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20.1 Introduction

Bioinformatics is a discipline that uses computational and mathematical tech-
niques to store, manage and analyse biological data in order to answer bio-
logical questions. Bioinformatics has over 850 databases [181] and numerous
tools that work over those databases and local data to themselves produce
even more data. In order to perform an analysis, a bioinformatician uses one
or more of these resources to gather, filter and transform data to answer a
question. Thus, bioinformatics is an in silico science.

The traditional bioinformatics technique of cutting and pasting between
Web pages can be effective, but it is neither scalable nor does it support
scientific best practice, such as record keeping. In addition, as such methods
are scaled up, slips and omissions are more likely to occur. A final human
factor is the tedium of such repetitive tasks [371].

Doing these tasks programmatically is an obvious solution, especially for
the repetitive nature of the tasks. Some bioinformaticians have the program-
ming skills to wrap these distributed resources. Such solutions are, however,
not easy to disseminate, adapt and verify. Moreover, one of the consequences
of the autonomy of bioinformatics service providers is massive heterogene-
ity within those resources. The advent of Web Services has brought about a
major change in the availability of bioinformatics resources from Web pages
and command line programmes to Web services [369], though much of the
structural, value based and syntactic heterogeneity remains. The consequent
lack of a common type system means that services are difficult to join to-
gether programmatically and any technical solution to in silico experiments
in biology has to address this issue.
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Many scientific computing projects within the academic community have
turned to workflows as a means of orchestrating complex tasks (in silico
experiments) over a distributed set of resources. Examples include Discov-
eryNet [352] for molecular biology and environmental data analysis, SEEK for
ecology [67, 68], GriPhyn for particle physics [144], and SCEC/IT for earth-
quake analysis and prediction [242].

Workflows offer a high-level alternative for encoding bioinformatics in sil-
ico experiments. The high-level nature of the encoding means a broader com-
munity can create templates for in silico experiments. They are also easier to
adapt or re-purpose by substitution or extension. Finally workflows are less of
a black-box than a script or traditional programme; the experimental protocol
captured in the workflow is displayed in such a way that a user can see the
components, their order and input & outputs. Such a workflow can be seen
in Figure 20.1.

myGrid is a project to build middleware to support workflow-based in silico
experiments in biology. Funded by the UK’s e-Science Programme from 2001,
it has developed a set of open source components that can be used indepen-
dently and together. These include a service directory [268], ontology-driven
search tools over semantic descriptions of external resources and data [268];
data repositories and semantically-driven metadata stores for recording the
provenance of a workflow and the experimental lifecycle [457], as well as other
components such as distributed query processing [63], event notification1.

myGrid’s workflow execution and development environment, Taverna, links
together and executes external remote or local, private or public, third party
or home-grown, heterogeneous open services, (applications, databases, etc).
The Freefluo workflow enactment engine2 enacts the workflows. The Tav-
erna workbench is a GUI-based application for bioinformaticians to assemble,
adapt and run workflows, and manage the generated data and metadata.
myGrid components are Taverna plug-ins (for results collection and brows-
ing, provenance capture, service publication & discovery) and services (such
as specialist text mining). Thus the workbench is the user facing application
for the myGrid middleware services. At the time of writing Taverna 1.3 has
been downloaded over 14 0003 times and has an estimated user base of around
1 500 installations. Taverna has been used in many different areas of research
throughout Europe and the U.S.A. for functional genomics, systems biology,
protein structure analysis, image processing, chemoinformatics and simula-
tion co-ordination. From 2006, myGrid has been incorporated into the UK’s
Open Middleware Infrastructure Institute to be “hardened” and developed to
continue to support Life Scientists.

1 http://www.mygrid.org.uk
2 http://freefluo.sourceforge.net
3 see http://taverna.sourceforge.net/index.php?doc=stats.php

http://www.mygrid.org.uk
http://freefluo.sourceforge.net
http://taverna.sourceforge.net/index.php?doc=stats.php
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20.1.1 A bioinformatics Case Study

An exemplar Taverna workflow currently being used for systems biology is
shown in Figure 20.1. This workflow uses data stored in distributed databases
to automate the reconstruction of biological pathways which represent the re-
lationships between biological entities such as genes, proteins and metabolites.

The interaction pathways generated by the workflow are in the form of a
data model, which is specified by the XML-based Systems Biology Markup
Language [216]. A core SBML workflow is responsible for generating a SBML
model. This is then populated, through the SBML API, by the supplementary
workflows that gather data for the model (see Figure 20.1). The SBML model
can then be used to perform biological simulations.

