDI-MS & its potential for 
medical diagnostics
Published literature supporting biological appli-
cations of nanoporous materials have been lim-
ited in LDI-MS due to most studies
concentrating upon the development of new and
improved surfaces. Despite this, Vaidyanathan
and colleagues applied DIOS-MS to identify
26 metabolites in a cocktail of 30 metabolites
over both positive and negative ion modes. They
then went on to analyze and metabolically dis-
tinguish cell-free supernatants from cultures of

Saccharomyces cerevisiae haploid single-gene
deletants [233]. More recently, Vaidyanathan and
colleagues analyzed a 30-metabolite cocktail on
both oxidized and nonoxidized DIOS surfaces
by LDI-MS. Surface oxidation appeared to influ-
ence mass spectral responses, with the signal
intensities of the hydrophobic amino acids being
noticeably reduced. It was revealed that quantita-
tive changes of the individual analytes could be
detected, although ion suppression effects were
seen to interfere when the levels of a single ana-
lyte were significantly altered, thus potentially
restricting the instrument’s dynamic range [223].
DIOS-MS has also been applied to forensics,
where a range of low-molecular-weight poly-
mers, including an ethoxylate polymer, were
identified without fragmentation to aid during a
criminal investigation [234]. Chen and Wu
applied DIOS-MS to identify a range of small

Figure 5. Desorption in laser desorption ionization-mass spectrometry.
 

The LDI thin film/porous silicon is prepared upon a sample plate, to which the sample is spotted on top. A 
30 kV charge is applied to the sample plate, which is simultaneously exposed to a pulsed laser beam. The LDI 
thin film/porous silicon then transfers the charge from the laser to the sample, resulting in the ionization and 
desorption of the sample’s metabolites. The analytes are then channelled through the extraction grid and 
focusing lens before entering the mass spectrometer.
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Table 2. Comparison

FT

Sample preparation D

Rapidity (spectral 
acquisition)

1

Reproducibility 
(1 = poor to 
5 = high)

5

Sensitivity 
(1 = poor to 
5 = high)

2

Specificity 
(1 = poor to 
5 = high)

1

Data analysis A
n

Portability/minituris
ation

A

Instrument cost 
(1 = low to 
5 = high)

1

Cost per sample 
(1 = low to 
5 = high)

1

Metabolite ID 
(1 = poor to 
5 = high)

2

organic molecules such as methylpherine, cyto-
sine, and small PEG polymers [235]. The large
range of metabolites detected in these studies
highlight the potential of DIOS-MS to be
applied to medical diagnostics. 

Finally, two recent studies have actually gone
on to analyze material of medical significance.
Su and Tseng analyzed plasma and urine sam-
ples derivatized using sodium borohydride to
convert disulphides into thiols [236]. The deriva-
tized samples were analyzed directly on steel
plates by LDI-MS in order to successfully deter-
mine their homocysteine concentrations. The
second study employed an oxidized carbon nan-
otube-based surface [231] that had been subse-
quently immobilized by a polyurethane adhesive
[237]. The immobilized carbon nanotube surface
was primarily applied to the analysis of a range
of sugars, prior to further analyses where urine

from healthy and diabetic patients was distin-
guished by the presence of glucose in the dia-
betic sample [237]. These analyses have indicated
that LDI-MS is particularly appropriate for the
analysis of low-molecular-weight metabolites of
biological significance. With the imminent fur-
ther development of ‘on-chip’ nanopore-based
LDI surfaces, its suitability for metabolic finger-
printing will be greatly enhanced and many
more examples of its application to medical
diagnostics will be reported.

Conclusion
Metabolomics is the functional analysis method
aimed at acquiring robust and reproducible
quantitative information on cellular metabo-
lites. Clearly, there are many technical chal-
lenges that need to be addressed in order to
generate comprehensive metabolomics data,

 of the various vibrational, NMR and mass spectrometry approaches.

-IR Raman NMR DIMS LDI

irect analysis Direct 
analysis

Dissolved in suitable 
solvent

Extracted into 
suitable 
solvent

Extracted into 
suitable 
solvent

0 s–1 min 10 s–3 min Depends on strength of 
magnet and 1D versus 2D 
experiments. Can be as 
rapid as 8 min

1–3 min 10 s–1 min

4 5 4 3

2 2 (unless 
hyperpolarizability is used)

4 (5 when 
applying MSn)

4

1 3 (or higher when 2D 
methods are used) 
Co-resonant peaks

4 (or higher 
with MSn)

4 (or higher 
with MSn)

ll very similar. Very little data preprocessing is needed, in comparison with the extensive deconvolution 
eeded for GC-MS and LC-MS

lready in existence Already in 
existence

Given magnetic field 
strengths needed, this is 
currently not portable or 
likely to be in the near 
future

Not currently, 
but 
miniaturization 
in progress

Not currently, 
but 
miniaturization 
in progress

2 5 4/5 3

 (reagentless) 1 
(reagentless)

2 (some solvents needed) 2 (some 
solvents 
needed)

2 (some 
solvents 
needed)

2 3 (or higher with 2D 
approaches)

4 (or higher 
with MSn)

4 (or higher 
with MSn)
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and one needs to use a combination of orthog-
onal technologies to increase metabolite cover-
age as much as possible (see Table 2 for a
comparison of the technological approaches
discussed in this review). Notwithstanding this,
as discussed above, metabolic fingerprinting is
gaining considerable interest across a wide vari-
ety of disciplines, with the current main focus,
as reviewed here, being on biomarker discovery
for disease prognoses, diagnoses and therapy
monitoring. Not only will the discovery of mul-
tiple metabolite markers be beneficial for
patient stratification and assessing therapeutic
intervention, but the identification of key
metabolites and their spatial distribution

within tissues will likely lead to a greater under-
standing of the physiology of the disease proc-
ess that will serve as a hypothesis generator for
novel drug targets.
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