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Abstract 

By studying the non-linear effects of membranous enzymes on an applied oscillating electromagnetic field, non-linear dielectric 
spectroscopy has previously been shown to produce qualitative information which is indicative of the metabolic state of a variety of 
organisms. In this study, we extend the method of non-linear dielectric spectroscopy to the production of data sets suitable for use with 
supervised multivariate analysis methods, in order to allow quantitative prediction of analyte concentrations in unknown samples, again 
using the alteration in the non-linear dielectric profile produced by these analytes via the metabolism of the cell (as effected via the 
operation of their membranous enzymes). 

Non-stationarity in the extent of non-linear electrode polarization can interfere with the measurement of non-linear dielectric spectra; 
various electrode materials and configurations have been tested for their suitability for use in non-linear dielectric spectroscopy. 

We exploit partial least-squares regression and artificial neural networks for the multivariate analysis of non-linear dielectric data 
recorded from yeast cell suspensions, and schemes for preprocessing these data to improve the precision of the prediction of analyte levels 
are developed and optimized. The resulting analytical methods are applied to the prediction of glucose levels in sheep and human blood, 
by both invasive and non-invasive measurements, and to the non-invasive measurement of process variables during a microbial 
fermentation. 

Keywords: Biotechnology; Dielectric spectroscopy; Multivariate calibration; Neural networks; Non-invasive; Non-linear 

1. Introduction to non-linear dielectric spectroscopy 

When a suspension of cells is exposed to a static 
electric field, or to an alternating electric field whose 
frequency is low relative to that of the classical P-dielec- 
tric dispersion, it does not penetrate to the interior of the 
cell, and is dropped almost entirely across the plasma 
membrane of the cell, which is predominantly capacitive at 
these frequencies, and, due to its thinness, causes a sub- 
stantial amplification of the field across the membrane 
[ 1,2]. In consequence, anything internal to the cell is 
essentially electrically invisible to a low-frequency electric 
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field, but anything dielectrically active in the membrane 
may be expected to display properties associated with 
fields far stronger than that applied externally. 

The dielectric response of biological tissue has long 
been assumed to be linear when the macroscopic exciting 
field is low, e.g. less than 0.1 V cm-’ as used typically, 
and such linear dielectric properties (see Fig. 1) have been 
reviewed by several workers [4-161. Under these circum- 
stances, an enzyme is typically treated as a hard sphere 
which relaxes linearly in an a.c. field at all but high field 
strengths [ 171. However, substantial non-linear phenomena 
in the form of harmonics of the fundamental as measured 
across the membrane of nerve cells [I 8,191 and across 
black lipid membranes [20,21] have in fact been reported. 

An enzyme which has different dipole moments in 
different conformations during its operation may be af- 
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Fig. 1. Relationship between i/ V curves and power spectra. (A) A linear 
i/ V curve: a sinusoidal voltage produces a sinusoidal current at the same 
frequency. (B) Its power spectrum which contains only the fundamental 
(first harmonic). (0 A non-linear i/V curve: produces a distorted, 
imperfectly sinusoidal current. (D) Its power spectrum which also con- 
tains harmonics. These diagrams are intended to be merely illustrative; 
factors causing the production of odd-numbered vs. even-numbered har- 
monics may be found in a textbook on non-linear dynamics, e.g. [3]. 

fected by electromagnetic fields [22-241. The change be- 
tween states is unlikely to be smoothly or linearly related 
to the field due to the constraints imposed on the enzyme 
by its environment in the membrane, and it can be shown 
theoretically that the dielectric response of the material 
may be expected to be non-linear even at low applied 
fields [25-381. Thus any perturbation of an applied field 
would be expected to be non-linear and, as with any (in 
this case, weakly) non-linear system, this behaviour would 
be expected to be manifested as the generation of harmon- 
ics of the applied frequency by the enzyme when the 
excitation is a single sinusoid [14,16,25,26]. More impor- 
tantly, any asymmetry in the dielectric potential of the 
enzyme will lead to a rectification of field effects and the 
ability of the enzyme to harvest energy from the applied 
field, leading to the possibility of using the dielectric 
properties of the membranous enzymes to indicate and/or 
even to influence the metabolic state of cell suspensions. 

In earlier work, we have demonstrated the presence, and 
investigated the properties, of these predicted harmonics as 
generated by a variety of cell suspensions, using a non-lin- 
ear dielectric spectrometer designed around a standard 
IBM-compatible PC and realized almost completely in 
software with a minimum of extraneous hardware [39-441. 
In the work described, we noted substantial changes, both 
qualitative and quantitative, in the non-linear dielectric 
spectra observed when resting cells were allowed to me- 
tabolize actively following the addition of appropriate 
substrates. Inhibitor and other studies indicated that, in 
yeast, the signal was due mainly to the Hf-ATPase located 
in the cells’ plasma membrane [39,41], whereas, in a 
variety of prokaryotes, the main contributors to the genera- 
tion of non-linear dielectricity were the electron transport 

chains located in the cytoplasmic membranes of these 
organisms [42,44]. 

Since this work was published, we have developed our 
system significantly, and have devised methods which 
allow the rapid, essentially non-invasive, quantitative anal- 
ysis of metabolite levels by combining non-linear dielec- 
tric spectroscopy with modem chemometric methods of 
multivariate calibration and artificial neural networks 
(ANNs). Our purpose herein is to review this progress. 

This paper is organized as follows. We first describe the 
modifications to our own implementation of a non-linear 
dielectric spectrometer as described previously [39-441, 
and rehearse the standard types of data which may be 
acquired. We then summarize our approaches to minimiz- 
ing electrode polarization artefacts. We then compare the 
use of multivariate statistics with ANNs for the prediction 
of glucose concentrations in yeast cell suspensions metabo- 
lizing glucose in vitro and in fermenters in situ. Lastly, the 
approach is exploited for cognate measurements in blood 
cell suspensions from sheep and humans, and for non-inva- 
sive glucose measurements in vivo. 

I .I. The non-linear dielectric spectrometer 

The experimental hardware used for the following de- 
velopment is identical to that described previously [39-441. 

Early on in the development work, but previously un- 
published, we also carried out two essential control experi- 
ments [45]. 

The first of these (in 1990) was to investigate whether 
the harmonics were produced in the bulk of the suspension 
or by an interaction with the polarization layer. The sus- 
pension was isolated in a volume around the sensor elec- 
trodes with a dialysis membrane, the volume between this 
and the driver electrodes being filled with conductivity- 
matched supematant as indicated in Fig. 2. Taking spectra 
with this arrangement, then substituting the supematant for 
the suspension, produced essentially identical third har- 
monic signatures from a yeast suspension to those obtained 
when the dialysis membranes were removed, proving a 
bulk effect. An electrode surface effect would have given a 
null result. 

Dialysis membrane 

Supernatant Suspension 

Fig. 2. Electrode chamber for control experiment to exclude direct 
electrode interactions with suspension. 
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The second (in 19911 was to investigate the use of a 
current source (as later used by others [46,47]) to provide 
the signal, instead of a voltage source as usually used. The 
rationale behind this was that the polarization harmonics 
might be removed by the feedback on the output of the 
current source, leaving those due to the biology, eliminat- 
ing the need for a reference reading in the supematant. 
However, we found that the biological harmonics were 
also sensed across the driver electrodes in a manner indis- 
tinguishable from the polarization harmonics and were also 
removed by the output feedback of the current source, 
leaving only a pure sinusoidal signal through the electrode 
chamber. The effect of the current source was to force an 
“apparent” linearity on the system. Therefore all subse- 
quent work used a voltage source and alternative methods 
of dealing with the polarization problem. 

Blake-Colman and coworkers [46,47] published a cri- 
tique of some of our earlier work. However, this critique 
was based on a variety of misconceptions, and omitted to 
discuss our control experiments. Readers are therefore 
referred to our rebuttal [45] and to our original papers 
[39-441. 

I.1 .I. Recent developments to the spectrometer 
In our published work to date, the data logging and 

spectral analysis programs were based on 256-point Fourier 

transforms, giving 128-point power spectra. A schematic 
diagram of the software used to record and analyse these 

standard spectrum sweeps is shown in Fig. 3. 
Since we noticed over this period that the only phenom- 

ena that were reliably present in the spectra produced by 
the organisms investigated were harmonics, the calculation 
of interharmonic bins in the spectra merely wasted time 
and required the recording of unnecessarily long data 
series, resulting in unnecessarily long experimental times. 
Recording shorter data series allows wider 
frequency/voltage scans to be carried out in less time, and 
reduces the problems of time variation in electrode polar- 
ization (see later) during an experiment or series of experi- 
ments. Since only the harmonics appear to contain interest- 
ing information in the systems studied, the ideal would be 
to record only sufficient data to represent these, and to 
calculate a shorter Fourier transform in which each succes- 
sive bin represents each successive harmonic. 

If each block of data in a series is sampled at such a 
rate that it contains a whole number of cycles of the 
fundamental, the fundamental and its harmonics will fall 
exactly into spectral bins (e.g. 15 cycles per block places 
harmonics in every 15th bin as in Fig. 4(A)). In this case, 
the need for continuity at the block boundaries can be met 
with no windowing. Also the boxcar windowing implicit in 
the finite length of the time series and the infinite repeat of 

spectrum to check 

A suite of programs to Generates datafile to A suite of programs to 
record difference 
spectrum sweeps 

A suite of programs to 
quickly display 3-d 
sections from the 

spectrum sweeps and 
translate them into a 

A suite of harmonic 
filters and other 

Graphics Package Multivariate analysis 

Fig. 3. Schematic diagram of spectrum sweep software. 
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this implicit in the Fourier transform are exactly represen- 
tative of the true signal extended to infinity with no 
distortion, the only assumption being stationarity. Hence 
spectral leakage of any bin into adjacent bins is essentially 
eliminated (Fig. 4(B)). 

If the sampling is chosen to include a single cycle in 
each block, each successive bin in the transform will 
contain each successive harmonic of the signal, uncontami- 
nated by leakage from adjacent harmonics. So, if the first 
eight harmonics are of interest, then a 16-point fast Fourier 
transform can be applied to data containing one cycle per 
block, sampled at 16 samples per cycle (Fig. 4(D)). In 
reality, we would not wish to approach the Nyquist crite- 
rion this closely and would discard harmonics above, e.g. 
the fifth. It should be noted that the harmonics are begin- 
ning to be averaged out to slightly lower values, probably 
due to the increased noise bandwidth per bin, but that their 
relative sizes are preserved. 

The importance of minimizing spectral leakage in single 
bin/harmonic spectra can be seen from Fig. 4(C), which is 
the same as Fig. 4(D) except that a minimum three-term 
Blackman-Harris window [48] is applied to the data, 
smearing adjacent harmonics into each other. This spec- 
trum can be seen to bear only a passing resemblance to the 
true windowed spectrum of Fig. 4(A). Overall, the above 
approach allows a speed up in data recording of an order 
of magnitude, although the great speed up in processing 

A 

0 20 40 60 80 100 120 

Frequency/Hz 

time resulting from the shorter Fourier transforms that now 
need to be calculated is essentially negligible on modem 
computers in comparison with the (physically determined) 
time taken to record the data. 

The slightly modified schematic diagram, equivalent to 
that of Fig. 3, of the software used to perform these 
harmonic-per-bin sweeps is shown in Fig. 5. 

Two-terminal networks have also been studied, and 
found to give essentially similar results, although they are 
much more sensitive to changes in the electrode polariza- 
tion layer, and so tend to give noisier spectra. 