These workflows typify the needs of bioinformatics analyses. It is a typ-
ically data centric workflow gathering many kinds of data from a variety of
locations and from services of a variety of technology types. As will be seen
through the chapter, many types of resources are used and these can all be
incorporated into Taverna. The workflows have to be run repeatedly and such
an analysis would be long and tedious to perform manually.

The rest of this chapter is organised as follows. Section 20.2 further elabo-
rates on the background to Taverna, then outlining requirements in detail in
Section 20.3. Section 20.4 introduces the major Taverna components and ar-
chitecture. Section 20.5 concentrates on the workflow design, and Section 20.6
on executing and monitoring workflows. Section 20.7 completes the workflow
lifecycle with metadata and provenance associated with managing and shar-
ing results, and the workflows themselves. Section 20.8 discusses related work.
Section 20.9 reflects on our experiences and showcases future developments in
Taverna 2.0.

20.2 The Bioinformatics Background

Life scientists are accustomed to making use of a wide variety of web-based
resources. However, building applications that integrate resources with inter-
faces designed for humans are difficult and error-prone [369]. The emergence
of Web Services [98], along with the availability of suitable tool support, has
seen a significant number of bioinformatics web resources becoming publicly
available, and described with a Web Services Description Language (WSDL)
interface.

There are currently over 3 000 services accessible to a myGrid user. Al-
though the majority involve complex interaction patterns, specific messag-
ing formats, or use different protocols and paradigms, they actually follow a
small number of stereotyped patterns. The user’s lack of middleware knowl-
edge means they should not be expected to deal with the differences between
these patterns. In addition, given the number and distribution of services users
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Fig. 20.1: An SBML model construction workflow. This workflow retrieves
protein interactions from the BIND database which are then used to popu-
late a SBML model using the core SBML workflow. Four types of processors
are used in this example: WSDL (dark green), consumer API (light green),
local Java (purple) and nested workflow (red) processors. These processors
are joined together by data links (black) and coordination links (grey). Local
processors such as getProteinPairs and merge act as shim services by adapting
data for population of the SBML model.

cannot be expected to have existing knowledge of what services are available,
where they are or what they do.

The data produced by these services is mostly semi-structured and het-
erogeneous. There are a large number of data formats including those for
gene sequences, for protein sequences, as well as bespoke formats produced
by many analysis tools. These are rarely encoded in XML and there is usually
no formal specification that describes these formats. Interpreting or reconcil-
ing these data as it is passed between different databases and analysis tools
is therefore difficult.

This situation is in contrast with data in other scientific workflow projects
which have much more centralised control of data formats. For example, the
SEEK project provides tools for ecologists within the project to describe their
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data using XML Schema and ontologies, and so support middleware driven
data integration [99].

DiscoveryNet [352] requires each application service to be wrapped allow-
ing data to adhere to a common format. Other projects are more uniform
than myGrid in the way applications on distributed resources are accessed.
For example, abstract Pegasus workflows used in the SCEC/IT project are
first compiled into concrete workflows. Each step of a concrete workflow cor-
responding to a job to be scheduled on a Condor cluster [145].

Taverna differs from these projects by placing an emphasis on coping with
an environment of autonomous service providers and a corresponding ‘open
world’ model for the underlying Grid and Service-Orientated Architecture.
Taverna’s target audience of life scientists want easy access and composition
of as wide a range of services as feasible and this reinforces the need for an
open access policy for services, despite the obvious difficulties.

20.3 Aligning with Life Science

From the background and introduction we can define the key requirements
for the Taverna workflow system that drive us to align with Life Science:

Ease of Use: The target end user for Taverna are not necessarily expert pro-
grammers.

Data Flow Centric: Bioinformaticians are familiar with the notion of data
flow centric analysis. We want to enhance how biologists perform their
models of analysis, not to change their model of analysis.

Open World Assumption: We want to be able to use any service as presented,
rather than require service providers to implement services in a prescribed
manner and thus create a barrier to adoption.

Easy and Rapid User-driven ad-hoc Workflow Design: Quickly and easily find-
ing services and adapting previous workflows is key to effective workflow
prototyping.

Fault Tolerant: Any software operating in a networked, distributed environ-
ment is required to cope gracefully with failure.

