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Abstract

The structure of noise in a dataset and, in particular, whether it is homoscedastic or heteroscedastic, can significantly
affect the properties of multivariate calibration models. This is particularly true when the data are subjected to a nonlinear
transformation prior to the formation of the model. The problems of mathematical modelling in the frequency domain in the
presence of heteroscedastic noise are demonstrated using simple, illustrative, synthesised datasets and partial least squares
regression. The heteroscedasticity spreads signal-dependent information throughout the spectrum of the signal, removing the
localisation seen with band-limited signals with homoscedastic noise. Heteroscedasticity significantly reduces the scope for
efficient variable selection to allow modelling on a reduced variable set, with consequences for the production of sparse
models which generalise well according to the parsimony principle. However, significant modelling can take place purely on
the noise components even when the frequency range of the signal has been completely excluded. Optimal denoising schemes
will beneficially take into account the noise structure of a dataset. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Mathematical modelling is applied widely to fre-
quency-domain information derived from time do-
main signals by means of a frequency transform. It is
commonplace that much of modern spectroscopy is
concerned with forming a relationship between a
vector corresponding to a wavelength-dependent pa-
rameter of a sample and the concentration of a deter-
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minant of interest which that sample may contain, a
procedure usually referred to as multivariate calibra-

w xtion 1–7 . However, the signal, its spectra and con-
sequently the model, are inevitably corrupted by
noise. This unwanted noise on the time signals is
usually assumed to be homoscedastic, i.e. to be inde-
pendent of the signal characteristics.

However, many instruments and processes, if not
most, have some component of heteroscedastic noise
Ži.e. the characteristics of the noise depend on the

. w xcharacteristics of the signal for each datum 8 . Al-
ternatively, heteroscedastic noise can arise from ho-
moscedastic noise by a preprocessing stage applied to
the signal; for example this is the case for absorption
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infrared spectra which are converted from transmis-
w xsion spectra using a non-linear transform 9–11 . The

presence of heteroscedastic noise has fundamental
implications for a modelling process performed on a
frequency-transformed representation of the data.

2. Theoretical considerations

w xA frequency transformation such as the FFT 12
delocalises information across the whole frequency
space, i.e. the frequency components of the noise are
spread across high-frequency regions not typically
covered by the frequency content of the signal. For
homoscedastic noise, these noise components are un-
correlated with the measured reference data and so
modelling will not take place on this region. Thus the
modelling will be restricted to the region of fre-
quency space containing the representation of the
signal.

Ž .A signal, h t , containing only homoscedastic
noise can be written as

h t sa n t qs t 1Ž . Ž . Ž . Ž .
where a is a scalar that determines the size of the

Ž . Ž .noise n t and s t is the pure signal. This Fourier
transforms to

H v saN v qS v 2Ž . Ž . Ž . Ž .
such that the signal is independent of the noise and is

Ž .concentrated only in the region defined by S v . This
situation is illustrated in Fig. 1, where the trans-
formed signal is seen to be concentrated into the first
20 or so frequency bins and the rest of the spectrum
is predominantly structureless noise.

In the presence of heteroscedastic noise, this situ-
ation changes fundamentally. The structure of the
noise is now dependent on the structure of the signal

Ž .and since the signal in a well designed experiment
contains information correlated with the reference
data the structure of the noise will also be correlated
with the reference data. This noise will be spread out
across the frequency domain in a manner similar to
that due to homoscedastic noise, but now this
‘noise-only’ region will no longer be uncorrelated
with the reference and significant modelling can take

Ž .place on the correlation between signal and noise
alone.

Ž .Fig. 1. a Gaussian function with added homoscedastic noise such
Žthat the amplitude of the noise after removing its d.c. to produce

.double-sided noise was 10% of the amplitude of the noise free
Ž .Gaussian and b its amplitude spectrum.