I .2. Non-linear dielectric properties of yeast cell suspen- 
sions 

The standard suspension of Saccharomyces cerevisiae 
was prepared as follows. Freeze-dried yeast (Allinson’s 
baking yeast, obtained locally) was rehydrated to 50 mg 
dry wt. ml- ’ in a solution of 1% yeast extract (w/v) in 
distilled water. This was allowed to stabilize for 2 h before 
experiments were carried out. This method was used to 
prepare all yeast suspensions used in this paper unless 
explicitly stated otherwise. No cell growth occurred under 
the conditions used. 

In this suspension of Saccharomyces cerevisiae, an 
inhibitor study, together with the use of mutant strains, 
showed that the predominant source of the non-linear 

-100 - 

0 20 40 60 80 100 120 

Frequency/Hz 

-100 IIIIIIJIIIIJj 

0 20 40 60 80 100 120 

Frcqucncy/Hz 

Fig. 4. Development of single-harmonic-per-bin data logging and processing: (A) 256-point Fourier transform with 15 cycles per block; (B) as (A) with no 
windowing to show the elimination of leakage; (C) 16-point Fourier transform with one cycle per block; leakage between harmonics renders the spectrum 
useless; (D) as (C) with no windowing restoring the integrity of the spectrum. 
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Fig. 5. Schematic diagram of modified software to allow the recording of rapid harmonic-per-bin spectrum sweeps. 

signature in this organism is the membrane-located H+- 
ATPase [39,41]. The harmonics are highly voltage and 
frequency windowed, with the peak of the frequency win- 
dow for the resting enzyme coinciding rather neatly with 
its k,,, value [401. On cooling the yeast suspension to 2°C 
the peak of the frequency window moved to 3Hz, the 
voltage window not being significantly affected (data not 
shown). 

From an energetic point of view, a generalized enzyme 
may be constrained to a potential surface which may 
typically look something like that in Fig. 6. In a resting 
state, at equilibrium, the yeast suspensions studied gener- 
ated almost entirely odd-numbered harmonics [39], sug- 
gesting symmetry about the equilibrium of the ATPase, as 
discussed in Fig. 7(A). 

If glucose is added to the suspension to fuel proton 
transport by the ATPase, the shift away from equilibrium 
breaks the symmetry and even-numbered harmonics ap- 
pear 1391, as predicted by the analysis of Fig. 7(B), giving 
a measure of the activity or inactivity of this enzyme and 
the consequent metabolic state of the yeast cells [39]. 

The general situation, in various strains of yeast and in 
other organisms, is that the resting suspension will gener- 
ate predominantly odd harmonics with some evens present, 

dependent on the exact shape of the potential well in 
which the enzyme sits. In the presence of metabolizable 
substrate (e.g. glucose for yeast), there is a less extreme 
shift in the balance of odd and even harmonics, favouring 

G ES* 

E+P 

Reaction Coordinate 

Fig. 6. A typical energy level diagram of an enzyme. The enzyme E binds 
to the reactant S. An “excited” intermediate ES* is formed which 
produces the bound product EP. This then dissociates to release the 
product P. 
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w E+s 
V E+P 

Fig. 7. (A) Enzyme at equilibrium. The potential energy function describ- 
ing the potential energy well of E + S and E + P is symmetrical, contain- 
ing mainly even terms. Therefore the equation of motion formed by 
differentiating this potential and describing the reaction with respect to 
the reaction coordinate produces mainly odd harmonics in response to 
sinusoidal excitation. (B) Enzyme not at equilibrium. The potential 
function is skewed and now requires substantial odd terms to describe the 
asymmetry. Hence the equation of motion now also produces substantial 
even harmonics. 

the evens and tending to reduce the odds as the potential 
becomes more asymmetric during the operation of the 
enzyme. Also there is no fundamental reason to believe 
that the voltage/frequency windows of harmonics due to 
any metabolism-related effects will be the same as those 
for quiescent enzymes, particularly if the enzyme is chemi- 
cally altered, with a consequent alteration of the rate 
constants of the equilibria between the conformational 
states during metabolism. The exact form of these re- 
sponses is also found to be highly strain dependent within 
a species, frequency and voltage windows varying between 
strains. 

Analysing the behaviour of the harmonics when the 
fundamental is varied over a range of frequencies/volt- 
ages allows the rapid collection of a very large amount of 
metabolism-dependent information, since in the present 
case we obtain data for the magnitude of each of a number 
of harmonics (usually five) generated when the system is 
excited at a number of voltages and frequencies. Since 
such data are extensive, and at least four-dimensional, it is 
necessary to exploit analytical tools capable of dealing 
with and visualizing such a volume of data. 

Before we turn our attention to this, we shall address 
the practical experimental problem of electrode polariza- 
tion instability. 

2. Non-linear electrode polarization 

The correct registration of the dielectric properties of 
biological systems would be easy were it not for electrode 
polarization, and a number of reviews of the unwanted 
contribution of electrode polarization to conventional (lin- 
ear) dielectric measurements are available [4,9,49,50]. Po- 
larization describes the fact that, when a current is forced 
to cross an electrode-electrolyte interface, there will be a 
resistance to such current flow and thus a tendency for a 
potential drop to occur across that interface. If the current 
is alternating, there can also be a phase shift between the 
current and the voltage, which therefore serves to con- 
tribute to the capacitance measured. 

Apart from special techniques such as second harmonic 
a.c. voltammetry [51], a.c. measurements are usually taken 
assuming a linear response, with the current and voltage of 
the received signal measured only at the generator fre- 
quency. This is a zeroth order approximation to the reality 
that the current-voltage relationship of the electrode-elec- 
trolyte interface is non-linear, and an applied a.c. signal 
will necessarily generate harmonics of its frequency con- 
tent [52,53], together with other phenomena, such as fre- 
quency mixing, pseudoperiodicity and chaos, classically 
associated with non-linear systems. 

Since, in non-linear dielectric measurements, we are 
particularly looking for biologically generated harmonics, 
those produced simply by current flow across the electrode 
interface are a severe embarrassment. In order to obtain 
sensible results, the polarization harmonics must be prefer- 
ably negligibly small or, failing that, stable. Unfortunately, 
neither of these is normally the case. 

Electrode polarization is predominantly due to the re- 
quirement of a change of charge carriers from electrons in 
the electrode to ions in the solution and, consequently, is a 
fundamental property of metal-solution interfaces [54]. 
However, because of the non-linearities, the processes 
involved in polarization are much more complex than can 
be dealt with by simple equivalent circuit models, such as 
the standard Randles circuit used for linear models [55] 
and, anyway, it is not possible to deduce unambiguous 
mechanistic models from impedance measurements, only 
vice versa. The assumptions of most models to date, of 
reversibility at the electrode and reversion to its original 
state after the signal is removed, are in fact false [53]. 

The resistive Faradaic charge transfer contribution to 
the polarization impedance begins to become non-linear at 
small voltages and occurs predominantly at low frequency. 
The reactive part is linear to higher signal strength, hap- 
pens first at high frequency and consequently can be 
neglected for present purposes [56]. 

Interfacial roughness and contamination can affect 
polarization, as can monocrystallinity or polycrystallinity 
[54]. Electrode polarization is strongly and mysteriously 
dependent on the exact surface preparation, and may de- 
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pend on the exact fractal nature of the electrode surface 
WI. 

The polarization layer is also far from stable [57]. 
Spontaneous noise of up to 1 mV occurs electrochemically 
at electrodes. Its frequency ranges from d.c. to over 100 Hz, 
i.e. exactly the range of interest in non-linear dielectric 
spectroscopy. Spikes and semiperiodic activity are also 
generated and these can be larger still. Electrodes can 
display any of these modes, or jump from one to another. 
These fluctuations appear to be fundamental in electro- 
chemical systems, and have been observed in stainless 
steel, copper, brass, aluminium, monel, solder, carbon, 
mercury, degenerating Ag/AgCl, silver and platinum. 
Stainless steel is mentioned as being particularly quiet [57]. 
The noise is reduced by a larger surface area of electrode, 
and also by a more reversible charge transfer process. 

Fluctuations can also occur due to electromechanical 
activity if the apparatus is disturbed [57]. 

A 

Amplitude.dB 

2.1. EfSect of polarization on non-linear dielectric spec- 
troscopy 

In non-linear biological work, electrode polarization is a 
serious problem. It occurs most strongly at low frequencies 
(up to a few tens of Hertz) where the biology typically 
reacts most strongly to the electric field, and its fluctua- 
tions can be similar in size to or larger than the small 
changes due to biological activity (e.g. on glucose 
metabolism). It is therefore vital to control electrode polar- 
ization as far as possible. Since harmonics fluctuate pro- 
portionally more than the fundamental, non-linear mea- 
surements, which concentrate on these harmonics, are much 
more sensitive to polarization phenomena than are linear 
measurements, which concentrate exclusively on the rela- 
tively stable fundamental. 

To obtain non-linear electrochemical reproducibility, 
we have found that electrode surfaces must be scrupu- 

“ye7.gnu” - 

Harmonic 

“ye5.gnu” - 

Amplitude.dB 

Harmonic 

Fig. 8. (A) Supematant minus supematant for “dirty” gold electrodes in 1OOmM KCI. This is a subtraction of two successive spectral sweeps, with an 
input sinusoid applied to the outer pins of a four-terminal electrode at 15 Hz with the voltage amplitude (zero to peak) swept between 0.5 and 1.5 V, and 

should be null. A data spike leading to a raised background in a spectral slice near the rear of the plot can be seen. Also spurious harmonics are common, 
showing that the polarization is changing between the two spectral sweeps. The time between sweeps was 3 min. (B) As (A), but for “clean” electrodes. 
The spurious harmonics and data spikes have disappeared, leaving only the innate electrochemical noise at the electrodes. The electrodes are now stable to 
the limit of this noise. 
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lously clean, and this is very difficult to achieve. If any 
contamination is present, the biologically relevant signal 
may be unstable, distorted or destroyed completely. Any 
results obtained will also be very dependent on the signal 
history! Only when electrodes are spotless will reasonably 
low-noise, repeatable results be obtained, although fluctua- 
tions will still occur. We find that these fluctuations occur 
on all timescales from slow drift over days, altering the 
effective characteristics of the sensing system between 
experiments, to second-to-second variations in polarization 
harmonics, which affect the stability of the sensing system 
during a single reading. 
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Fig. 8 shows a typical difference in stability between 
contaminated and clean electrodes. 

Surfaces are very liable to contamination by many 
substances (proteins, sugars, lipids, etc.) which can bind to 
the electrode surface and distort results [58,59], proteins 
being particularly likely to cause trouble. Therefore the 
electrodes must be very carefully checked for surface 
interactions with any new chemical introduced into the test 
chamber before the results obtained can be trusted. 

After cleaning, the stabilization time during which the 
electrode must be left (preferably under the working sig- 
nal> in a working electrolyte can be up to days, but is 
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Fig. 9. Fhrctuation of the third harmonic due to electrode polarization over 5 days: (A) tin electrodes; (B) platinum electrodes; (C) stainless steel electrodes; 
(D) copper electrodes; (E) gold electrodes; (F) Ag/AgCl disposable electrodes (with one set used for each reading). The applied signal was a swept 
sinusoid with a voltage of 1 V (zero to peak) and a frequency range from 10 to IGClOHz. The mean and standard deviation were obtained from 24 samples. 
The electrodes were precleaned (except the Ag/AgCl disposables) by gentle abrasion and the electrolyte was 100 mM KCI. 
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typically minutes to hours [49,58-&O]. Clean, stabilized 
electrodes need to be exposed to the working signal for a 
few cycles for transients to settle before a reading is taken, 
and there is a need for a few cycles’ grace between 
readings for the electrodes to return to their original state 
[53]. For this reason, in all spectral sweeps performed in 
this work, a settling time of five blocks of data is used at 
each individual frequency/voltage combination to allow 
the electrodes to precondition under this exact signal be- 
fore recording the corresponding spectrum. 