Support for the e-Science life cycle: Workflows are not a complete solution
for supporting in silico experiments. They exist in a wider context of
scientific data management, as illustrated in Figure 20.2. It is essential
that data produced by a workflow carries with it some record of how and
why it was produced i.e., the provenance of the data.

20.4 Architecture of Taverna

The requirements described have led to several major design lessons. Fig-
ure 20.3 illustrates how Taverna takes a layered approach to its overall archi-
tecture. This is driven by the need to present a useful, high-level presentation
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Fig. 20.2: The e-Science life cycle

in which biologists can co-ordinate a variety of resources. Our user-base neither
knows nor cares about such things as port types etc. We have a requirement to
both present a straight forward perspective to our users and yet cope with the
heterogeneous interfaces of our services. A major consequence of this for the
workflow system architecture has been to provide a multi-tiered approach to
resource discovery and execution that separates application and user concerns
from operational and middleware concerns.

Scufl, a workflow language for linking applications [314], is at the abstrac-
tion level of the user; an extensible processor plug-in architecture for the
Freefluo enactor manages the low-level “plumbing” invocation complexity of
different families of services. In between lies an execution layer interpreting
the Taverna Data Object Model that handles user-implied control flows such
as implicit iteration over lists, and a user’s fault tolerance policies.

Figure 20.3 shows how the myGrid components are divided between the
three layers of myGrid’s design.

• The Application Data Flow layer, is aimed at the user and is characterised
by a User-Level Workflow Object Model. The purpose is to present the
workflows from a problem-oriented view, hiding the complexity of the
interoperation of the services. When combining services into workflows,
users think in terms of (see figure 20.4)the data consumed and produced
by logical services and connecting them together. They are not interested
in the implementation styles of the services.

• The Execution Flow layer relieves the user of most of the details of the
execution flow of the workflow and expands on control flow assumptions
that tend to be made by users. This layer is characterised by the Enactor
Internal Object Model and by the myGrid Contextual Information Model.
The layer manages list and tree data structures, implicitly iterates over
collections of inputs and implements fault recovery strategies on behalf
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Fig. 20.3: An overview of Taverna in layers.

of the user. This saves the user explicitly handling these at the Appli-
cation layer and avoids mixing the mechanics of the workflow with its
conceptual purpose. A drawback is that an expert bioinformatician needs
to understand the behavioural semantics of this layer to avoid duplicating
the implicit behaviour.

• The Processor Invocation layer, is aimed at interacting with and invok-
ing concrete services. Bioinformatics services developed by autonomous
groups can be implemented in a variety of different styles even when they
are similar logical services from a scientist’s perspective. This layer is
characterised by the Enactor Internal Object Model and is catered for
by an extensible processor plug-in architecture for the Freefluo enactment
engine.

myGrid is designed to have a framework that provides three levels of extensi-
bility:

• The first level provides a plug-in framework to add new GUI panels to
facilitate user interaction for deriving and managing the behavioural ex-
tensions incorporated into Taverna. This extensibility is made available
at the workbench layer.

• The second level allows for new processor types to be plugged-in to enable
the enactment engine to recognise and invoke new types of services (which
can be both local and external services). This permits a wider variety of
workflows to be constructed and executed. This level of extensibility is
provided at the workflow execution layer.
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• The third level is provided for loosely integrating external components via
an event-observer interface. The workflow enactor generates events during
critical state changes as it executes the workflow, exposing snap shots of
important parts of its internal state via event objects (i.e. messages).
Those event objects are then intercepted and processed by observer plug-
ins that can interact with external services. This level of extensibility is
made available at the workflow execution layer.

Fig. 20.4: The Taverna Workbench showing a tree structure explorer (A) and
a graphical diagram view (B) of a Scufl workflow. The results of this workflow
are shown in the enactor invocation window in the foreground (C). A service
palette showing the range of operations which can be used in the composition
of a workflow is also shown (D).

The Scufl language [314] is essentially a data flow centric language, defin-
ing a graph of data interactions between different services (or, more strictly,
processors. Scufl is designed to reflect the users abstraction of the in silico
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experiment, rather than the low-level details of the enactment of that exper-
iment.

Internally to Taverna, Scufl is represented using a Workflow Object Model,
along with additional information gained from introspecting over the services.
A typical workflow developed in the systems biology use case is shown in
Figure 20.1.