In what way is the noise spread out across the fre-
quency domain? In order to see this we recognize that

Ž .the signal containing heteroscedastic noise h t can
be written as follows:

h t sa f s t n t qs t 3Ž . Ž . Ž . Ž . Ž .Ž .
Ž .where f s is the functional dependence of the noise

on this signal. A Fourier transform of the noisy sig-
Ž .nal h t produces:

H v saF s t mN v qS v 4Ž . Ž . Ž . Ž . Ž .
where m is the convolution operator and all the up-
per case letters signify the corresponding Fourier

Žtransform of the functions in the time domain writ-
.ten in lower case letters . The spectrum of the het-

eroscedastic noise can thus be regarded as the convo-
lution of the spectrum of the homoscedastic noise
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Ž .Fig. 2. a Gaussian function with added heteroscedastic noise. The
noise of Fig. 1 was multiplied by the signal Gaussian to produce

Ž .heteroscedastic noise and b its amplitude spectrum.

with that of the signal. Accordingly, all frequencies
in the spectrum will contain information related di-

Ž .rectly to the signal, s t . This situation is illustrated
in Fig. 2.

This spectrum is clearly different in form to that
of Fig. 1b, showing more obvious structure in the
noise region, which now contains information relat-
ing to the signal.

3. Software and methods

The modelling process chosen to illustrate the ef-
fects of heteroscedastic noise was partial least squares
regression because it is well known, widely applica-
ble to many areas of modelling and easily performed
by many commercial and in-house software pack-
ages. The nomenclature used below is in accordance

w xwith multivariate modelling literature 7 .

All simulations and PLS1 models were performed
Žusing Matlab 4.2 The MathWorks, 24 Prime Park
.Way, Natick, MA , Models on synthesised data are

created, with either heteroscedastic or homoscedastic
Ž .noise added. The x-data signal was a set of 31

Gaussian curves with amplitudes varying linearly be-
tween 0 and 30 arbitrary units. Gaussians were cho-
sen in order to illustrate the effect since they are sim-
ple functions with simple, known, standard Fourier
transforms and can represent a single spectral peak.

Ž .The y-data reference was a simple linear vector
of values 0, 1, . . . , 30, reflecting the amplitudes of
the Gaussians in the x-data. For all following mod-
elling purposes this dataset was split into odd and
even samples; where the odd samples were used as
the calibration set and the even samples as the test set
to verify the predictive ability of the PLS model, the
odd number of total samples ensuring that the ex-
treme spectra are in the training set to avoid any need
for the model to extrapolate in predicting the test set.
The precision of the predictions is shown as the root

Ž .mean squared error of prediction RMSEP , ex-
pressed as a percentage of the mean y-value of the
prediction set.

4. Results

The noise-free data were Fourier transformed to
produce their frequency spectra and PLS modelling
was performed on the odd samples of these spectra,
producing a prediction of the even samples.The RM-
SEP for this prediction was zero, showing perfect
representation of the noise-free dataset. Similarly the
prediction on the time domain data is also perfect, as
expected.

Note that all predictions in this development
showed optimum prediction for one PLS factor un-
less otherwise stated.

Homoscedastic noise was added to the dataset with
Ž .Matlab’s single sided random number generator

Ž .such that the amplitude of the flat-spectrum noise,
after removing its d.c. to produce double-sided noise,
was 10% of the amplitude of the median Gaussian in
the noise-free dataset. This amplitude is constant for
all Gaussians in the dataset and independent of the
ordinate of the Gaussian.
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Fig. 3. Correlation of each frequency in the dataset including ho-
moscedastic noise with the known reference y-data.

The RMSEP for the equivalent PLS prediction on
this data is 3.3%. The prediction on the time domain
data gives an RMSEP of 3.63%.