Electrode cleaning to ensure repeatable non-linear di- 
electric spectra is a complex and often empirical task, due 
to the lack of knowledge of the exact form of the causative 
mechanisms in the non-linearity of the electrode-electro- 
lyte interface, and to a similar lack of knowledge of the 
mechanisms of binding of substances to the electrode 
surface and the subsequent electrical activity of these 
substances. Ensuring an adequate degree of stability in the 
harmonics of this interface for non-linear work is much 
more difficult than ensuring the degree of stability in the 
fundamental necessary for linear work. No repeatable and 
certain ways of obtaining a quiet and repeatable reference 
signal from an individual electrode surface have been 
found. Abrasion works best, and most reliably, but gener- 
ally requires a settling time under the working signal in the 
working medium, as suggested above, before reliable, 
repeatable control results can be obtained. If protein coat- 
ing is suspected, biological washing liquids with proteases 
may sometimes work, as may applying a slowly alternating 
voltage to oxidize the surface contaminants and subse- 
quently removing the products by the reduction half-cycle 
[60-621. Platinization of the surface may work, and if it 
does not, it then makes it easy to abrade off the newly 
platinized layer to reach clean metal. In practice, the most 
reliable sequence of operations for gold electrodes has 
been found to be platinization, followed by abrasion, and 
then by a settling period as above, in which the electrodes 
are driven by a low-frequency signal with an amplitude of 
the order of 1 V. 

The electrode cleaning process is deemed successful 
when a repeatable, artefact-free signature can be obtained 
from a well-known and reliable reference system. In our 
case, a resting yeast suspension, produced as above, is 
used to provide reference signatures, since its reliability 
and stability have been proven over time. When a clean, 
recognizable, repeatable, artefact-free third harmonic fre- 
quency window can be obtained from a frequency sweep 
covering its frequency range, the electrodes are ready for 
use. 

The maximum amplitude of the signal which may be 
applied to the electrodes is also limited, since visible 
electrolysis occurs whenever the voltage exceeds + 1.5 V 
zero-to-peak, and at these voltages the electrode surfaces 
are much more susceptible to contamination, and results 
become unstable. 

Once clean, electrodes may stay stable for weeks, or 

become unstable in minutes. Continual control experi- 
ments, performed as indicated above, are vital during any 
series of experiments to make sure that the electrode 
surface behaviour has not substantially altered during the 
experiments, in which case the results must be abandoned 
and the experiments repeated from the last successful 
control. 

2.2. Electrode materials 

We have investigated the linearity and stability of a 
substantial variety of electrode materials. One important 
feature to mention at the outset is that the lowest linear 
impedance does not necessarily imply the lowest non-lin- 
earity. Platinum (including platinized Pt) has a lower polar- 
ization impedance than gold and is a favourite in linear 
impedance spectroscopy [15], but it still has substantial 
polarization harmonics and these fluctuate with time more 
than those of gold. This stability is more crucial in forming 
reliable multivariate models of non-linear dielectric pro- 
cesses than the absolute harmonic level. 

A system to measure the stability of the harmonic levels 
is needed. The measure chosen to give an indication of the 
variability of a harmonic with respect to its level is the 
coefficient of variation, i.e. the standard deviation (SD) 
divided by the mean, of the power spectrum harmonics. 
With repeated measurements (24 in these studies), this 
value can be calculated for each voltage/frequency combi- 
nation and an SD/mean vs. f vs. V surface plotted for a 
particular harmonic. 

Values of the mean and SD from which this measure 
can be calculated are shown, for the third harmonic, in Fig. 
9, for a single voltage in the centre of the range usually 
used in non-linear dielectric spectroscopy, and a range of 
frequencies covering those of most interest in this applica- 
tion. 

These results show that the gold electrodes fluctuate 
least, relative to the size of the harmonic, followed very 
closely by Ag/AgCl disposables, photolithographically 
screen printed with the intention of a use-once-and-throw- 
away electrode. As can be seen, the repeatability of these 
disposables was no better than the fluctuations of the best 
metal electrodes. 

A measure using data from the first five harmonics, 
based on the calculation of the standard deviation of the 
scores on the significant factors of a principal component 
analysis model (see later) formed on the electrode fluctua- 
tions, was also tried. This gave similar, but not identical, 
results to the SD/mean of the third harmonic data shown 
above in ranking the stability of the electrode materials. 
This is probably a more representative method for assess- 
ing the stability of electrodes destined to be used in a 
multivariate modelling environment, but we consider that 
more work needs to be done on the development of such 
measures of electrode reproducibility. 
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2.2.1. Per$ormance limitations of Ag / AgCl disposable 
electrodes 

The Ag/AgCl disposable electrodes need to be used in 
a solution containing at least 5mM Cl- to stabilize the 
surfaces, otherwise the signal applied to them will cause 
alteration of the electrode surface due to irreversible solu- 
tion of Cl- from the surface. Any alteration of the surface 
decreases with continued exposure to the signal, so that its 
effects can be reduced by feeding the electrode with a 
dummy signal sweep before actually recording any data. 

If one set of “disposable” electrodes is used repeat- 
edly, the SD/mean value will represent the overall varia- 
tion including the electrode drift. This is typically of a 
similar order of magnitude over a period of 5 h as the 
random fluctuation component (i.e. the fluctuations are 
wideband). Also, with the abovementioned Ag/AgCl dis- 
posable electrodes, this drift is of a similar size to the 
differences between different individual electrode sets so 
that, at the present stage of electrode development, there is 
little benefit in repeatability from one experiment to the 
next in using a different set of electrodes for each reading. 
In fact, the tradeoff is that a single set will drift, but give 
slightly smaller random fluctuations and less noisy results 
if the modelling process used on the results can sift off the 
drift, whereas different electrodes eliminate the drift at the 
cost of increased noise in the data which the models must 
selectively reject. At present the benefits of this tradeoff 
are fairly even. 

Since the electrodes alter when exposed to the a.c. 
voltage signals typically used in data sweeps, it is of 
interest to see how long it takes for them to stabilize in 
non-ideal conditions, with no chloride in the medium (Fig. 
10). A rapid initial transient was observed in the harmon- 
ics, with detectable settling for up to 1.5 h and the funda- 
mental still drifting up to 5 h. It is probably valid to regard 
the initial less than 10s transient as a chemical equilibra- 
tion of the electrode surface under the working signal and 
the longer term variation as the usual electrode polariza- 
tion drift. 

2.3. Alternative Ag/AgCl electrode configurations 

Although disposable Ag/AgCl electrodes have clear 
practical advantages for commercial applications if their 
repeatability of manufacture can be improved, better re- 
sults can be obtained in the laboratory with self-deposited 
layers of AgCl. 

A standard four-terminal electrode system was used. 
The outer silver pins have a layer of AgCl predeposited 

on their surface with a Princeton Applied Research model 
174A polarographic analyser. The counter electrode is 
graphite, the reference electrode is Ag/AgCl and the silver 
electrode to be coated is the working electrode. The inner 
pins are gold. The effects of increasing the charge passed 
so as to deposit an increasingly thick layer of AgCl can be 
seen in Fig. 11. The polarization harmonics decrease until 
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Fig. 10. Settling of third harmonic and fundamental in a single set of 
Ag/AgCl disposable electrodes. The medium used was yeast supematant 
with no added chloride, and the fundamental had an amplitude of j, 1.2V 
at a frequency of I5 Hz. 

600Cm-* of charge (lOmA for 60 s) have been passed; 
then there is no further benefit from increasing the layer 
thickness. The harmonics were measured using a solution 
of IOOmM KC1 in the electrode chamber. 

This configuration produces the frequency sweep spec- 
trograph given in Fig. 12(A), which can be compared with 
the similar spectrograph in Fig. 12(B) produced under 
identical field conditions by an identical chamber with 
all-gold electrodes. 

The Ag/AgCl electrodes show a considerable reduction 
in harmonics compared with gold electrodes. These also 
fall off more rapidly with increasing frequency. The linear 
impedance is reduced by a factor of two, but the linearity 
increases (harmonics decrease) with the chloride concen- 
tration in the medium, and high chloride concentrations 
can be inimical to biological cell suspensions. 
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Fig. 11. The effect of the AgCl layer thickness (reflected in the amount of 
charge passed to produce it) on the polarization of Ag/AgCI electrodes. 

A further substantial improvement in linearity without 
sacrificing biocompatibility can be achieved with the more 
complicated electrode chamber given in Fig. 13. In this 
configuration, no predeposition of AgCl is required since a 
thin, high integrity layer is automatically deposited by the 
working voltage signal from the very concentrated (typi- 
cally greater than 3 M) KC1 surrounding the driver elec- 
trodes. 

The best results (in terms of lowered harmonics) can be 
obtained by cleaning the outer electrodes by mild abrasion 
and using them with no predeposition of AgCl. A suffi- 
cient layer of AgCl evidently builds up automatically 
under the a.c. signal, presumably due to rectification at the 
interfaces, and is in fact just visible as a light grey patina. 
The conductivity of the sample in the electrode chamber 
(in the range 3-15 mS cm- ‘) has no noticeable effect on 
the levels of the harmonics (not shown). 

We also studied the effect of the conductivity of KC1 in 
the outer electrode channels of configuration 2 on the 
generation of harmonics. This shows a small, but notice- 
able, improvement to better linearity as the concentration 
of the KC1 around the outer electrodes is increased, pre- 
sumably due to a continuing thickening of the AgCl layer. 

The harmonics are now down to a negligible level 
except at frequencies below a few Hertz, as shown in Fig. 
14(A). An ultralow-frequency sweep from 1 to 1OHz 
(linear) at &- 8 V (giving approximately 5 80 mV across 
the inner electrodes) with an electrolyte of 1OOmM KC1 
shows that the harmonics drop below background (at 
- 55 dB) at frequencies typically above 4Hz. 

The linear impedance of this arrangement is high (typi- 
cally 20 kfi at the working frequencies) because of the 
impedance of the frits, so a higher driver voltage must be 
used to obtain a working current through the electrolyte in 
the central portion of the electrode chamber between the 
inner electrodes. It is also almost invariant with frequency, 
another indication of the approximate linearity of the 
electrode interface. 

However, the relative complexity of this configuration 
somewhat militates against its use in routine applications, 
and the slow leakage of concentrated KC1 through the frits, 
even if these have a pore size of the order of a few 
nanometres, means that it is only suitable for short-term 
experiments in the laboratory over a period of hours. 

To show the advantage of the AgCl coatings over raw 
silver driver electrodes, however, Fig. 14(B) shows a 
spectrograph with raw silver electrodes. 

2.4. The practical efSect of polarization variation on the 
experimental procedure 

The variability of electrode polarization and electrode 
surface fouling are currently the most debilitating prob- 
lems afflicting non-linear dielectric work at low frequen- 
cies. There is currently no satisfactory solution that can 
ensure repeatable electrode surfaces for each experiment or 
series of experiments, with the possible exception of con- 
figuration 2 above. However, more work is necessary to 
confirm the practicality of this configuration in working 
experiments on general suspensions. 