The components of a Scufl workflow are:

A set of inputs that are entry points for the data for the workflow.
A set of outputs that are exit points for the data for the workflow.
A set of processors each of which represents a logical service: an individual

step within a workflow. A processor includes a set of input ports and a set
of output ports. From the user’s perspective the behaviour of a processor
is to receive data on its input ports, (process the data internally) and to
produce data on its output ports.

A set of data links that link data sources to data destinations. The data
sources can be inputs or processor output ports, and data destinations
can be outputs or processor input ports.

A set of coordination links that enable running order dependencies to be ex-
pressed where direct data flow is not required by providing additional
constraints on the behaviour of the linked processors. For example, in
Figure 20.1 two coordination links are defined so that that one processor
will not process its data until another processor completes, even though
there is no direct data connection between them.

Part of the complexity of workflow design is when the user needs to deal
with collections, control structures such as iterations and error handling. Scufl
is simplified to the extent that these are implicit. This layer fills in these
implicit assumptions by interpreting an Internal Object Model that encodes
the data that passes through a workflow. This data model is lightweight; it
contains some basic data structures such as lists and trees, and enables the
decoration of data with MIME types and semantic descriptions to enable later
discovery or viewing of the data.

The addition of data structures such as lists to the data object model
brings about an added complexity. There are a number of ways in which the
list could be handled by the service. Taverna uses an implicit, but configurable,
iteration mechanism as shown in Figure 20.5. Where a processor takes a single
list as inputs, the enactment engine will invoke the processor multiple times
and collate the results into a new list. Where a processor takes two (or more)
list inputs, the service will be invoked with either the cross or dot product of
the two lists.

Taverna supports fault tolerance through a configurable mechanism; proces-
sors will retry a failed service invocation a number of times, often with increas-
ing delays between retry attempts before, finally, reporting failure. Users can
specify alternative services for any Scufl processor in the order they should
be substituted. Alternative services are typically either an identical service
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Fig. 20.5: Configurable iteration. For example, processor implements a func-
tion f - it takes one input a and produces result f(a). If this processor is given a
list of inputs [a1,a2,a3], the implicit iteration will produce a list of results, one
for each input. This is equivalent to ‘map f [a1,a2,a3]’. Where a processor has
more that one input the default is to apply the function to the cross product
of all the input lists, however sometimes the dot product is what is required.
The configurable iterators allow users to specify how the lists of input value
should be combined using these cross and dot operators.

supplied by an alternative service provider or, rarely, a completely different
service that the user deems to be substitutable without damaging the work-
flow’s intention.

Whilst the Scufl language defines the data flow, it does not fully describe
the service interactions to enable this data flow.

It would be impossible to describe the interaction with all of the different
service interfaces within a language like Scufl. Instead, Scufl is designed to be
extensible through the use of processor types. We define a set of Processor
plug-ins that manage service interaction by presenting a common abstraction
over these different styles. Current processors include:

• A WSDL Scufl processor implemented by a single Web Service operation
described in a WSDL file.

• A local Java function processor, where services are provided directly
through a Java implementation with parameters as input ports and results
as output ports (Fig. 20.1).

• A Soaplab processor, implemented through a CORBA-like stateful proto-
col of the Web Service operations in a Soaplab service.

• A nested workflow processor, implemented by a Scufl workflow (Fig-
ure 20.1).

• A BioMOBY processor (Fig. 20.6). Several smaller groups have adopted
the BioMOBY project’s conventions for publishing Web Services. Bio-
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MOBY provides a registry and messaging format for bioinformatics ser-
vices [440].

• A SeqHound Processor that manages a Representational State Transfer
(REST) style interface, where all information required for the service in-
vocation is encoded in a single HTTP GET or POST request (Fig. 20.6).

• A BioMart processor that directly accesses predefined queries over a rela-
tional database using a JDBC connection (Fig. 20.6).

• A Styx processor that executes a workflow subgraph containing streamed
services using peer to peer data transfer based on the Styx Grid service
protocol [338].

The Freefluo engine is responsible for the enactment of the workflow. The
core of the engine is workflow language independent, with specific extensions
that specialise Freefluo to enable it to enact Scufl.

20.5 Discovering resources and designing workflows

Workflow construction is driven by the domain expert, that is, the scientist.
This corresponds to designing a suitable laboratory protocol for their inves-
tigation. The lifecycle of an in silico experiment (see Figure 20.2) has the
following stages:

Hypothesis formation: First, the scientist determines the overall intention of
the experiment. This informs a top-level design, and would be the overall
“shape” of the workflow, including its inputs and desired outputs.

