















































Measurements of Cellular Biomass 19

Figure 1.9. A Biomass Monilor system contained in a waterproof housing (background) suitable for an
industrial installation. The system consists of a Biomass Monitor (bottom) linked to a Muliplexer Controller
(middle) and a Multiplexer (top). For clarity. only two probes and cabhing are shown connected to the
system {foreground). The probes fit inte standard 25 mm fermentor ports and are screwed into head
amplifiers (smail boxes) that do some signal conditioning prior to passing the measured signal to the main
BM units.

pressures and repeated in situ chemicalfheat sterilization and, above all, must not
present a microbial contamination risk. The Biomass Monitor has evolved over the
past decade to fulfil all of the above requirements (see Figure 1.9) (Davey et al.,
1999).

In the sections that follow, various applications of the BM are described, with
particular emphasis on the more demanding systems and on real world industrial
applications of the machine,

ASSESSMENT OF CYTOTOXICITY

The major site of cytotoxic action of organic solvents is the cytoplasmic membranes of
cells (Tanford, 1980), due to the hydrophobicity or amphipathicity of such molecules
and their ability to partition into, and to dissolve, such membranes (Seeman, 1972).
Therefore, a screen based on the assessment of membrane damage is indicated.
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Stoicheva et al. (1989) noted the effects of octanol upon the B-dispersion of S.
cerevisige. As this partitioned into the plasma membranes, it first caused an increase
in capacitance due to the expansion of membrane area (Seeman, 1972), which was
followed by a rapid decrease due to cell lysis. This effect held for a number of other
substances tested. The work of Salter and Kell (1992) confirmed that cell membrane
damage is the likeliest major mechanism of toxicity, and that it was readily assessable
using the Biomass Monitor. Davey et al. (1993b) noted a reduction in cell ‘viability’
after solvent exposure, according to the methylene blue and ethidium bromide tests.
This emphasizes the fact that biomass rather than necromass is detected using
dielectric measurements. From this work, it was concluded that the dielectric approach
was a novel and convenient means by which to screen solvents, and indeed substrates,
for their biocompatibility. These works and others are included in the recent review
of solvent effects on microbial cells by Salter and Kell (1995).

BACTERIA AND BIOFILMS

The formation of biofilms can be measured using dielectric spectroscopy as an on-line
method. Markx and Kell (1990) observed the formation of a biofilm caused by
Klebsiella rubiacearum. The biofilm was grown in a plate system under a constant
flow of medium with the tip of a BM probe flush to the plate wall. Dielectric
measurements were recorded on the Biomass Monitor by registering capacitative
changes of the culture in the frequency range 0.1 MHz-10 MHz using a 4-terminal
gold electrode. It was shown that the biofilms could be removed from the probe by
using the Biomass Monitor’s electrolytic cleaning pulses. A number of biocides were
assessed, inclading cetrimide, chlorine and glutaraldehyde. Chlorine both removed
and inhibited further biofilm formation and it was also demonstrated that the
automated addition of chlorine in response to changes in capacitance allowed for the
control of biofilm formation on-line.

FILAMENTOUS BACTERIA AND FUNGI

Fehrenbach et al. (1992) decided that the Biomass Monitor had reached a stage of
development where it could be installed in pharmaceutical production facilities
working to cGLP/cGMP regulations. Their work was performed on three scales, with
20 litre, 1,500 litre and 2,000 litre total bioreactor volumes. They used Saccharo-
myces cerevisiae, Pitchia pastoris and Streptomyces virginiae for biomass estimations
in suspension culture. It was concluded that the Biomass Monitor gave an on-line
capacitance measurement that could be related directly to biomass conceniration. The
instrument was also particularly useful in following mycelial growth under industrial
conditions, for which precise off-line measurements did not exist. Under these
circumstances, the instrument gave data which were closer to physiological reality
and could be interpreted more readily and easily than the traditional off-line methods.