The only workable approach with conventional elec- 
trodes involves continual controls vs. a reference to check 
the stability of the surface, followed by rejection of the 
series of experiments from the point at which these con- 
trols fail. This can make a series of comparative experi- 
ments a prolonged and cumbersome process which is 
currently unsuited to general use outside a laboratory. 

All data sets presented in this paper have been subjected 
to this system of controls. 

3. Multivariate data analysis 

Let us consider an experiment to study the utilization of 
exogenous glucose by an organism, such as baker’s yeast, 
as a function of time. A spectral data sweep is taken at 
intervals, and the corresponding “true” glucose level is 
measured by a reference (wet chemical) method. If, for 
example, a data sweep is performed with the fundamental 
set at each combination of ten frequencies and three 
voltages and, at each voltage and frequency, five harmon- 
ics are stored from the spectrum, then each sweep will 
have resulted in the acquisition of a data set consisting of 
150 measured variables which correspond to, and are 
hopefully representative of, the single glucose concentra- 
tion of interest. Clearly, forming a mathematical model 
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Fig. 12. (A) Spectrograph of Ag/AgCl electrodes in configuration 1~ The applied field through the electrode chamber was f 2 V cm- ’ and the tiequency 
was scanned logarithmically from 1 to 1OOHz. The working medium was 1OOmM KCI. (B) Spectrograph of gold electrodes taken under identical 
experimental conditions to (A). 

from these variables to represent the glucose value “by 
eye” would be prohibitively difficult! 

Multivariate modelling methods [63] provide a means of 
reducing data in multiple dimensions to their equivalent in 
a manageable number of dimensions, without rejecting 
significant information. Partial least-squares regression 

Silver Driver Electrode Electrolyte 

Frit 
\ 

Saturated KC1 Gold Sensor Electrodes 

Fig. 13. Ag/AgCl electrodes: configuration 2. The very concentrated 
KC1 adjacent to the driver electrodes is isolated from the sample in the 
chamber by sintered glass frits with a pore size of the order of nanome- 
tres. 

(PLSR) is an increasingly common tool in biochemical 
calibration problems. 

3. I. Chemometrics 

The use of PLSR and related methods in a wide range 
of sciences has led to the emergence of a new discipline, 
that of chemometrics. This is devoted to the study of more 
or less pragmatic multivariate methods in sciences, and the 
literature has grown rapidly over the last few years 1641. 
With the increasing use of PLS has come the realization 
that it is not well understood in terms of its statistical 
properties. The methods were designed to avoid making 
assumptions about structure within the data except those 
that are built into the path model. No assumption of 
normality is placed on the variables, for instance. 

A simplified “crib sheet” of some practical considera- 
tions for new users of PLS modelling is included in Table 
1. 
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Fig. 14. (A) Spectrograph of Ag/AgCl electrodes in configuration 2. (B) Spectrograph of pure silver electrodes. The experimental conditions in both cases 
are the same as for Fig. 12. 

3.2. Artificial neural networks 

The multivariate modelling methods outlined above are 
very efficient at modelling predominantly linear and, to a 
degree, weakly non-linear phenomena. However, when the 
relationship between the x variables and the y data con- 
tains any degree of non-linearity, the models can begin to 
lose accuracy, and a fundamentally non-linear modelling 
method is required. Artificial neural networks (ANNs) fill 
this requirement. 

Table 1 
Some hints in choosing parameters when setting up PLS models 

ANNs are an increasingly well-known means of uncov- 
ering complex, non-linear relationships in multivariate data, 
whilst still being able to map the linearities. ANNs can be 
considered as collections of very simple “computational 
units” which can take a numerical input and transform it 
(usually via summation) into an output (see Refs. 165-821 
for excellent introductions, and Refs. [83-1061 for applica- 
tions in analytical chemistry and microbiology). Also it has 
been proven that simple neural net architectures containing 
one arbitrarily large hidden layer using a non-linear 

Scaling of x variables: input x variables should be mean centred and scaled to I/s where s is the standard deviation of the 
variable. If variables are small, significant variables will be underweighted in the model in favour of large insignificant variables 
Number of exemplars in training set: need enough to fill parameter space evenly and to allow generalization 
Number of input variables: those that do not contribute positively to discrimination may impair generalization and are best 
removed by pruning the input data 
Validation: best to reserYe some of the training data for validation on an independent, representative test set. If there are too few 
samples to allow this, leverage correction or leave-one-out cross-validation may be used. Leverage correction will typically 
overestimate the optimum number of factors in the model, whereas leave-one-out cross-validation will typically underestimate 
Residuals: plotting the residuals Fiy against y indicates regions of unmodelled non-linearity. The residuals should be randomly 
distributed around zero. Any deterministic structure denotes non-linearity outside the modelling capabilities of PLS 



112 A.M. Woodvurd et al. /Bioelecrrochemisfry und Bioenergetics 40 (1996) 99-132 

squashing function can approximate any continuous map- 
ping to arbitrary precision [107-l 111. 

A simplified overview of some practical considerations 
for new neural net users is given in Table 2, and shows 
some parallels with PLS modelling [ 1121. 

Outside the rather inaccessible mathematical literature, 
there has been relatively little work on the statistical 
validation of neural network predictions. Thus although 
they can be trained to the optimal point, when challenged 
with a new stimulus the network will give its answer but, 
as yet, it is not possible to put accurate confidence limits 
on the prediction [72]. However, the link between statistics 
and neural networks is now becoming increasingly realized 
[103,113-1151, and it is arguably only a matter of time 
before true statistical confidence limits (beyond simple 
mean A SD on replicates) will be applied to neural net- 
work outputs. 

4. Method comparison 

Before considering the experimental aspects of this 
paper, a few words about method comparison are appropri- 
ate, since our experience is that the pitfalls in the most 
commonly encountered approaches are not widely recog- 
nized. 

The most commonly used technique to compare how 
similar the estimates of an unknown measurement method 
( y> are to those obtained using a known or “gold stan- 
dard” method (x) is linear regression analysis. This is 
used to reveal the numerical relationship between the two 

estimates for each sample in terms of a slope and intercept 
of the regression line, and a correlation coefficient to 
indicate the precision of this relation. Notwithstanding that 
its very ubiquity ensures its continued use, this linear 
regression approach is often used incorrectly, especially in 
situations where its fundamental assumptions are invalid 
[116-1191. 

The least-squares method assumes that there is no error 
on the values given by the reference method, and also that 
the errors in the equivalent values predicted by the test 
method are randomly distributed with a gaussian distribu- 
tion [116,120]. The former assumption is only correct if 
one is able to use a gold standard method with negligible 
error. The latter is more insidious. Most practical measure- 
ment instruments include an error which is related to the 
absolute value of the reading, i.e. the standard error of the 
estimate at y is proportional to y. This violates the 
gaussian assumption which gives an identical standard 
error of the estimate at all y values. In other words, the 
measuring instrument has a constant coefficient of varia- 
tion, not a constant measurement error. However, linear 
regression can be shown to be an adequate approximation 
for data with a coefficient of variation of less than 20% 
[116]. The practical effect of errors in the reference read- 
ings is to produce regression lines with artefactually under- 
estimated gradient and similarly overestimated intercept, 
making systematic differences hard to characterize [117]; 
high measurement errors on data that are otherwise well 
correlated will give a slope of almost zero! 

The effect of errors in the reference data means that, 
mathematically, there is no difference between the refer- 

Table 2 
Some hints in choosing parameters during the production of a feedforward backpropagation neural network calibration model to improve leaming/conver- 
gence and generalization 

2 

8 

9 

Number of hidden layers: one is thought to be sufficient for most problems. More give a big increase in computational load with 
little, if any, benefit to the model 
Number of nodes in hidden layer: PLS model gives a reasonable upper bound. Number of hidden nodes = optimum number of 
PLS factors. If this is not possible or desirable, then a suitable (but often pessimistic) rule of thumb says tbe number of hidden 
nodes = l&umber of inputs) 
Architecture: fully interconnected feedforward net is most common. Many others exist, such as adaptive resonance theory, 
Boltzmann machine, direct linear feedthrough, Hopfield networks, Kohonen networks 
Number of exemplars in training set: need enough to fill parameter space evenly and to allow generalization. When fewer are 
used, the network can “store” all the knowledge, predicting the training set superbly, but unseen data badly 
Number of input variables: those that are weakly related or unrelated to the output data may impair generalization and are best 
removed from the input data set before training commences 
Scaling of input and output variables: individual scaling on inputs improves learning speed dramatically and often the accuracy 
and precision of the predictions. There is a need to leave headroom, especially on the output layer 
Updating algorithm: there are many variants on the original backpropagation (BP), some of which give small but worthwhile 
improvements. Others include radial basis functions, quick-prop, stochastic BP, Weigend weight eliminator. Standard BP [94] is 
still the most popular. For the non-specialist, there is little point in using the others unless satisfactory results cannot be obtained 
with this 
Learning rate and momentum: need to be carefully chosen so that the net does not get stuck in local minima, nor “shoot” off in 
the wrong direction when encountering small bumps on the error surface. For standard BP, a learning rate of 0.1 and a 
momentum of 0.9 are a good starting point. These parameters may need adjusting before or during training if the net gets stuck in 
a suspected local minimum 
Stability: best to remove a representative sample of the training data for validation. If there are insufficient samples to allow this, 
an approximation to the correct place lo stop training in order to prevent overfitting can be made at the point at which the 
training error bottoms out after the first major drop (e.g. after about 30 epochs in Fig. 25) 
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ence and test data, so it is then invalid to choose either the 
x axis or the y axis as the reference for a regression 
analysis 11161. A method of correcting this problem has 
been proposed [121] by simultaneously minimizing the 
sum of the squares of the residuals on both axes, but this 
still assumes a constant error of measurement. 

Use of the correlation coefficient alone for method 
comparison is dubious because it reflects the range of the 
data as much as the similarity between x and y data points 
[117,118]. If the data encompass only a small range, e.g. 
loo-120 arbitrary units, then despite an error of only 10% 
in the absolute values between the two methods, which 
agree with each other to satisfactory error bounds in 
individual (x,y) measurements, the data cluster will be 
almost circular, and the correlation coefficient will be low, 
suggesting no relation between the two methods. Con- 
versely, as the data range increases, the correlation coeffi- 
cient will increase, suggesting a better matching between 
the two methods despite the fact that they still agree to 
+ 10%. Westgard and Hunt [ 1221 go so far as to say that, 
“The correlation coefficient is of no practical use in the 
statistical analysis of comparison data”. 

Regression also suffers from this phenomenon. Let us 
assume that, in the restricted range of data considered 
above, the regression line initially has an arbitrary slope. 
As the range of the data is extended, the equation of the 
regression line becomes closer to the true relation between 
the two methods, but will never actually equal it if there 
are errors in the x values, always overestimating the 
intercept and underestimating the slope. In a situation in 
which the range of the data is significantly curtailed, even 
a simple visual inspection of the data is more informative 
than a linear regression analysis [ 1171. 