Workflow design: Second, this design is translated into a concrete plan. In the
laboratory, this translation would consist of choosing appropriate exper-
imental protocols and conditions. In an e-Science workflow, this maps to
the choice and configuration of data and analysis services.

Collecting: The workflow needs to be run; the services invoked; data co-
ordinated etc.. (See Section 20.6). In the laboratory this is handled by
protocols for entering results in laboratory books. As the workflow is ex-
ecuted, the results have to be collected and co-ordinated to record their
derivation path. To comply with scientific practice, records need to be
kept on where these data came from; when it was acquired; who designed
and who ran the workflow and so forth. This is the provenance of the
workflow and is described more fully in Section 20.7.

Analysing and Sharing: As in a laboratory experiment, results are analysed
and then shared.

20.5.1 Service Discovery

In this section, we describe the service discovery and service choice aspects
of running in silico experiments in Taverna.
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Taverna uses a variety of different mechanisms for discovery of services,
and populates the service list using an incremental approach. Flexible ap-
proaches to discovering available resources are an essential part of supporting
the experimental lifecycle.

Public registries such as UDDI [402]. We are in favour of registries, but their
limited usefulness is due to the lack of widespread deployment. They are
generally perceived by the community to be a heavy-weight solution.

GRIMOIRES, an enriched prototype UDDI registry service developed by
myGrid, with the ability to store semantic metadata about services.

URL submission: Users can add new services by directly pointing to a URL
containing WSDL files. The workbench will introspect over the description
and add the described services to a palette of services.

Workflow introspection: Users can exploit existing experience by loading ex-
isting workflows, observing how services have been used in context, and
adding those services to the available services palette.

Processor-specific mechanisms: Many of the service types Taverna support
through its processor plug-ins provide their own methods for Service dis-
covery.

Scavenging: Local disks are scavenged for WSDL files that are introspected
over, or users create a web page containing links to service descriptions
and, when pointed at this page, Taverna explores all available service
descriptions, extracts services and makes them available. While crude, this
works well, and gives users considerable flexibility in loading the palette
of available services that fit their current requirements.

Taverna’s access to 3 000 services means that service selection is increas-
ingly important. Figure 20.6) is grouped according to the service locations,
which means that services of the same type are grouped together and colour-
coded as in the workflow diagram (see figure 20.1), and supported by a simple
search by name facility.

A common task is to locate a new service based on some conceptual de-
scription of the service semantics. To enable service selection by bioinformati-
cians, we must represent their view of the services and of the domain [449].
We have investigated a number of different mechanisms to drive the search
process, including an RDF-based metadata enriched UDDI registry [270], and
a domain ontology [450] described in the W3C Web Ontology Language OWL.

Feta is our third and most recent version of a component for semantically
searching for candidate services that takes a user-oriented approach to service
discovery [269], a path also being trodden by the BioMOBY project. In prac-
tice, this means we describe an abstraction over the services—provided by
the Taverna processors—rather than the services themselves. We have rela-
tively shallow descriptions of the services. Although richer descriptions might
enable more refined searching and sophisticated reasoning they are expensive
and time consuming to provide. In practice search results do not have to be
precise, as the final choice is made by the workflow designer (a biologist), not
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Fig. 20.6: An example palette of local (beanshell scripts, Java widgets) and
remote (Biomart, Soaplab, Biomoby, Seqhound) services which can be used for
the construction of workflows in Taverna. libSBML methods made available as
local services via the API consumer and which were used for the construction
of the exemplar systems biology workflow are also shown.

automatically by a machine. Finally, the use of shallow descriptions enables
us to use simpler technologies to answer queries.

20.5.2 Service composition

Most workflow design packages have adopted a view analogous to electric
circuit layout, with services represented as ‘chips’ with pins for input and
output [68, 383]. However from a user interface point of view, this arrange-
ment can become less understandable as complexity increases. If the layout
of service components on screen is left under the user’s control then the user
can tailor the workflow appearance, but this can result in a large amount
of time being spent effectively doing graph layout rather than e-Science. In
Taverna, the graphical view of a workflow is read-only; it is generated from
the underlying workflow model. One advantage of this is that it is easy to
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generate different graphical views of the workflow showing more or less detail
as required.