Saccharopolyspora erythraea was grown in submerged culture at 2 agitation
speeds by Sarra ef al. (1996) on a soluble medium with glucose as the main carbon
source. They concluded that the BM gave good agreement during the growth phase
when compared with biomass concentrations as determined by dry weight methods,
and that the Biomass Monitor was unaffected by mycelial fragmentation and a
lowering of viscosity.
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SOLID SUBSTRATE FERMENTATIONS OF FILAMENTOUS FUNGI

The direct measurement of microbial biomass on-line and in real-time in liquid
substrate fermentations has been problematical, and in solid substrate fermentations
virtually impossible. Davey ef al. (1991} showed it was possible to exploit the
dielectric properties of cells in order to overcome this problem using the accretion of
tempe as a biological model (Figure 1.10).

Solid-substrate fermentation processes using moulds are traditionally exploited in
the manufacture of a wide variety of oriental foods including tempe. Tempe is a
typical example of a solid-substrate fermentation and is traditionally a soya bean
product fermented by the filamentous fungus Rhizopus oligosporus Saito. The tempe
was cultured at 31°C in petri dishes using soya beans, Andean bitter lupins (Lupinus
mutabilis Sweet) and Quinoa seeds (Chenopodium quinoa Willd) as substrates. The
Biomass Monitor electrode was introduced centrally through the perforated lid of a
petri dish into the culture, with the electrodes and probe body penetrating 3-7 mm into
the substrate. Fermentations were followed over a period of five days and samples
were taken from replicate dishes in order to monitor the culture’s pH, moisture
content and biomass as hyphal length per gram dry weight. It was shown that
capacitance and hyphal length during the growth phase were closely related, with the
linear regression correlation coefficients being close to unity. In this case, capacitance
was proven to be a reliable, reproducible and on-line measurement of biomass in solid
substrate fermentations.

Pefialoza et al. (1991) exploited dielectric spectroscopy in order to identify the
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Figure 1.10. The growth of the filamentous fungus Rhizopus oligosporus on soya beans during the solid
substrate tempe fermentation. For details of the methods used see Davey e al. (1991). This {igure compares
the variation of hyphal growth in km of hyphae per gram of dried tempe {open circles) with capacitance (pF)
(closed eircies) over the course of the fermentation. The capacitance data were recorded continuously, on-
line and in real-time using a BM but only the data points corresponding to the off-line hyphal length
measurements are shown. There is an excellent linear relationship between capacitance and hyphal iength
throughout the 48 hour growing pericd. During the Iytic phase, the body of the tempe coliapses away from
the beans as the cells lyse. The loss of intact membranes causes the capacitance to fall while hyphal length
remains unchanged, as this is based on the measurement of the unaffected cell walls,
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effects of potassium on the growth of Rhizopus oligosporus in solid substrate
fermentations. The sources of potassium were K.,CO,, KJHPO_', and KC}, and were
introduced to the culture medium at known concentrations. Mycelial potassium salt
levels were measured using an Auto Analyser and capacitance readings recorded using
a Biomass Monitor at a fixed single frequency of 0.3 MHz. It was concluded that the on-
line measurementof fungal biomass viacapacitance wasextremely usefulindetermining
the effect of potassium ions on mycelial growth, and led to a significant improvement
in both the medium composition and the speed of the fermentation.

Further to this work, Pefialoza et al. (1992) used the Biomass Monitor at a single set
frequency of 0.3 MHz o optimize the solid-substrate tempe fermentation of Chenopo-
dium guinoa Willd by Rhizopus oligosporus Saito. From the accurate determination
of biomass via capacitance, the optimum combination of strain and fermentation
conditions were deduced for tempe production. This consisted of an initial moisture
content of some 620 g.kg™!, an initial pH of 6.4, and an inoculum of 3 x 10¢ colony-
forming units of strain UCW-FF8001 per gram of substrate.