Performing a correlation of each individual fre-
quency variable in the amplitude spectra with the y-
data gives the function shown in Fig. 3. This shows
that the signal region up to frequency bin 15 is highly
correlated with the reference, whereas the noise re-
gion above this is essentially uncorrelated except for
a few variables which correlate by chance. A few
from any set of random variables will always corre-
late to some degree with any chosen reference. The
correlation provides essentially similar information to
the first-factor loadings plot in the PLS model.

Performing a PLS prediction on only the noise
Ž .variables variable 20 upwards shows that there is

negligible modelling ability in this region as shown
by the RMSEP figure of 56.9% and depicted in Fig.
4.

The noise matrix created above was then multi-
plied by the corresponding individual signal Gauss-
ian to produce linear heteroscedastic noise. The am-
plitude of this noise is consequently linear with the
ordinate of the x-data. Linearity was chosen as being
a simple form of heteroscedasticity with which to il-
lustrate the effect. However the effect is general to
any relationship between noise and signal as theoret-
ically predicted above and as will be seen later. This
noise was then added to its respective signal Gauss-
ian to form a dataset with heteroscedastic noise, i.e.
the noise is identical for the homo- and heteroscedas-

Fig. 4. Frequency domain prediction on homoscedastic noise vari-
ables only. The gradient and intercept of the regression line through
this data are y0.1322 and 17.0874. respectively, and the correla-
tion coefficient is y0.0318.

Ž Ž ..tic cases except for the multiplying function f s t
which is, in this case, linear.

PLS predictions of the full dataset give an RM-
SEP of 2.1%. with two factors optimal. This is
slightly better than the homoscedastic prediction but
requires more factors reflecting the now more com-
plicated data structure. The prediction on the time
domain data gives an RMSEP of 3.08% with two
factors optimal. However, the correlation function
equivalent to that of Fig. 3 shows much more corre-
lation at the noise frequencies as indicated in Fig. 5
and as might be expected from this, the PLS predic-
tion on noise alone, using the same variable range as

Fig. 5. Correlation of each frequency in the dataset including het-
eroscedastic noise with the known reference y-data.
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Fig. 6. Frequency domain prediction on heteroscedastic noise vari-
ables only. The gradient and intercept of the regression line through
this data are 1.1047 and y2.0570, respectively, and the correla-
tion coefficient is 0.9624.

for the homoscedastic case, is quite respectable with
an RMSEP of 16.3%, with two factors optimal, as
shown in Fig. 6.

To eliminate the possibility of this prediction oc-
curring on purely a chance correlation, the above
analysis was repeated ten times. The results are
shown in Table 1. Table 1 also shows equivalent re-
sults for several different forms of heteroscedastic re-
lationship with the total noise power adjusted to be
constant for all noise types. It consistently shows

Ž .negligible modelling capability high RMSEP value
on homoscedastic noise, but significantly better mod-

Ž .elling ability low RMSEP value on heteroscedastic
noise with the simplest heteroscedastic relations giv-
ing the best modelling. The fact that the predictions
are carried out on the same noise matrix for both het-
ero- and homoscedastic cases also precludes the pos-

Table 1
%RMSEP values for ten consecutive homo- and heteroscedastic
noise predictions for several different heteroscedastic noise types

Heteroscedastic noise function %RMSEP

Ž .a homoscedastic 67.50"7.48
Ž . Ž .a1) s t linear 18.03"3.14

2Ž . Ž .a 2) s t squared 25.68"6.78
3Ž . Ž .a 3) s t cubed 30.43"3.15
Ž Ž . . Ž .a4)exp s t r10 exponential 29.97"5.30

Ž Ž . . Ž .a5)ln s t )50 logarithmic 42.11"7.24
Ž Ž Ž Ž ... Ž .a 6) 1r 1qexp y s t sigmoid 38.06"3.07

sibility of chance correlations since a chance correla-
tion in the heteroscedastic dataset would also pro-
duce the same chance correlation, and consequently
similarly good prediction, in the homoscedastic
dataset.