When composing workflows in an open world we have no control over the
data types used by the component services. A service, identified by a scien-
tist as being suitable, may not use the same type as the preceding service in
the workflow, even if the data matches at a conceptual level. Consequently,
many of the bioinformatics workflows created in Taverna contain numerous
‘Shim’ services [217] that reconcile the inevitable type mismatches between
autonomous third-party services. We are currently building libraries of shims
for de-referencing identifiers, syntax and semantic translation, mapping, pars-
ing, differencing and so on.

20.6 Executing and monitoring workflows

Execution of a workflow is largely an unseen activity, except for monitoring
process and reviewing records of an experimental run (see Section 20.7). A
critical requirement of myGrid’s service approach is that workflow invocation
behaviour should be independent of the workflow enactment service used. To
facilitate peer review of novel results, it is important that other scientists are
able to reproduce in silico experiments in their context and verify that their
results confirm the reported novel results.

Executing workflows using different enactment services is given less em-
phasis in business workflows, which will typically be carefully negotiated and
agreed by the businesses involved, and executed in a fixed, known context.
In contrast, a scientific workflow will be shared and evolved by a commu-
nity and executed by many individual scientists using their favoured workflow
enactment service.

20.6.1 Reporting

Reporting the progress of a workflow is a complex task. Information about
service invocation is unavailable in the general case. Defining how far a ser-
vice is through a given invocation, so progress can be displayed, is non-trivial
without the explicit modelling and monitoring of state. The migration of ap-
plication services to the Grid’s Web Service Resource Framework [239] is a
solution that we are investigating.

The reporting mechanism in Taverna is a stream of events for each process-
ing entity, with these events corresponding to state transitions of the service
component. For example, a message is emitted when the service is first sched-
uled, when it has failed for the third time and is waiting to retry, etc.. These
message streams are collated into an XML document format and the results
presented to the user in tabular form as shown in figure 20.7.

The introduction of reporting in Taverna does not alter the workflow re-
sults. What it does alter is users’ understanding of what is going on, and
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Fig. 20.7: Status information. When running a workflow the Taverna work-
bench displays status information from the workflow enactor. For each Scufl
processor the last event is displayed along with the appropriate time and ad-
ditional detail if available. This additional detail can include progress through
an iteration (e.g. ‘item 2 of 6’) and retry information. The status information
also allows the selection of a processor and viewing the relevant intermediate
inputs and outputs. Each data item has been assigned an LSID. More detailed
trace information is also available using the ‘Process report’ tab.

therefore their confidence that the system is doing what they want. Overall
the feedback from Taverna’s initial users was that workflow execution without
suitable monitoring was not acceptable. They were willing to accept work-
flows that occasionally failed; their experience with form-based web services
was that these were unreliable. However, workflow execution could not be a
‘black-box’ service, users need feedback on what is happening, whether the
workflow completed successfully or failed, and they need this recorded in log-
ging records.

When a workflow may contain fifty or more processing components (e.g.,
Scufl processors), and each of these components can be retrying, using alter-
native implementations etc., the complete state of a workflow is highly com-
plex. Users require a visualization that allows them to see at a glance what
is happening, acquire intermediate results where appropriate and control the
workflow progress manually should that be required.
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20.7 Managing and sharing workflows and their results

As the use of workflows increases, the ability to gather and generate data in
large quantities, the storage of this data in an organised manner becomes es-
sential for analysis within and between experiments. For scientists, workflows
are the means to an end; their primary interest is in the results of experi-
ments. This interest, however, goes beyond examining the results themselves
and extends to the context within which those results exist. Specifically, the
scientist will wish to know from where a particular result was derived, which
key process was used and what parameters were applied to that process. Thus,
in addition to the raw data, we have devised a model of metadata describing
the provenance of all aspects of the experiment: the data’s derivation path,
an audit trail of the services invoked, the context of the workflow and the
evidence of the knowledge outcomes as a result of its execution [457]. Another
view is that it is the traditional who, where, when, what and how questions
applied to in silico science. These different aspects of provenance can be used
for life scientists in different scenarios:

• to repeat a workflow execution by retrieving the “recipe” recorded in the
provenance;

• to reproduce a data product by retrieving the intermediate results or
inputs that this data was derived from;

• to assess the performance of a service that is invoked in different experi-
ment runs, at different times;

• to debug the failure of a workflow run, e.g., which service failed, when and
why it failed, etc.;

• to analyze the impacts of a service/database update on the experiment
results, by comparing provenance of repeated runs;

• to “smartly” re-run a workflow if a service is updated, by using prove-
nance to compute which part of a workflow is required to be re-run as a
consequence of the update;

• to aggregate provenance of a common data product that is produced in
multiple runs.