YEAST

Fermentations

The dielectric properties of yeast cell suspensions have been studied in great depth
both on- and off-line by many authors (eg Asami and Yonezawa, 1996; Harris ef al.,
1987; Kell, 1987b; Kell et al., 1987; Davey et al., 1992; Asami et al., 1999). In fact,
yeast provides the standard models for studying the dielectric properties of cells in
general, and for dielectric biomass measurement studies in particular. Indeed, the first
Biomass Monitor publication {Harris ¢ al., 1987) was on studies of yeast growing in
an airlift fermentor (Figure .11 a and b). Leading on from this work, further research
has led to other yeast studies and applications.

Salter et al. (1990) described a novel method of yeast cell immobilization in
ceramic microspheres that allowed high celi densities to be achieved. A suspension of
S. cerevisiae was passed through a column of microspheres into which a BM electrode
had beea built. The cells rapidly colonized the microspheres with an even distribution
along the entire column length. Cell loading was determined off-line using a protein
assay and optical density. From this it was possible to correlate the measured
capacitance from the Biomass Monitor to the column loading. The conversion factors
produced were 1 mg dry we.ml! = 39.6 x 10 cells.ml”! = 1.74(6) pF. Overall, the
Biomass Monitor proved to be very reliable, irrespective of whether the cells were
resting or growing.

Kronlof (1990) monitored immobilized yeast celis in a continuous brewery fer-
mentation that, due to the insoluble nature of the carrier, can cause problems for the
more traditional approaches to viable biomass monitoring. The problems are associated
with the complete inhabitation of the immobilization system and how to ensure the
complete removal of adhering cells. Further, when the cells had been removed it was
unclear as to how to differentiate between viable and non-viable cells, as this is
impossible when using traditional protein estimation methods to calculate biomass.
Several biomass determination methods were evaluated: gravimetric, haemocytometer,
methylene blue, ATP determination and glycogen estimation. The results were
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Figure 1.11. The growth of yeast in an air-lift fermentor {scc Harris er al. (1987} for full details of the
methods used}. (a) The on-line real-time estimation of hiomass using a BM. The capacitance of the
suspension was measured at (.3 MHz using single-frequency biomass measurements. {b) The data from (a)
plotted against the equivalent off-line optical densities (after appropriate dilution} measured at 600 nm. An
almost perfect linear relationship between the two methods of accessing biomass is demonstrated.

compared to those obtained from the Biomass Monitor. It was found that the
background effect due to non-cellular material could be eliminated and a wide range
of biomass concentrations reliably monitored. The conclusion was that the Biomass
Monitor is equally suitable for viable biomass estimations in both suspended and
immobilized systems.

The Biomass Monitor has also found a significant niche in fermentation process
control (Kronlof, 1990; Kronlof, 1991; Markx et al., 1991b; Austin er al., 1994;
Davey et al., 1996). Markx et al. (1991b} grew baker’s yeast in a novel type of
turbidostat, or more correctly permittistat, in which a constant biomass level was
continuously maintained by a feedback mechanism based upon the dielectric permit-
tivity of the culture. Dielectric biomass estimations were made using the two-frequency
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method at 0.4 MHz and 9.5 MHz. Other parameters were also compared to the
permittivity data at each setpoint to validate the fermentor control. These included dry
weight, fresh weight, the optical density at 600 nm, percentage viability (from the
methylene blue assay), bud count, ethanol concentration, glucose concentration, and
the cell size distribution was measured using flow cytometry. Good linear relation-
ships between setpoint permittivity and dry weight, wet weight and OD were
obtained. It was concluded that any changes in the physiological properties of the
yeast had a negligible effect on the ratios between permittivity set (and measured) and
the steady-state dry weight or optical density of the cultures.