It thus transpires that a simple line of identity between 
the estimates derived from the two methods (including 
percentage error boundaries, particularly in those common 
cases in which the data have a fixed coefficient of varia- 
tion) is both more informative visually and more correct 
mathematically. An alternative to the percentage error 
criterion is the difference vs. mean plot, where each point 
on the y axis corresponds to the signed difference between 
the x and y values of a datum, and the x axis corresponds 
to their mean [ 1171, a method closely allied to the display 
of residuals after a modelling process. This error measure 
makes no assumptions about the precision of the reference 
values, which is a failing with the percentage error, since 
the percentage is of the y data calculated against the x 
data [ 1181. A third approach to the situation is to plot the 
median (or mean) slope of all combinations of lines which 
can be drawn between any two data points [I 19,123,124]. 
This approach is also non-parametric, making no assump- 
tions about the distribution of the data. 

Other particular instances abound, particularly in 
medicine, where clinical criteria of efficacy are more 
important than statistical measures of any sort. The mea- 
surement of blood glucose in diabetics is one such exam- 

ple [125,126]. In this situation, a “region of acceptability” 
(which will be typically asymmetric about the ideal 1 : 1 
line) as in the Clarke diagram [ 1251 is the clinically correct 
criterion to use. In this, the errors in the predicted readings 
from the true readings are judged in such a way as to avoid 
terminal complications in the patient. This may require 
high precision in some regions of blood glucose concentra- 
tion, while allowing large errors in other regions. 

5. Experimental investigation of yeast metabolism using 
multivariate calibration of non-linear dielectric spectro- 
scopic data 

5.1. Data collection 

The yeast Saccharomyces cerevisiae, prepared as a 
suspension as outlined above, was used as the test organ- 
ism to determine the ability of multivariate modelling to 
predict levels of glucose in unseen suspensions, since it is 
readily available and its biological and dielectric properties 
are well researched. It was considered that the study of its 
metabolism in this way was adequately representative of 
the metabolism in batch culture. PLS was chosen as the 
most reliable of the easily available linear multivariate 
statistical methods, and the results from this were com- 
pared with those on the same data sets modelled with 
neural networks. 

Five data sweeps were recorded with no glucose pre- 
sent; then glucose was added to a concentration of 200mM 
and data sweeps were taken every 2 min until the glucose 
was used up. For this strain, this typically took 90 min 
from the addition of the glucose. (Cell counting procedures 
showed that cell growth did not occur in these experi- 
ments.) Five subsequent data sweeps were recorded after 
the glucose levels in the suspension had reached zero. 

The glucose levels were measured every third data 
sweep with a Reflolux device designed for at-home testing 
by diabetics. We have measured the precision of this to be 
f 10%. It has a detection range of 0.5 to 27mM, so that 
the higher glucose concentration samples used in the yeast 
work were diluted before readings could be taken using 
this device. 

Each data sweep scanned frequencies of 5 to 50Hz in 
5 Hz intervals at voltages of + 1 V, 1.25 V and 1.5 V. At 
each voltage/frequency combination, a newer spectrum 
was produced from 30 blocks of data averaged to reduce 
noise [127] and harmonics l-5 of this spectrum were 
recorded to disk. The phase was not record :d, since previ- 
ous work had shown that its presence did not usually 
improve the models formed, and its inclusion could in 
some cases degrade models due to variable selection con- 
siderations in accordance with the parsimony principle 
[128] if the phase was not well correlated with the glucose 
concentration. The suspension in the electrode chamber 
was then replaced with a conductivity-matched supematant 



and the sweep was repeated. The difference spectra due to 
the biology with the electrode polarization deconvolved 
can then be calculated. The suspension, supematant and 
difference spectra were recorded to separate files. This 
leads to each sample (object) being composed of 150 x 
variables in each file. 

For the following experiments, used as the basis for the 
present development of the multivariate calibration meth- 
ods, three identical experimental runs (sweeps l-3) were 
carried out on separate days. Predictions between these 
sweeps were all similar, so the model formed on sweep 1 
(47 objects, 150 x variables) predicting sweep 2 (49 
objects, 150 x variables) was chosen as the demonstration 
pair for all following development, unless otherwise stated. 

Modelling and prediction were initially carried out on 
the difference data, since these are where the biological 
effects are greatest in proportion to the (ideally negligible) 
electrode polarization. 

For the reasons discussed above, the method illustrated 
for comparison between the reference and predicted data 
was a simple superposition of the two data sets against 
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time (presented as object number) to indicate the degree of 
fit of the prediction to the form of the reference plot 
(particularly the leading zeros; see later for a discussion of 
the importance of these in model assessment), together 
with a plot of the predicted/reference data compared with 
the line of identity to indicate the accuracy and precision 
of the prediction. However, in order to interface with 
traditional schemes of method comparison, and taking into 
account the discussion given above on its validity in such 
applications, a regression line was also derived for selected 
plots. 

5.2. Multivariate analysis of yeast data using PLS 

The PLS modelling processes were performed using 
THE UNSCRAMBLER 5 package (Camo A/S, Olav Tryggva- 
sonsgt. 24, N-701 1, Trondheim, Norway). This provides 
facilities for outlier detection and internal validation by 
either leverage correction or internal cross-validation. 

In data as noisy as those produced by non-linear dielec- 
tric spectroscopy, due to the variations of the electrode- 
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Fig. 15. (A) PLS prediction of the glucose concentration in a yeast cell suspension using difference spectra within one data run. The model was formed on 
every third sample and the remaining two-thirds of the data were predicted from this model. Each object corresponds to a time delay of approximately 2 
min. the whole data set encompassing a period of approximately 90 min. The optimum model was formed with three PLS factors. (B) PLS prediction on 
suspension spectra within one data run. The model was formed on every odd-numbered sample and the remaining even-numbered data were predicted from 
this model. The optimum model was formed with two factors. 
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electrolyte interface, the outlier identification facilities are 
of limited use. If, during modelling, the residual variance 
does not decrease smoothly to the optimum number of 
factors, this is indicative of the presence of outliers, which 
must thus be identified individually by other means. In our 
experience, a comparison of scores plots and influence 
plots is the most helpful method for this. Scores are the 
projections of the data onto the individual factors, so that 
any point which is significantly outside the main cloud of 
the other data is suspicious. Influence is a plot of leverage 
vs. residual variance. A point with unexpectedly high 
leverage has a disproportionate effect on the model, and 
one with high residual variance is not well represented by 
the model. Thus a point with disproportionately high lever- 
age and/or residual variance is likely to be an outlier and 
should be removed from the data set before modelling. 

The models were always centred on the mean of the 
individual x variables, and these x variables were 
“scaled” to unit variance, i.e. to the reciprocal of the 
standard deviation of the individual variables. The optimal 
model was indicated by leave-one-out cross-validation [63]. 

5.2.1. Predictions inside a data set 
If a model is formed on a representative selection of 

samples from one data sweep (e.g. sweep l>, and the 
remaining samples from that sweep are predicted, the 
training set has information on the same broad changes in 
electrode polarization as occur in the test set. Since the 
glucose results are taken every third sweep, these sweeps 
(non-interpolates) can be used to form a model to predict 
the remaining two-thirds of the data points (interpolates). 
We would expect the prediction to be better than that made 
between successive sweeps, due to the ability of the model 
to follow the changes in the electrode polarization between 
sweeps. 

Cross-validation gives optimum modelling with three 
factors for a model formed on the non-interpolates of 
sweep 1. The predictions of interpolates by non-inter- 
polates is good, as expected, but noisy (Fig. 15(A)). 

Predictions made on the suspension data rather than the 
difference data are not substantially degraded, showing 
that the PLS can deconvolve the electrode polarization 
from the biology, given representative data on both the 
polarization and the biology (Fig. 15(B)) 

5.2.2. Predictions between data sets 
A cross-validated model was formed on the difference 

spectra of one data run (sweep 1) and this model was used 
to predict a separate data run recorded on a separate day 
(sweep 2). As can be seen from Fig. 16, there is a 
significant modelling of glucose levels, but this model is 
very noisy. The prediction can be seen to be slightly worse 
than that of Fig. 15(A), suggesting that the polarization of 
the electrodes has changed slightly. 

The prediction between these two difference spectrum 
sweeps is used as the basis for the following comparative 
development work on the modelling process. 

5.2.3. Median vs. mean averaging 
A major reason for the noise in the above prediction is 

that the data are polluted by “glitches”. These are broad- 
band, affecting all harmonics within a single spectrum as 
can be seen from Fig. 17, and are due to momentary 
hesitations of unknown origin in the A/D-D/A unit. The 
mean averaging normally used as the averaging method in 
computing the power spectrum is sensitive to these glitches, 
giving the raised harmonics noted above. 

Forming a median-averaged power spectrum instead of 
the conventional mean-averaged spectrum removes the 
effect of these glitches at the cost of slightly increasing the 
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Fig. 16. PLS predictions between separate data nms. The model formed on sweep 1 is used to predict sweep 2. The optimum model, as judged by the 
minimum least-squares error of prediction of the known values, was formed with three factors. 
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Fig. 17. A two-spectra-wide section of harmonic variables from two Fig. 19. The effect on a single variable of cleaning up noisy prerecorded 
successive objects in a data run. As can be seen, a glitch has occurred in mean-averaged power spectra with a five-point sliding median average 
the left-hand spectrum in object 29, raising the harmonics above the true filter. The difference spectrum shown is of a supematant vs. supematant 
level of object 28 even after being mean averaged over 30 blocks. sweep, and should ideally be null. 

variance of the resulting averaged power spectrum as 
shown in Fig. 18. 

With prerecorded files using a conventional power spec- 
trum, the glitches can be removed by a sliding five-point 
median average down each individual variable, since the 
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Fig. 18. The effect of median and mean averaging in the formation of the 
power spectrum. The first 25 variables of the difference spectrum of one 
object, for both a mean-averaged power spectrum and the equivalent 
median-averaged power spectrum. are superimposed to show the reduc- 
tion of outliers which can be achieved by median averaging. The differ- 
ence spectrum shown is of a supematant vs. supematant sweep, and 
should ideally be null. 
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experimental sampling frequency is sufficiently high that it 
can be assumed that glucose-related effects will change 
only slowly between adjacent samples since [glu] does 
likewise (Fig. 19). 

It is clear that median averaging in this way removes 
noise from predictions very effectively, as can be seen in 
Fig. 20, both cleaning up the noise in the prediction and 
reducing the optimum number of factors to two, indicating 
a stronger modellable effect and allowing PLS to form a 
model using fewer latent variables. 

5.2.4. Variable selection 
As outlined above, our experiments and those of others 

[ 128- 13 11 suggest that PLS modelling is actually some- 
what limited in its ability to select the x variables that are 
most highly correlated with the desired y data and to 
ignore the relatively uncorrelated x variables; this sug- 
gests that PLS can become unreliable due to spurious 
modelling of coincident (chance) correlations in generally 
uncorrelated variables, especially if the number of vari- 
ables is appreciably greater than the number of objects. 
This general problem is often referred to as the “curse of 
dimensionality” 11321 and leads to greatly degraded gener- 
alization of the models formed. The variables fed to a PLS 
model should therefore preferably be the minimum number 
that contain all the necessary information about the process 
being modelled. Visual inspection of harmonic plots shows 
that the fourth and fifth harmonics contain little obvious 
variation with the glucose concentration. 