The reduced prediction efficiency on noise vari-
ables with the more complicated nonlinear het-
eroscedastic relations is most likely due to the fact
that PLS is not optimal for modelling these nonlin-
earities. Accordingly a neural net model was formed

Žusing NeuralDesk Neural Computer Sciences, Lul-
worth Business Centre, Nutwodd Way, Totton,

.Southampton, Hampshire, UK on the logarithmic
Ždataset in Table 1 the dataset with the highest RM-

.SEP value . This improved the modelling of pure
noise variables to an RMSEP of 25.27%, proving this
hypothesis.

This has very important ramifications for variable
selection procedures that are widely used in order to
select only those variables most relevant to a mod-
elling process and for modelling in general. In the
presence of only homoscedastic noise, the modelling
process is improved in both speed and precision by

Ž .eliminating the uncorrelated noise variables. The
result of progressively removing the high frequency
noise variables on the RMSEP of a multivariate

Ž .model one factor optimal as above on the dataset
including homoscedastic noise is shown in Fig. 7. As
might be expected, the prediction begins to degrade
markedly only when the variables pertaining to the

Ž .signal begin to be removed at about bin number 10 .
However, in the presence of heteroscedastic noise,
Ž .the now correlated noise variables contribute to the

modelling to some degree and variable selection has

Fig. 7. Result of progressively pruning high frequency variables on
the prediction of the dataset including homoscedastic noise.
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Fig. 8. Result of progressively pruning high frequency variables on
the prediction of the dataset including heteroscedastic noise.

less clearcut benefits. The process may end up as a
trade off between improved modelling speed and de-
graded modelling precision as the now correlated
noise variables are progressively rejected. The corre-
sponding result of progressively removing the high
frequency noise variables on the RMSEP of a multi-

Ž .variate model two factors optimal as above on the
dataset including linear heteroscedastic noise is
shown in Fig. 8. Here the prediction begins to de-
grade when many noise variables are still present.

5. Conclusion

It can be seen that when a frequency transform is
applied to heteroscedastic noise, the resulting noise in
the frequency domain can be strongly correlated with
the signal. Since the signal is correlated with the ref-
erence in any well designed experiment the noise will
also be correlated with the reference. This contrasts
with the uncorrelated noise produced by ho-
moscedastic processes. Any modelling process used
on the frequency domain may consequently form a
significant part of its model on the noise Õariables.
Modelling will occur across the entire frequency
space. This is again in complete contrast to the ho-
moscedastic case in which modeling on these noise
variables is poor.

It is also worth mentioning that the datasets in-
cluding heteroscedastic noise require more PLS fac-
tors for optimal modelling than does that including
homoscedastic noise, since the noise and signal are no
longer independent, but interact in a manner similar

to that noticed previously in evolving principal com-
w xponents analysis 9 .

As can be seen from the results in Figs. 7 and 8,
w xthe task of satisfying the parsimony principle 13 ,

which seeks to select only the most relevant vari-
ables from which to form a model in order to in-
crease the efficiency and precision of the modelling
process, is complicated by the presence of het-
eroscedastic noise.

There is much current interest in the removal of
noise from noisy signals and spectra, such techniques

w xbeing commonly referred to as ‘denoising’ 14–18 ;
it is evident from the present analysis that the opti-
mal exploitation of such methods will depend greatly
upon whether the noise structure itself is homo- or
heteroscedastic and upon the form of that structure.

In spectra depending on several components, it
will be problematic to identify regions dependent on
only one component since information on all compo-
nents is convolved across all frequencies. The prob-
lem of component-separation is complicated by the
presence of heteroscedastic noise.

Finally, there is also the intriguing possibility that
signals could be modelled on their ‘noise’ compo-
nents alone even if the detector used is not capable
of receiving the signal frequencies themselves. The
downside of this is that signals deliberately rejected
by detector filters could still bleed through to the
modelling process via their noise.
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