Davey ef al. (1996) studied the fluctuations in growth rate of a permittistatically
controlled yeast culture as estimated from the rate at which medium was pumped into
the fermentor to maintain the permittivity setpoint (biomass concentration). They
found that permittistatic control provided an excellent method of maintaining and
monitoring a constant biomass level within a fermentor and were the first to show that
cellular growth could exhibit deterministic chaos.

A study by Austin et al. (1994) utilized the Biomass Monitor in a control loop to
maintain set-point levels in a cyclic reactor under perturbations. A linear relationship
was found between capacitance measurements and cell counts of brewer’s yeast
suspensions and, importantly, a comrelation was also demonstrated between capaci-
tance and viable biomass concentration.

Brewery yeast managemerit

Yeast management within breweries has received a considerable amount of attention
in recent years. It is necessary to ensure that there is the correct amount of yeast in the
wort at the start of a fermentation as this has a major influence on the final quality of
the beer. A great deal of research has been undertaken to assess practical ways in
which yeast concentration can be monitored prior to and during pitching (Carvell,
1994). Traditionally, yeast pitching rate is calculated from either the direct weighing
of yeast cake or, more usually, by metering a volume of yeast slurry with a
predetermined solids content. Both methods have disadvantages and these may lead
to errors in calcnlating the correct quantity of yeast in the pitch. The yeast cake
method is prone to errors due to variable moisture levels and the spun solids content
can be inaccurate at high concentrations. With the yeast shurry method, it is necessary
to correct the yeast content for trub (insoluble non-yeast material) and yeast viability
by off-line methods. These problems make process automation difficalt.

Viability is a measurement that has vexed brewers for many years. Viable and
non-viable yeast cells can purportedly be discriminated using the methylene blue
staining method (Fraser, 1920), which is still widely considered to be the standard.
In addition to the question of membrane permeability, metabolically active cells
reduce those molecules of methylene blue which do cross the cell membrane to a
colourless form. The methylene blue method is a subjective test that tends to
overestimate the number of viable (culturable) cells (since metabolic activity can
remain long after culturability is lost; Davey et al., 1996; Barer et al., (998; Kell
et al., 1998). Even after viability staining, the production brewer may well add
approximately 10% extra yeast ‘in order to be on the safe side’. This addition can
lead to fermentation problems, as over-pitching can be the cause of poor yeast
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Figure 1.12. A schematic diagram of an automated pitching rate control system incorporating a Yeast
Monitor to ensure an accurate amount of viable yeast siurry is delivered from a yeast storage vessel to the
fermentor. The brewer sets the amount of yeast to be pitched and the timing of the pitch within the brew. The
system: then monitors the concentration of viable yeast passing the probe in the pitching main. The resulting
concentralion signal is then integrated with the output from the flow meter, giving a measure of the amount
of viable yeast pitched into the fermentor. When the target is reached, the controller will turn off the yeast
pump. With the addition of a flow meter in the wort line, the wort flow can be used to control the viable yeast
rate and hence provide continuous pitching over the entire length of the brew (Cacvell, 1997).

vitality, reduced hop utilization, and variable consistency in terms of product
flavour and process optimization.

For the purposes of estimating on-line viability of yeast, the 316B Yeast Monitor
was developed from the BM specifically for the brewing industry. The Yeast Monitor
is capable of measuring the viable yeast count per ml directly on-line and is unaffected
by trub, proteins or gas bubbles. The 316B was evaluated by a major British brewing
company (Bass Brewery PLC, High Street, Burton-on-Trent, Staffordshire DE14
1JZ, U.K.) and their results were presented at the 22™ European Brewing Convention
(Boulton et al., 1989). The results in that paper showed a linear relationship between
capacitance and yeast biomass over a range extending to at least 50% wet weight/
volume which was equivalent to 100 mg.ml™ dry weight or 1 x 10° cells.mi"!. It was
also noted that, with the correct yeast pitch as determined by the Yeast Monitor, a
typical fermentation was completed in 55 hours as opposed to the periods of up to 74
hours occasioned by conventional pitching procedures. These correct pitching values
in turn led to enhanced fermentor performance, and therefore to an increased
turnover. In this paper, a schematic representation of a yeast pitching control system
was also suggested (Figure 1.12), which was later implemented in the breweries of
many companies worldwide. Leading on from this article, the application of the Yeast
Monitor to control yeast pitching rates received further attention: Boulton ef al., 1991;
Lawrence, 1992; Boulton and Clutterbuck, 1993; Maca et al., 1994; Kell and Todd,
1998.