Using the second harmonic only (30 variables) results 
in the much less noisy models of Fig. 21, but overesti- 
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Fig. 20. The improvement in PLS predictions produced by median averaging the data after recording. The optimum model was 
instead of the three required for raw data. 

mates low [glu] and slightly underestimates high [glu]. 
Using both second and third harmonics (60 variables) 
results in better low [glu] predictions, but a slightly noisier 
model than with the second harmonic alone. Therefore 
most information, but not all, is carried in the second 
harmonic. The third harmonic appears to add significant 
information about the low [glu] range, but its inclusion also 
begins to allow the modelling of noise. The addition of 
fourth and fifth harmonics merely increases the noise 
without improving the prediction. These findings are highly 
strain/organism dependent. The most significant harmon- 
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formed with two factors 

its/frequencies/voltages will differ greatly for different 
suspensions. They may differ in detail even for the same 
strain in different data runs in different conditions. The 
significant variables must be determined adaptively for all 
new batches of data in any automated analysis. 

5.2.5. Linearizing x data 
The reference measurements are linear with glucose 

concentration, but the spectrum harmonics contain a loga- 
rithmic transformation, being formed from a classic power 
spectrum. It may therefore be wondered if linearizing these 
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Fig. 21. The effect of variable selection (in this case, use of only the second harmonic) on the quality of the PLS model: (A) raw data; (B) median-averaged 
data. The predictions are obtained from a model with two factors optimal. 
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Fig. 22. Unmodelled non-linearity in the PLS model below a glucose 
concentration of 1COmM: the structure in the plot, indicating the unmod 
elled non-linearity in the data, can clearly be seen. 

will make a worthwhile improvement to the predictions; 
however, doing so makes little alteration to the predictions, 
the plots being similar to the above; one interpretation of 
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this is that the limiting factor in improving the model is the 
inherent underlying non-linearity in the response of the 
harmonics to the glucose concentration. 

Referencing the harmonic levels to the fundamental also 
makes negligible improvement to the predictions, suggest- 
ing that the fundamental has little effect on the model, i.e. 
it is formed predominantly on the non-linear aspects of the 
dielectric response. Again the plots are much the same as 
above. 

52.6. PLS residuals and unmodelled non-linearity 
All permutations of PLS predictions between sweep 1, 

sweep 2 and the very similar but not shown sweep 3 
(which was experimentally identical and produced data 
which look and behave very similarly) all converge to very 
similar clean, tightly modelled predictions of very similar 
curved lines, with small gain/d.c. anomalies, in which the 
predicted data either span a slightly different range of [glu] 
to the true values and/or are displaced by a small constant 
value due to slight alterations of the electrode surfaces 
between the sweeps. PLS models are observed to be 
extremely sensitive to baseline shifts in the variables. 
Consequently, even the slightest variation in electrode 
polarization can cause large gain/d.c errors in predictions. 
The so-called multiplicative scatter correction [63] has 
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Fig. 23. The effect of adding time indices to the x data to assist the PLS regression to model out electrode drift. (A) Twofactor prediction obtained on 
median-averaged second harmonic data; this technique is shown to be accurate and precise to within the errors of the reference method. The regression line 
is also shown for compatibility with traditional methods of regression analysis, commonly but incorrectly applied to method comparison data. The slope of 
this line is 0.91 and its intercept is 13.4. The correlation coefftcient is 0.97. (B) Equivalent control experiment demonstrating that this modelling is not 
occurring purely on the time variables. 
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been applied to near-infrared data in an attempt to re- 
move/reduce this sensitivity to baseline, but the results 
when applied to our data were ambiguous, giving improve- 
ments in some predictions, but no improvement, or wors- 
ening, in others. 

The consistently tightly modelled, but curved, predic- 
tions obtained between sweeps 1 and 3 suggest that al- 
though PLS is modelling what it sees very reliably, the 
underlying process being modelled is too non-linear for 
PLS to cope with. For a linear, fully modelled process, a 
plot of residuals Fiy vs. y (where y is the true glucose 
concentration) should be randomly distributed with no 
structure [63]. This plot (Fig. 22) for the model formed on 
sweep 1 shows a clear structure, falsifying the hypothesis 
that the underlying processes are adequately linear for 
modelling using a purely linear PLS model. 

The residuals structure is most marked below 1OOmM 
and explains why predictions are generally good above this 
value, but curve progressively away from the ideal 1 : 1 
line below it. This suggests that non-linear modelling 
techniques, such as neural nets (see above) or non-linear 
PLS [ 133- 1391, may model the glucose concentration data 
more effectively over the whole range of concentration. 

5.2.7. Time indices 
Adding a time variable to the x data is a technique that 

has been used to assist multivariate methods to model 
time-dependent phenomena, such as microbial fermenta- 
tions [ 140,141]. The slow drift in our electrodes is mono- 
tonic, whereas the response of the suspension to glucose is 
not. The inclusion of the time parameter can thus substan- 
tially assist the predictions to model the low glucose 
concentrations and leading zeros by helping the PLS re- 
gression model out the drift while ignoring the biology. 
Increasing the number of time variables further improves 
the predictions up to an optimum of four time indices per 
30 harmonic variables as shown in Fig. 23(A). The control 
experiment of Fig. 23(B), modelling only the time vari- 
ables against glucose concentrations, gives a much poorer 
prediction, showing that in this case there is no modelling 
value in time variables alone, but that they can be very 
valuable in modelling out slowly changing backgrounds, 
such as electrode drift. 

At this point, the PLS prediction agrees with the refer- 
ence values to within the measured error bounds of the 
latter for all points except the leading zeros (which are still 
quite well predicted). This again suggests that electrode 
variations are the major source of problems in predictions 
between (and within) runs. 

5.2.8. Variable selection by PLS pruning 
An alternative method for automatically pruning vari- 

ables to produce an improved model was devised and 
applied to the above data sets. The methodology used here 
was termed “PLS pruning”. 

After each model is formed, the user has the opportu- 

nity to mark a certain number of the variables as irrelevant. 
These variables will no longer be used in subsequent 
modelling. The variables can be marked by hand, thereby 
allowing “what if we only measured....?” questions to be 
addressed. The second harmonic predictions above are 
produced by this method, using prior knowledge about the 
effects of glucose on the harmonic patterns of yeast. 

The second, and more interesting, exclusion criterion 
involves low weighting in the model. The weightings 
matrix is examined and those variables which have the 
smallest values are marked as excluded. The effect of this 
is basically to adjust the weightings to zero for irrelevant 
variables. Using PLS pruning, we can measure over a wide 
parameter space and expect to remove the effects of 
irrelevant variables. This handles both the problems above 
and should allow models to be improved greatly. It also 
has the great value that it requires no prior knowledge of 
the system under study. 

As an extension to this process, we may automate the 
exclusion process using validation. Rather than removing a 
set of variables on the basis of a single model, we may 
perform the modelling/exclusion process a number of 
times and choose the model which gives the best root- 
mean-square error (RMSE) by, for example, cross-valida- 
tion. Using this arrangement, we are searching for a mini- 
mum in a rectangular “error surface”, where the two 
dimensions are the number of factors and number of 
variables. We first use cross-validation to find the appro- 
priate number of factors using the full variable set. Having 
done this, we make a model and remove the least relevant 
variable on the basis of its weighting. This process is then 
iterated until one variable remains. The point in the two-di- 
mensional space for which the calculated RMSE is mini- 
mal indicates the best number of factors and variables 
which should be used. 

In terms of measurement, the method is the same as that 
used previously, except that we can now choose to mea- 
sure over a much wider range of frequencies and ampli- 
tudes. Increasing the number of harmonics is likely to be 
of little use because we have already seen that the higher 
harmonics are close to the noise baseline. The pruning 
process is used to reduce the area of the sampling space 
used for model formation. Of course, once a suitable 
minimum error has been found, we can then examine the 
list of remaining variables and prune the physical sampling 
range accordingly. This provides the additional advantage 
of reducing the acquisition time. 

A more detailed investigation of the use of pruning for 
variable selection follows. We first need to show that the 
pruning process does indeed provide an improvement over 
the arbitrary selection of variables. 

The following values were calculated. 
1. Root-mean-square error of prediction (RMSEP) for the 

best PLS model based on the full variable set. 
2. RMSEP for the best PLS model for each subset of 

variables representing a single harmonic. 



120 A.M. Woodwd et al./Bioelectrochemistry and Bioenergetics 40 (1996) 99-132 

3. Minimum, mean, maximum and standard error of the 
RMSEP for the best PLS models for 1000 randomly 
selected variable subsets containing 30 variables. 

4. The complete RMSEP profile for the pruning process. 
These values, displayed in Table 3, will now be discussed. 

We first note that the fundamental response generates a 
poor model, having high RMSEP and requiring a larger 
number of factors to generate even this model. Once again, 
this highlights the fact that the biological dielectric effect 
in the suspension is predominantly non-linear. Secondly, 
by using the prior information of the harmonic content, we 
are able to generate significantly better models by select- 
ing “good” harmonics. By using the second harmonic 
alone, we can generate an improved model over that 
generated from the full variable set. For comparison, we 
consider the random selections. The average RMSEP for 
1000 models was 56.2mM. The second harmonic model 
performs significantly better than most random models, 
with the fifth being the only other which does better than 
the mean random selection. 

In the above, we considered only particular harmonics, 
and we must now generalize to remove the least important 
variables in turn. Fig. 24 demonstrates the effects of 
pruning on the RMSEP for the model formed on sweep 1 
predicting the data of sweep 2. As can be seen, the action 
of pruning provides a significant improvement in the model. 
The best model occurs with only five variables, giving an 
RMSEP of 40.9mM from a one-factor model. The low 
number of variables, and the sharpness of the minimum at 
five, suggests that this may be an artefact local to the data 
sets, rather than a true minimum. A more reliable dip lies 
between 11 and 16 variables, this range yielding RMSEP 
values between 44.6 and 45.1 mM for four-factor models. 
These pruned models provide an improvement over both 
the random variable set and the full variable set. They have 
comparable performance to the second harmonic selection, 
but for their generation we did not have to rely on a prior 
knowledge of harmonic responses. The pruning process 
therefore forms a method for improving models when little 
is known about the effects present within the data. Exami- 
nation of the remaining variables in a pruned set gives a 
good insight into important areas of the excitation space. 

Table 3 
RMSEP values for assorted variable selection methods 

Model 

Full variable set 
Fundamental frequency 
Second harmonic 
Third harmonic 
Fourth harmonic 
Fifth harmonic 
Random selection (min) 
Random selection (mean) 
Random selection (max) 
Random selection (SD) 

RMSEP Factors 

49.13 3 
78.64 5 
45.39 2 
57.09 3 
67.87 I 
52.70 1 
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Fig. 24. Improvement in prediction error by progressive removal of least 
relevant x variables. 

5.3. Multivariate analysis of yeast data using artijcial 
neural networks 

All neural network modelling was carried out on a 
commercial program called NEURALDESK (Neural Com- 
puter Sciences, Lulworth Business Centre, Nutwood Way, 
Totton, Southampton, Hampshire, UK), which runs under 
Microsoft Windows 3.1 (or Windows NT) on an IBM- 
compatible PC. To ensure maximum speed, an accelerator 
board for the PC (NeuSprint) based on the AT and T 
DSP32C chip, which effects a speed enhancement of some 
lOO-fold over a 386 processor, permitting the analysis (and 
updating) of some 400000 weights per second, was used. 

In all the following predictions, a stochastic backpropa- 
gation algorithm was used with all NEURALDESK settings 
default (architecture x-8-l; learning rate, 0.1; momentum, 
0.9) unless stated otherwise. 

The ease of convergence of models formed on sweeps 
1, 2 and 3 varies significantly for individual initial weight 
configurations. This suggests that the error surface is very 
convoluted with many local minima. Starting from a ran- 
dom weight initialization, the global minimum will be 
found in only a small proportion of model configurations 
or will only be found after prolonged training involving 
much interactive fine tuning of the net parameters. How- 
ever, when the initial weights start the net training in the 
vicinity of the global minimum, training to the minimum 
RMSEP can be very rapid as shown in Fig. 25. 