We have adopted two key technologies for provenance collection:

Life Science Identifiers. The description of the derivation of data necessitates
reference to the data sets both inside and outside the control of myGrid.
Bioinformatics has adopted view standards for the identification of data,
instead of using an ad hoc system of accession numbers. The recent Life
Science Identifier (LSID) standard [127] provides a migration path from
the legacy accession numbers, to an identification scheme based on URIs.

Resource Description Framework (RDF). The Dako data store has a fixed
schema that reflects the common entities used in e-Science experimen-
tal lifecycle untied to any scientific discipline. The use of a fixed schema
provides performance benefits. However, RDF’s basic graph data model
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is well suited to the task of representing data derivation. The Knowledge
Annotation and Verification of Experiments (KAVE) metadata store has
a flexible schema due to its use of RDF. This allows statements to be
added outside the fixed schema of the Dako data store, as is needed when
providing subject specific information. KAVE enables other components
in myGrid to store statements about resources and later query those state-
ments.

One can distinguish between provenance of the data and provenance of the
process, although the two are linked. The primary task for data provenance
is to allow the exploration of results and the determination of the deriva-
tion path for the result itself in terms of input data and intermediate results
en route to the final value. ‘Side effect’ information, about how intermediate
and final results have been obtained, is generated and stored during work-
flow invocation. Thus the workflow engine produces not just results but also
provenance metadata about those results. Side effect information is anything
that could be recorded by some agent observing the workflow invocation, and
it implicitly or explicitly links the inputs and outputs of each service oper-
ation within the workflow in some meaningful fashion. The associated com-
ponent RDF-Provenance-Plug-in listens to the events of workflow execution
and stores relevant statements using KAVE, for example, a name for a newly
created data item or a meaningful link between the output of a service and
the inputs that were used in its creation.

Process provenance is somewhat simpler than data provenance, and is sim-
ilar to traditional event logging. Knowledge provenance is the most advanced
and contextual of the metadata results. Often a user does not need to see a full
‘blow by blow’ account of the processes that executed during the workflow,
or a full account of the complete data derivation path. Instead they wish to
relate data outcomes across a group of processes annotating the relationships
between outcomes with more semantically meaningful terms than ‘derived by’.
As each such provenance fingerprint is unique to the workflow and the user, a
provenance template accompanies the Scufl document to be populated by the
provenance capture component and stored in the KAVE.

20.8 Related work

In Life Sciences there are many scientists who want an easy way of rapidly
pulling together third-party services into prototypical in silico experiments.
This contrasts with fields, such as physics and astronomy, where the prime
scenario involves carefully designed workflows linking applications to exploit
computational grid resources for in silico experiments that were previously
impractical due to resource constraints.

Scientific workflow systems vary in terms of their intended scientific scope
(the kinds of analyses supported), their technical scope (the kinds of resources
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that can be composed), their openness to incorporating new services, and
whether or not they are open source. The strengths of Taverna are its ability
to link together a significant range of autonomous bioinformatics services and
its flexibility, particularly in terms of the metadata generated to help manage
and share workflow results.

The Kepler workflow system [67, 68] has been developed for ecologists,
geologists and biologists in and is built on Ptolemy II, a mature application
from electrical engineering [40]. Kepler’s strengths include its library of actors,
which are mainly local applications, and its suite of directors that provide flex-
ible control strategies for the composition of actors. The Triana [383] system
was originally developed as a data analysis environment for a gravitational
wave detection project. Like Taverna and Kepler, Triana is also dataflow ori-
ented. It is aimed at CPU intensive applications, allowing scientists to compose
their local applications and distribute the computation.

DiscoveryNet uses a proprietary workflow engine and all services are
wrapped to conform to a standard tabular data model. DiscoveryNet scien-
tific workflows are used to allow scientists to plan, manage, share and execute
knowledge discovery and data analysis procedures [352]. In the Pegasus sys-
tem [184] users provide a workflow template and artificial intelligence planning
techniques are used to co-ordintate the execution of applications on a hetero-
geneous and changing set of computational resources. The emphasis is on the
scheduling large numbers of jobs on a computational Grid, where there may
be alternative strategies for calculating a user’s result set.