In the study of Maca et al. (1994), Yeast Monitor readings were used to calculate
the yeast slurry volumes required to pitch fermentations at the Miller Brewing
Company, Milwaukee, U.S.A. These volumes were then compared to a conventional
spin down wet solids measurement method of calculating pitching rates. This method
gives an estimate of the yeast volume to be pitched based upon the determination of
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Figure 1.13. This photograph shows a Yeast Monitor {background) installed in & working brewery
environment (Bass PLC, U.K.). This system utilizes the Yeast Monitor to automaticully control yeast
cropping, therehy ensuring that waste is minimized and the storage of viable yeast suitable for re-pitching,
is maxinized.

the volumes of specific layers within a centrifuged sample of yeast. Of six fermentors
pitched using the Yeast Monitor, all were on target for viable cell count immediately
after pitching. In comparison, only one out of the five fermentors that were pitched
using the traditional spin down method was on target. It was also concluded that the
Yeast Monitor is not affected by the high and varying levels of trub which, in the
Miller yeast, can interfere with the spin down method.

During 1993, Alfa Laval Brewery Systems, Sweden, launched the Dynapitch
controlled yeast pitching system, which at its heart is controlled by a 316B Yeast
Monitor. This instrument was evaluated by Dymond ef al. (1994} and is a self-
contained, skid-mounted, computer-controiled medule designed to minimize the
requirements for on-site engineering and installation. The system is currently in-
stalled in a number of European breweries, allowing the full automation of yeast
pitching.

The Yeast Monitor has recently undergone further metamorphoses. One of the new
variants is the Yeast Monitor 320, which utilizes probes positioned at different
heights within a large production fermentor (Carvell, 1997). This instrument is
multiplexed (up to 16 probes) and designed to monitor yeast profiles and mixing
patterns within production fermentors, a process that is not well understood. Further
development work by Aber Instruments has led to the 800 series Lab Yeast Analyser
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{Pateman, 1997), which has been designed as a bench-top brewery laboratory tool
requiring little sample preparation.

A further application of the Yeast Monitor is the control of yeast feed rate to
centrifugal separators in breweries. This process can be difficult to optimize, leading
to yeast slurries of varying concentration which can cause centrifuge blockages and
hence process down time. The combined use of the Yeast Monitor coupled 1o a
variable-speed centrifuge allows the brewer to recover beer from the yeast sturry
more efficiently and reliably, with lower running costs. Centrifugation is but one
process in the recovery of yeast from the fermentation process (yeast cropping). Yeast
cropping can also be automated using a Yeast Monitor so that, among other things,
only viable yeast is stored ready for re-pitching (Figure 1.13) (Boulton and Chitterbuck,
1993; Carvell, 1997; Siems, 1997).

ANIMAL CELLS

Biotechnological processes performed at a semi-pilot or industrial scate using mam-
malian cells lack appropriate probes to evaluate on-line, in real-time, non-invasively
and reliably, the biomass content of a bioreactor (Kell ef al., 1990; Konstantinov et af.,
1994).

The application of the Biomass Monitor to animal cell culture monitoring has
only occurred in earnest in the last few years (Cerkel e al., 1993; Degouys et al.,
1993; Beving et al., 1994; Davey er al., 1995; Noll, 1995; Noll et al., 1996; Noll
and Biselli, 1998; Davey et al.,, 1997; Guan and Kemp, 1997; Guan er al., 1998;
Zeiser et al., 1999). In these works, the Biomass Monitor has been used to study
the growth of a wide variety of animal celis, whether in suspension or in an
immobitized state.