5.3.1. Headroom 
A variety of preliminary runs showed that scaling train- 

ing and test inputs and, particularly outputs, assists predic- 
tions by reducing the squashing effect of the sigmoid on 
the hidden nodes in order to prevent rapid saturation of 
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Fig. 25. Root-mean-square error of prediction of the test data as a 
function of the number of training epochs with the net updated at each 
epoch. The net parameters and data headroom are the defaults ouhned in 
the text. Optimum training is achieved here at 50 epochs with overfitting 
slowly occurring above this. The minimum can occur at as few as IO 
epochs if the initial weights are fortuitously close to the global minimum. 

hidden nodes, and by simulating linear output nodes which 
are found to be beneficial over sigmoid output nodes, 
particularly in the case of extrapolate prediction or where 
the training set incompletely covers the y data interval. 
The entire x matrix may be scaled simultaneously, but we 
have found [142] that this often conceals small but signifi- 
cant variables in favour of large but less significant ones, 
and that better modelling is achieved with each x variable 
scaled individually. 

Lowering the input scaling between 0.2-0.8 to 0.4-O-6 
has no significant effect on the predictions, but scaling 
inputs outside the range 0.2-0.8 degrade the predictions. 
Scaling outputs outside 0.4-0.6 are similarly detrimental. 
At these headroom levels, the output nodes are approxi- 

0 20 40 60 80 1001201401601802W220 

Table 4 
Importance of specific harmonics to the neural network model 

First Second Third Fourth Fifth 

Mean harmonic weighting 0.455 0.47 0.5 I 0.435 0.4 

mately linear. The situation in which no headroom is 
included, such that both x and y variables are scaled 
between zero and unity, is shown in Fig. 26. 

We therefore found it appropriate for subsequent predic- 
tions to use x variables scaled to the range 0.2-0.8 and y 
data scaled to the range 0.4-0.6 for training and predic- 
tions, then resealed to the correct values for plotting the 
results. 

A model formed on sweep 1, predicting sweep 2 using 
raw data with no median averaging or any other prepro- 
cessing, gives Fig. 27. This predicts the general features of 
the glucose concentration vs. time relation, including the 
leading zeros, but is very noisy. 

5.3.2. Median averaging 
As observed in PLS models, median averaging the 

variables cleans up and improves the finite-glucose read- 
ings drastically, but has a tendency to smear out the 
leading zeros so that they are less well predicted, as 
indicated in Fig. 28. 

5.3.3. Variable selection 
One way to determine the importance of individual 

inputs in affecting the outputs of a neural net model is to 
apply a unit diagonal test matrix to the trained net, with 
each column being applied seriatim. Such a procedure 
shows that the third harmonic variables contribute more to 
(give a higher output in) the model formed on this particu- 
lar data set than second than first than fourth and fifth 
(Table 4), although there is not a large difference in 
significance. 

0 20 40 60 

Oh~cct No. 

Fig. 26. Neural network prediction of glucose concentration with no headroom on either x or y variables, i.e. all variables were individually normalized in 
the range 0- 1. The optimum training occurred at 70 epochs with a training error of 0.025. It can be seen that the predictions tend to reflect the sigmoidal 
nature of the nodes as much as the relation between the data. In order to show the effect more clearly, the data used here were median averaged and should 
be compared with those in Fig. 25. 
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Fig. 27. Neural network prediction of glucose levels in yeast cell suspensions between separate data runs using the raw data with no preprocessing other 
than normalization and headroom scaling. The optimum training occurred at 36 epochs at a training error of 0.02. 

Pruning the input variables to include only second and 
third harmonics smooths out the predictions a little further, 
but begins to make them more inaccurate, showing that 
most but not all the data relating to the neural net’s ability 
to model [glu] are in the second and third harmonics. 
Training and predicting only on the second harmonic 
reduces the performance of the model as shown in Fig. 29, 
in contrast with the finding with PLS (see above), so that 
the full data set was used for subsequent predictions. 
Neural networks appear to be more robust to spurious 
modelling of uncorrelated data than PLS and so require 
less rigour in the choice of the most relevant variables. 

5.3.4. The leading zeros problem 
It is reasonable to assume that, biochemically, the yeast’s 

resting state before the addition of glucose will not neces- 
sarily be identical to the resting state to which it returns 
after the glucose is used up, since storage polymers, such 
as glycogen and trehalose, will have been formed as a 
result of glucose metabolism [143-l 451. On this basis, it 
may be expected that the leading zeros will be predicted 
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less well if the model forms predominantly on the much 
larger section of finite- and post-glucose data. The multi- 
variate method used has, in effect, to model two separate 
systems. However, the prediction to some degree of the 
leading zeros is a vital check that the model is not merely 
forming on drifts and trends in the data, since data reflect- 
ing glucose utilization are monotonic. If modelling were to 
occur merely on the basis of a trend, the leading zeros 
would be predicted to the same absolute levels as the 
initial glucose concentration, since the model would see 
them as identical to the high glucose readings if merely 
modelling a trend in the data as the x variables would be 
identical for samples taken both before and immediately 
after the addition of glucose. Therefore the prediction of 
the leading zeros acts as a marker that the model is 
actually forming on a glucose-related response, and not 
merely on unconnected coincidental trends. Accordingly, it 
is always imperative to display both the predicted vs. 
measured plots and the predicted vs. object number plots 
in order to determine the degree of fit of the leading zeros 
[1301. 
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Fig. 28. Improvement in neural network prediction produced by median averaging the data of Fig. 27 after recording. The optimum training occurred at 25 
epochs at a training error of 0.02. 
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Fig. 29. The effect of variable selection (in this case, use of only the second harmonic) on the quality of the neural network model: (A) raw data; (B) 
median-averaged data. The optimum training occurred at 60 epochs at a training error of 0.02. 
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Fig. 31. Prediction of sweep 2 by sweep 1. Five time index variables were added to the x data. The leading zeros were non-median averaged as in Fig. 
30(A), but not repeated to form a greater data length as in Fig. 30(B). The optimum training occurred at 30 epochs at a training error of 0.02. Again, the 
regression line is included for comparative purposes. This has a slope of 0.84 and an intercept of 13.5. The correlation coefficient is 0.97. 

Exploiting this argument, it is indeed found that substi- 
tuting the non-median-averaged leading zeros into the 
median-averaged data gives the advantage of both well- 
predicted (if noisier) leading zeros and a closely I fitted 
finite-glucose curve as shown in Fig. 30(A). 

Increasing the number of leading zeros, by direct copy- 
ing, until there are roughly as many as non-zero readings, 
so that the net sees the zeros as often as the non-zeros 
during each training epoch, improves the predictions sub- 
stantially as can be seen in Fig. 30(B). All the points are 
well modelled except for the few after the addition of 
glucose, when the yeast could not be expected to respond 
instantly anyway. It is known that there is a significant 
phase of activation of H+-ATPase following the addition 
of glucose to a resting cell suspension [146,147]. 

5.3.5. PLS scores as inputs 
In weakly non-linear problems, it is possible to speed 

up the learning of a net by forming a PLS model of the 
process under study, and using the PLS scores as the 
inputs to the net. This allows a substantial dimensional 
reduction in the data, so that the net has to train many 
fewer weights. On our data, we found that this procedure 
did not improve the precision of prediction, but did allow 
slightly faster training in models which converged slowly. 
Most of our models on sweeps 1-3, however, converged 
quickly with the raw data as inputs. 

5.3.6. Time indices 
Time indices added as extra x variables for the same 

reasons as outlined above (five added to end of 150 
variables in the data of Fig. 30(A)), in order to allow the 
net to model a drift in baseline, made the further improve- 
ment to the predictions indicated in Fig. 31. With the 
assistance of this technique, the prediction of sweep 2 by 
sweep 1 is now within the error bounds of the reference 
readings except for the leading zeros (which can be im- 
proved by selectively increasing the number of training 
epochs for these zeros as outlined above). 

5.3.7. Architecture optimization 
Using different training algorithms on this final config- 

uration of data had little effect on the effectiveness of 
modelling. Standard backpropagation is much the same as 
stochastic backpropagation. Weigend weight eliminator and 
skeletonizing backpropagation both make negligible im- 
provement, as might be expected from the similarity of the 
significance values for individual harmonics shown in 
Table 4. 

If the neural network has too many hidden nodes, it can 
overfit the training set, resulting in poor generalization 
[148]. Ideally, the net should use the minimum number of 
hidden nodes in the minimum number of hidden layers 
which allow modelling to the required precision. Building 
a net from scratch, modelling to the optimum RMSEP with 
no hidden nodes, then with one hidden node and then two 
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Fig. 32. The effect of building a neural net from scratch. The optimum 
prediction error is obtained with two hidden nodes. There is no significant 
degradation or improvement in exceeding this up to the NEURALDESK 

default architecture of eight hidden nodes. 
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nodes etc. gives no further improvement after two nodes as 
shown in Fig. 32. 

The model formed with two nodes produces predictions 
essentially identical to those with the default eight nodes; 
therefore it appears that, for these predictions, overfitting 
is not a serious problem, but no benefit is obtained by 
using more than two hidden nodes. This intrinsic dimen- 
sionality indicated by the net reassuringly coincides well 
with that indicated by the optimum number of factors in 
the equivalent PLS predictions. 

as the former are reproducible. Addition of time indices 
did not make any significant improvement to this predic- 
tion. 

5.4.1. Fermenter experiments 

We hypothesize that the intrinsic dimensionality of this 
system is the number of macrostates (or electrically active 
transitions between them) that the enzyme adopts in its 
multistate operation as outlined above. 

The simple batch experiments carried out above were 
performed on resting cell suspensions in vitro. We there- 
fore performed a yeast fermentation, as described in batch 
form in Ref. [149], and the above methods were used to 
record and analyse the non-linear dielectric spectral sweeps 
in conjunction with a number of more conventional biolog- 
ical measurements of interest in fermentations generally. 

Finally, with the present data, the use of two or more 
hidden layers did not improve the efficacy of the model, 
consistent with the view that the intrinsic dimensionality of 
the nonlinear dielectric response is indeed small. 

5.4. Predictions on suspension files alone 

A yeast culture was grown overnight and added to a 
nutrient solution containing nutrients and glucose at ap- 
proximately 300mM. The culture was agitated throughout 
the experiment. At intervals of just over 1 h, a sample of 
the culture was extracted from the fermenter and a number 
of biological variables were measured by conventional 
methods. Reflolux measurements of glucose concentration 
were recorded approximately every 20 min. 

The real advantage to multivariate modelling is the 
possibility that the modelling procedure may be able to 
pick out changes in the suspension spectra that are related 
to glucose (or other metabolites or even inhibitors), with- 
out the need to record a supernatant spectrum, en route to 
forming difference spectra. Indeed, in many (most?) practi- 
cal situations for measurements in situ, it is inconvenient 
or impossible to take a reference reading. 