The use of workflows for ‘programming in the large’ to compose web ser-
vices has led to significant interest in a standard workflow language, with
BPEL1 [70] a strong candidate, created through the agreed merge of IBM’s
WSFL [260] and Microsoft’s XLANG [389]. One reason why Taverna work-
flows use Scufl rather than a potential standard is historical. In the initial
stages of the myGrid project in 2001, BPEL did not exist. The more signifi-
cant reason is conceptual. Initial experiments showed IBM’s WSFL language
did not match how our target users wanted to describe their in silico exper-
iments [55]. WSFL forced users to think in terms of web service ports and
messages rather than passing data between bio-services.

20.9 Discussion and Future Directions

myGrid set out to build a workflow environment to allow scientists to perform
their current bioinformatics tasks in a more explicit, repeatable, and shareable
manner.

1 BPEL was originally termed BPEL4WS and is being promoted as a standard
called WSBPEL through OASIS (Organization for the Advancement of Struc-
tured Information Standards), an international consortium for e-business stan-
dards.
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Making tacit procedural knowledge explicit: For at least the last 250 years
this has been recognised as essential in science. Each experiment must
carry with it a detailed “methods” description, to allow others both to
validate the results, but also re-use the experimental method. Our ex-
perience suggests that workflows allow this to be achieved for in silico
experiments. They are formal, precise and explicit, yet straightforward to
explain to others.

Ease of automation: Many of the analyses we support are already undertaken
by scientists who orchestrate their applications by hand. Workflows can
drastically reduce analysis time by automation. For example, Taverna
workflows developed by the Williams Beuren Syndrome team have reduced
a manual task that took 2 weeks to be an automated task that typically
takes just over two hours [371].

Appropriate level of abstraction: Bioinformaticians have traditionally auto-
mated analyses through the use of scripting languages such as PERL.
These are notoriously difficult to understand often because they can con-
flate the high level orchestration at the application level with low level
“plumbing”.

Taverna and the myGrid suite enables users to rapidly interoperate ser-
vices. It does not support the semantic integration of the data outcomes of
those services. We underestimated the amount of data integration and vi-
sualisation provided by the existing web delivered applications. They often
integrate information from many different analysis tools, and provide cross-
references to other resources. Accessing the analysis tool directly as a service,
circumvents this useful functionality. Although the scientist is presented with
results in hours not weeks, it now takes a significant time to analyse the
large amount of often fragmented results. A solution is complicated by the
fact that the workflow environment does not “understand” the data, and so
cannot perform the data integration necessary. We have provided integration
steps within workflows, written as scripts that integrate and render results,
but these are specific to each workflow design. We are currently investigating
a multi-pronged approach: (i) the use of semantic web technology to provide
more generic solutions that can be re-used between related workflows; (ii) ap-
propriate workflow designs using Shims and services under the control of the
user to build data objects; and (iii) closing off the open world in situations
where the workflows are known to orchestrate a limited number of services
and will be permanent in nature, so it is worth the effort of building a more
strongly typed model.

From January 2006 the myGrid suite, including Taverna 2.0, moved to a
new phase. As part of the UK’s Open Middleware Infrastructure Institute
(OMII-UK)( http://www.omii.ac.uk) myGrid is to be integrated with a range
of Grid services and deployed in a common container with job submission
services, monitoring services and large-scale data management services. Focus
is placed on the following:
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Grid deployment. Deploying the Taverna architecture within a Grid con-
tainer, making the enactor a stateful service, and a server-side distributed
service, and supporting stateful data repositories.

Improved security. Authentication and authorisation management for data,
metadata and implementation of credentials for access control of services.

Revised execution and processor models to support interactive applications,
long running processes, control-based workflows, data flows with large
data throughput, enhanced provenance collection, and credential han-
dling. We already have a user interaction service that allows users to
participate interactively with workflows.

Improved data and metadata management incorporating better user-oriented
result viewers and incorporating SRB and OGSA-DAI data implementa-
tions.

Integration with third party platforms such as with Toolbus and EGEE. We
also plan to continue to interoperate with other workflow systems, specif-
ically Kepler and the ActiveBPEL system emerging from UCL.

Extending services that can be executed to more domain services such as the
R suite, and to generic services such as GridSAM job submission.

The field of scientific workflows is rapidly evolving, and as a project in this
area myGrid must also evolve. We engage different user communities (such as
biological simulation), new applications become available, as do novel service
frameworks for deploying them. By working closely with our users, service
providers, and other workflow projects, we continue to extend the basic core
functionality to fulfil a wide range of uses.
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