Cerckel et al. (1993) investigated the dielectric properties of Chinese Hamster
Ovary (CHO 320) cells and HeLa cells grown in suspension culture at a concentration
of 0.5-3 x 10¢ celis.ml* and scanned at frequencies between (.2 and 10 MHz using
a BM. Cell numbers were determined using a Coulter Counter model Z, and a linear
relationship between capacitance and cell number was observed. Low-frequency
dielectric specira did, however, prove to be unreliable due to the high conductance of
the growth medium and the corresponding increase in electrode polarization. It was
found thal using 0.5 MHz as the measuring frequency gave the best compromise in
terms of loss of sensitivity versus quality of biomass evaluation.

Zeiser et al. (1999} grew batch suspension cultures of Spodoptera frugiperda Sf-9
{insect cells) which were infected with a baculovirus expressing recombinant §-
galactosidase. Permittivity measurements were made on-line using a Biomass Monitor
set at a frequency of 0.6 MHz. It was observed that during the growth phase there was
an increase in the relative permitlivily; this reflected an increase in viable cell
numbers that remained broadly matched with permittivity during the time-course of
the experiment. From these data, the most appropriate point on the growth curve for
the addition of the baculovirus could be determined. The virus initiates the arrest of
cell division, and the infected cells increase in size, eventually lysing and releasing the
recombinant protein. The use of dieleciric spectroscopy allowed for the optimization
of the time of infection, and hence led to the maximum yield of the recombinant
protein.
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Macroporous carriers are a useful means of increasing the numbers of cells in a
culture which can be low, particularly in batch cultures using CHO 320 cells (Guan
and Kemp, 1997). One of the problems in using macroporous carriers to cultivate
animal cells in culture has been to assess cell viability on-line; this is because many
of the cells inhabit the macroporous infrastructure of the bead. Guan and Kemp (1997)
measured the cell concentration of CHO 320 cells grown on Cytopore | microcarrier
beads (Pharmacia) using off-line protein estimations and compared them to dielectric
measurements made using a BM. The results indicated that the dielectric estimations
of btomass in the microcarriers was more accurate than the protein estimations, and
was also able to give a viable cell count.

Degouys ef al. (1993) used the Biomass Monitor to evaluate the concentration of
anchorage dependant HTC cells grown on Cytedex 3 (Pharmacia) in spinner vessels.
Capacitance values measured at 0.8 MHz on the Biomass Monitor were compared to
measurements from a Coulter Counter Z. It was found that the cellular biomass
estimations made from the Biomass Monitor were extremely accurate when seceded
concentrations of Cytodex of 5 g/l and higher were used. These microcarrier
concentrations are those commonly used in the biotechnology industry for the mass
production of recombinant anchorage-dependent cells.

Davey er al. (1997} used suspensions of immobilized Chinese Hamster Ovary
(CHO 320) cells that had been genetically adapted to produce interferon-y to evaluate
the relationship between capacitance and the concentration of viable cells. Dielectric
data were compared with data from a Coulter Counter (Model D) and from flow
cytometry, comparisons were also made with traditional microscope counts (hacmo-
cytometer) and to the fluorescein diacetate and ethidium bromide viability assay. An
excellent relationship was again observed between capacitance and viable cell
number, This is important, as the conventional means of assessing biomass are not
possible with immobilized cells.