To this end, we studied sweeps l-3 as described above, 
but using only the suspension data from the experiments, 
rather than deconvolving the supematant data to produce 
difference spectra. Suspension files, when leading zeros 
are repeated, as in Fig. 29(B), give very similar predictions 
to those obtained from difference files (with a small gain 
and d.c. offset due to the slight change in the electrode 
polarization between the two data runs), removing the need 
for a supematant reading where this is difficult to obtain 
(Fig. 332, suggesting that neural networks are perfectly 
capable of deconvolving what can be large electrode-gen- 
erated harmonics from the small biological effects, as long 

The acquisition software was configured to average 100 
power spectra at each point in a logarithmic frequency 
range of lo- 1OOOHz in 30 steps, and a linear voltage 
range of 0.5-l .5 V in six steps, recording the first five 
harmonics at each voltage/frequency combination. Sam- 
pling took place continuously, with each frequency/volt- 
age sweep being immediately followed by the next. The 
overall time for each sweep was 157 s. 

The experiment continued until all the glucose had been 
used and the biological variables indicated that the culture 
was beginning to change its state. This process took around 
10h. 

The following biological variables were measured: glu- 
cose concentration, pH, percentage viability, percentage 
budding, low-frequency conductance of the culture (G), 
wet weight, dry weight., cell count and peak channel 
number (PCN) (a measurement of the modal cell size 
obtained by flow cytometry) [150]. 

The number of nonlinear biological dielectric spec- 
troscopy samples far exceeded that of the biological vari- 
ables, by virtue of the fast acquisition cycle for nonlinear 
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Fig. 33. Neural network prediction using suspension data. The data were median averaged, but the leading zeros were not, and these zeros were extended 
as in Fig. 30(B). The optimum training occurred at 59 epochs at a training error of 0.15. The regression line is included for comparative purposes. This has 
a slope of 0.81 and an intercept of - 18.8. The correlation coefficient is 0.93. 
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biological dielectric spectroscopy. The great majority of 
nonlinear biological dielectric spectroscopy samples did 
not, therefore, have corresponding biological values and 
could not be used for modelling. These points were used to 
test the models. The predictions for these points were 
calculated and plotted against time on the same graph as 
the corresponding biological variables. The curves ob- 
tained gave an indication of the performance of the model 
for the unmeasured points, on the basis that the biological 
variations should occur smoothly. 

For this experiment, it was appropriate to use PLS2 [63] 
to model a number of y variables simultaneously. The 
results of a two-factor model of all variables are now 
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presented. Fig. 34 shows the predictions based on a two- 
factor PLS2 model formed on the nine sample points. The 
model thus generated was used to predict all 234 points. 

The model appears to generate reasonable predictions 
for glucose concentration, pH and cell count (wet and dry 
weight being similar measures to the cell count and pro- 
ducing essentially identical predictions), in that these show 
good interpolations between the training points. The model 
performs less well in terms of precision for percentage 
budding and “G out”, but follows the form of the mea- 
sured curve quite closely. 

However, this approach does not produce a usable 
model for PCN or percentage viability (not shown), since 
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Fig. 34. Two-factor PLS2 predictions of various parameters measured during fermentation: (A) extracellular glucose concentration; (B) pH; (C) cell count; 
(D) extracellular conductivity; (E) percentage of cells budding. 
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Fig. 35. Prediction, within a single data set, of even-numbered samples by odd-numbered samples for glucose concentration 
cover a time interval of 7 h. The optimum prediction is obtained with two PLS factors. 

both are measured to be roughly constant throughout the 
experiment, with small variations not simply related to any 
of the other parameters measured and hence more difficult 
for PLS2 to model. Overall, however, it may be observed 
that the non-linear dielectric approach provides a novel, 
rapid and non-invasive method for the measurement of 
biological properties in fermentations in situ. 

Fermentations involve measurements in difficult biolog- 
ical media containing cells and, having shown that these 
could be accomplished successfully, it was of interest to 
determine whether non-linear dielectric spectroscopy could 
be used to determine glucose levels in blood. To this end, 
a short series of experiments was carried out on sheep’s 
blood. 

5.4.2. Sheep’s blood in vitro 
The blood, drawn from a sheep which had not received 

food overnight, was placed in a heparinizing vial and 
carried back to the laboratory. Preliminary experiments 
showed that raw blood proteins contaminated the electrode 
surfaces immediately and prevented repeatable results. 
Hence the blood was spun down and resuspended three 
times, in a buffer consisting of 150 mM NaCl and 20 mM 
KH,PO, adjusted to pH7.3, in order to remove these 
plasma proteins. The blood was ready for experimentation 
within 1 h of being drawn from the sheep. 
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in sheep’s blood. The data 

The resting concentration of glucose in sheep’s blood is 
typically 3mM or less, and this forms the baseline level 
for these experiments. 

Glucose (1OmM) was added to the washed resting 
blood and data sweeps were taken at 15 min intervals over 
7 h (typical time for the blood glucose concentration to 
return to baseline). Suspension spectra only were recorded 
with no supematant references. The data sweeps covered 
five voltages equidistantly spaced throughout the voltage 
range from 0.5 to 1.5 V and nine frequencies logarithmi- 
cally spaced across the frequency range from 1OHz to 
1 kHz. The spectra were calculated using mean averaging 
over 30 blocks of data per voltage/frequency combination. 

PLS modelling on the odd samples of any of these data 
sweeps gives good predictions of the even samples with 
two factors, as shown in Fig. 35. This is a good test of 
whether there would be a modellable effect in the absence 
of electrode polarization variation, since both the modelled 
and predicted samples contain similar information on any 
variation which may have occurred during the experiment. 
The anomalous prediction of the even sample at 12.3mM 
measured [glu] is due to this reading being outside the 
range of [glu] in the odd samples on which the model was 
made. PLS is poor at extrapolation. 

Good straight line predictions between runs performed 
on different batches of blood taken from the same sheep 
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Fig. 36. Prediction between separate data sets. Data cover a time interval of 7h, and the optimum prediction requires three PLS factors. Again, the 
regression line is included for comparative purposes. This has a slope of 0.96 and an intercept of 0.32. The correlation coefficient is 0.97. 
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Fig. 37. PLS prediction between two titrations of glucose in the super- 
natant. The optimum model required eight PLS factors indicating a weak 
relationship. 

on different days can be obtained with attention to outliers 
and removing from the data sets all points which are not 
within the ranges of both modelling and prediction data 
sets (Fig. 361, but they typically include gain/d.c. anoma- 
lies due to the sensitivity (caused by electrode variations) 
of PLS models to baseline differences between runs. 

Predictions between different data sets are more vari- 
able than those using yeast. This is probably due to a 
greater tendency to electrode fouling even in washed ery- 
throcytes, leading to a lesser degree of reproducibility of 
polarization conditions between otherwise identical experi- 
ments. Also, the inhibitor studies necessary to identify the 
active enzyme(s) have not yet been carried out, and the 
experimental conditions producing the optimum and most 
stable operating conditions for this enzyme(s) are indeter- 
minate. 

It is necessary to check that the models are forming on 
real effects rather than merely chance correlations in ran- 
dom noise, and that the predictions depend on the presence 
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Fig. 38. A probe with flush gold electrodes used to record non-invasive 
non-linear dielectric spectra in vivo. 

of erythrocytes. Data sets containing computer-generated 
random numbers, with the same number of objects and 
variables as the real data, produce random predictions, 
showing that modelling on chance correlations is not a 
problem for this size of data set. 

Glucose control spectra taken by adding glucose to 
supematants cannot be predicted from sheep’s blood mod- 
els, or vice versa; therefore the predicted relations shown 
above between sheep’s blood data sets depend on the 
presence of erythrocytes. However, glucose controls can 
predict other glucose controls with typically eight PLS 
factors, showing that glucose can affect electrode surfaces 
in a modellable way. However, the predictions require 
many PLS factors, denoting only a weak effect, whereas 
the predictions in the presence of erythrocytes require only 
a few PLS factors, showing that these predictions are 
formed predominantly on the reaction of the erythrocytes 
to the presence of glucose. Fig. 37 shows the best predic- 
tion pair out of six combinations of three control data sets. 
Other control pairs show poorer modelling. 

5.4.3. Human blood in viva 
An electrode probe with flush electrodes in the configu- 

ration of Fig. 38 was matched to the subject’s forearm with 
saline making sure that the position and orientation were 
the same for each data sweep, these data sweeps being 
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Fig. 39. Prediction, within a single data set, of even-numbered samples by odd-numbered samples. The data cover a time interval of 30 min. The optimum 
prediction is obtained with two PLS factors. 



A.M. Woodward et al./ Bioelectmchemistry und Bioenergrtics 40 (1996) 99-132 129 

identical to those described above for sheep’s blood in 

vitro. 
The 64kg subject, having starved for 16 h to allow 

blood glucose to reach a baseline level, ingested 43 g of 
glucose; the blood glucose level was measured as a func- 
tion of time with the Reflolux simultaneously with dielec- 
tric sweeps. Reference sweeps were not possible, and so 
the spectra recorded were the single-sided spectra equiva- 
lent to the suspension sweeps in sheep’s blood and yeast 
above. This subject metabolized glucose rather rapidly, so 
that the range of glucose concentrations is not as great as 
expected. 

Modelling on the odd-numbered samples of any of 
these data sweeps gave good predictions of the even-num- 
bered samples with two PLS factors, as in Fig. 39. 

The absolute blood glucose level is harder to reproduce 
precisely with a live subject but, when two data sweeps are 
used, by modelling and predicting only on those points 
within the glucose concentration range of both sweeps, the 
predictions between the two sets can be good, although not 
as repeatable as the yeast predictions or sheep’s blood 
predictions. Fig. 40 shows one of the more satisfactory 
results. 

Models and predictions tend to be very noisy, and show 
a poor repeatability from run to run. Gain and d.c. offsets 
are common. However, the possibility of obtaining occa- 
sional good predictions suggests a viable method if the 
causes of both systematic and random errors can be re- 
moved. It is felt that much of this problem can be laid at 
the door of the changing electrode surface and polarization 
state, and the non-identical nature of matching between 
electrode and skin, from run to run and even from data 
point to data point. If this problem can be solved, predic- 
tions should improve markedly. This conclusion is strongly 
reinforced by the consistently good predictions of data 
points within a single run by models formed on other 
(independent) d a a points within that run (odds vs. evens), t 
since PLS has the same electrode fluctuation data for both 
model and prediction, and seems to be able to cope well 
with separating this from the glucose concentration data. 
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6. Conclusions 

Individual non-linear dielectric signatures and activity 
markers correlating with the known biochemistry of the 
organism have been discovered in yeast cells, plant cells, 
bacteria and erythrocytes, suggesting a wide range of 
applicability of the technique both for the identification of 
an organism and the determination of its metabolic state. 

The ability to detect the action/inaction of a mem- 
brane-bound enzyme allows the use of whole-cell biosen- 
sors for quick and easy detection or assay of substances 
affecting the operation of these enzymes. For instance, 
toxic chemicals in drinking water could be detected by 
their inhibitory effect on the metabolism of the cells in the 
sensor. 

The method lends itself to the analysis of any whole-cell 
system containing substrates, products or inhibitors of 
metabolism, and assays can be carried out non-invasively 
on the specimen in situ. The performance of fermentations 
and the measurement of glucose levels in cell substrates by 
its effect on cell metabolism are examples which have 
been illustrated. A novelty of the approach is that the 
method interrogates the biology directly to give an account 
of what it is seeing metabolically. 

The hardware required to achieve this is simple, cheap 
and robust, most of the complexity being in the controlling 
and analysing software, and the process can be sufficiently 
rapid to allow real-time control applications in, for exam- 
ple, fermentation processes. Improvements in electrode 
performance will continue to assist the further develop- 
ment of non-linear dielectric spectroscopy in bioelectro- 
chemical systems. 
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