Guan et al. (1998) combined on-line BM and microcalorimetric measurements to
control a stirred aerobic batch culture of CHO 320 cells that had been genetically
modified to produce human interferon-y. This approach was chosen as cell growth is
associated with an enthalpy change which is a direct reflection of metabolic rate. A
specific heat flow measurement was achieved by dividing heat flow rate by the
capacitance of the cell suspension with detection limits of ca. 2.0 x 10-*W.cm™ and
14 x 1% cells.cm respectively. The results of this work have led to the patenting of
a specific heat flow sensor as a means of metabolic control of mammalian cell cultures
with the advantages of on-line reliability, robustness, and with long-term advantages
in the way of little recurrent cost to the user,

Noll and Biselli (1998) evaluated the BM using immobilized hybridoma cells
grown in continuous suspension in a fluidized bed bioreactor batch culture. Both
capacitance and conductance were measured on-line at a frequency of 0.6 MHz, while
control measurements were made off-line to ascertain cell density. The capacitance
data provided information that led to computer optimization of on-line medium
dosing as it was found that a constant ratio existed between glutamine consumption
and capacitance. This allowed a closed loop control of the medium feed rate, which
was directly linked to the capacitative signal produced by the Biomass Monitor during
the entire course of a continuous fermentation.
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PLANT CELLS

Markx et al. (199ic) measured the biomass of plant cell suspensions of Festuca
arundinacea using the on-line measurement of the permittivity of the culture with a
BM, and also by measuring the conductivity of the suspending medium and the cell
suspension as a whole using a ‘Bruggeman probe’ connected to a bench conductivity
meter. The Bruggeman method of biomass estimation (Bruggeman, 1935; Lovitt et
al., 1983) proved accurate and could be applied on-line, and it also gave results which
correlated with biomass concentrations as determined from measurements of the
radio-frequency dielectric permittivity of the culture. However, the Biomass Moni-
tor’s results based upon dielectric permittivity were more convenient to use on-line as
no mechanical pumping was required, although one has to say that the Bruggeman
approach has the potential to form a very cheap biomass measuring system for
systems where the cells/fimmobilized cells settle out very quickly or can be easily
filtered.

Further work by Markx et al. (1991d) showed that dielectric spectroscopy using a
BM could be used to measure the shear sensitivity of plant celis by measuring the
permittivity fall in a plant cell suspension culture under shear stress. This was
demaonstrated using suspension cultures of Cathararanthus roseus, Nicotiana tabacum,
Cinchona robusta and Tabernaemontana divaricata. All of the cultures showed an
initial rapid decline in viable cell number, followed by a slower decline as observed
dielectrically. These results were compared with fresh weight, dry weight, packed cell
volume and cell number. Tt was concluded that the sensitivity of the cells to shear
stress depended strongly on the cell line but only slightly upon the cell's age.

Conclusions

1t is clear from the many publications cited that capacitative (dielectric) biomass
measurements are generally an accurate and reliable method of determining viable
cellular biomass, both on- and off-line. However, of the several instruments that have
been used to make these measurements, it is only the Biomass Monitor and its
derivatives that can be used for ‘off-the-peg’ applications, particularly within an
industrial environment.

The Biomass/Yeast Monitor continues to be incorporated and exploited within the
brewing and pharmaceutical industries, with its use being not purely for measurement
but also as a control instrument, capable of controlling valves, centrifuges, etc. Within
the brewing industry, the Yeast Monitor has been utilized in the control of yeast
pitching, yeast reclamation, the monitoring of cell growth, and feed rate control for
beer recovery processes. The use of the Yeast Monitor has, in some breweries, wholly
superseded traditional methods of yeast measurement and has led to greater process
performance, with important capital cost savings.

Perhaps the major future advances in dielectric biomass estimation will come with
fully developed instruments that can operate below 100 kHz without significant
electrode polarization affecting the results. This would not only give more reliable
biomass estimations but would allow the study of low-frequency dielectric phenomena
related to cell surface charge effects (the o-dispersion). The extension of dielectric
studies from the linear to the non-linear domain has already begun (Woodward and
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Kell, 1990; Woadward ¢ al., 1996) and could lead to important new on-line methods
of monitoring cell physiology.
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