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Abstract

By modelling the non-linear effects of membranous enzymes on an applied oscillating electromagnetic field using supervised
Ž .multivariate analysis methods, Non-Linear Dielectric Spectroscopy NLDS has previously been shown to produce quantitative

Ž .information that is indicative of the metabolic state of various organisms. The use of Genetic Programming GP for the multivariate
analysis of NLDS data recorded from yeast fermentations is discussed, and GPs are compared with previous results using Partial Least

Ž . Ž .Squares PLS and Artificial Neural Nets NN . GP considerably outperforms these methods, both in terms of the precision of the
predictions and their interpretability. q 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

1.1. Non-linear dielectric spectroscopy

When a suspension of cells is exposed to a static
electric field, or to an alternating electric field whose
frequency is low relative to that of the classical b-dielec-
tric dispersion, it does not penetrate to the interior of the
cell, and is dropped almost entirely across the outer mem-
brane of the cell, which is predominantly capacitive at
these frequencies, and, due to its thinness, causes a sub-
stantial amplification of the field across the membrane
Ž w x.e.g., Refs. 1–3 . In consequence, anything internal to the
cell is essentially electrically invisible to a low frequency
electric field, but anything dielectrically active in the mem-
brane may be expected to display properties associated
with fields far stronger than that applied externally.

The dielectric response of biological tissue has long
been assumed linear when the macroscopic exciting field
is low, say -0.1 V cmy1 as used typically; however,
substantial non-linear phenomena in the form of harmonics

) Corresponding author. Tel.: q44-1970-621830; fax: q44-1970-
622354; e-mail: azw@aber.ac.uk; Internet address: http:rr
gepasi.dbs.aber.ac.ukrhome.htm

1 E-mail: rcg@aber.ac.uk.
2 E-mail: dbk@aber.ac.uk.

of the fundamental are in fact produced for reasons dis-
w xcussed in Refs. 4,5 , leading to the use of non-linear

spectroscopy on the dielectric properties of the membra-
nous enzymes actually to indicate andror influence the

w xmetabolic state of cell suspensions 5–11 .
Inhibitor and other studies indicated that, in yeast, the

non-linear dielectric signal is due mainly to the Hq–
w xATPase located in the cells’ plasma membrane 5,9 and

hence NLDS may be used to quantify the use of glucose
w xby yeast cells 11 .

1.2. Genetic programming

w xGenetic programming 12,13 is an evolutionary tech-
nique which uses the concepts of Darwinian selection to
generate and optimise a desired computational function or
mathematical expression. It has been comprehensively
studied theoretically over the past few years, but applica-
tions to real laboratory data as a practical modelling tool

w xare still rather rare 14–20 .
The thrust of this paper is to compare the results of

w xmodelling the data in Ref. 11 using Genetic Programming
Ž w x.using a program written in-house by RJG 18 with those
previously presented which were analysed using Partial
Least Squares and Artificial Neural Nets. To summarise,
the modelling of these data was found to require the
non-linear modelling abilities of NN, the linear nature of
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PLS being unable to accurately approximate the data. GP
can also model non-linear data, but an additional advan-
tage over NN is that the latter is a ‘black-box’ method in
that it tells the user very little about the underlying pro-
cesses involved in the effect under study, whereas GP
generates explicit equations which may be interpretable in
respect of the causation of the studied effect. While these
equations are still complex in NLDS modelling and their
simplification for interpretation is left for future work, this
paper concentrates on the modelling precision of GP in
comparison to NN when applied to difficult data such as
NLDS spectrograms. GP can also model variations that
require the interaction of several measured variables, rather
than requiring that these variables be orthogonal.

An initial population of individuals, each encoding a
potential solution to the optimisation problem, is generated
randomly and their ability to reproduce the desired output
is assessed. New individuals are generated either by muta-

Žtion the introduction of one or more random changes to a
. Žsingle parent individual or by crossover randomly re-

arranging functional components between two or more
.parent individuals . The fitness of the new individuals is

then assessed, and the fitter individuals from the total
population are more likely to become the parents of the
next generation. This process is repeated until either the
desired result is achieved or the rate of improvement in the

w xpopulation becomes zero. It has been shown 12 that if the
parent individuals are chosen according to their fitness
values, the genetic method can approach the theoretical
optimum efficiency for a search algorithm.

2. Data recording

w xThe data sets used in Ref. 11 were used in this study
to provide a complete comparison with that previous anal-
ysis. They comprise two data sets, collected during simple
batch fermentations, with parallel measurements of glucose

Žlevels with NLDS vs. a reference method Reflolux hand-
.held blood glucose meter . Fermentation 1 contains 47

samples of 150 harmonic variables, and Fermentation 2
contains 49 similar samples collected in a similar fermen-
tation on a separate day.

Ž .Each NLDS spectrum-sweep each sample scanned
frequencies of 5 Hz to 50 Hz in 5-Hz intervals, at voltages
of 1 V, 1.25 V and 1.5 V. At each voltagerfrequency
combination, a power spectrum was produced and the
magnitude in dB of harmonics 1 to 5 of this spectrum
recorded to disc. The suspension in the electrode chamber
was then replaced with a conductivity-matched supernatant
and the sweep repeated in order to measure the spectrum
of electrode polarisation in the absence of cells. The
difference spectra due to the biology with the electrode
polarisation deconvolved can then be calculated. This leads

Ž .to each sample object being composed of 150 x-variables
Žand 1 reference y-variable in the terminology of Ref.

w x.21 .

3. Data analysis

3.1. Method

In order to implement a genetic optimisation of a
predictive model, it is necessary to formulate the model in
a notation that is amenable to mutation and crossover.
Attempting a genetic optimisation using a model formu-
lated either in standard mathematical notation or computer
program code will result, in all likelihood, in the genera-
tion of non-functional individuals. To overcome this, the
genetic program method uses the concept of a function

w xtree, comprising nodes and terminals 12 .
A terminal is a logical unit containing an operator

Ž .function i.e., executable program code which returns a
single number: either a numeric constant or the value of an
input variable. A node is a logical unit comprising an
operator function and one or more arguments, each of
which are themselves either a node or a terminal. The
return value of a node is calculated by calling its operator
function, which then calls the operator functions of its
arguments in order to obtain its own input values.

Operator functions may perform either standard mathe-
matical operations such as ‘ AqB’, or more complex
program functions such as ‘if AGB then return 1 else
return 0’, where A and B are themselves function trees.
The advantage of encoding the predictive model as a
function tree is that mutations can readily be performed by
changing a node’s arguments or operator function, and
crossover can be achieved by replacing one or more nodes
from one individual with those from another without intro-
ducing illegitimate syntax changes.

The GP implementation used in this study initially used
the arithmetic operator functions add, subtract, multiply,
protected diÕide and a conditional function. It also used
sine and cosine functions to ease the modelling of non-lin-
ear relations. The protected divide operator merely pre-
vents numerical overflow by division with a tiny number
by hard-limiting the output.

To improve the search efficiency, the GP population
Ž . w xwas organised into 5 demes subpopulations 22 which

evolved independently. Every 10 generations, the fittest
10% from each deme were pooled, and the best individuals
replaced the worst 10% in each subpopulation.

The GP generated initial individuals with random func-
tion trees and assessed their fitness using a scoring func-

Žtion that compared e the model’s estimate of the outputi
. Ž .for example i with o the experimentally observed valuei

by calculating the root-mean-square error of prediction
Ž . Ž .rmsep for n training examples the training set :

n
2o yeŽ .Ý i i

is1)rmseps .
n
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The model thus produced can then be applied to unseen
data and its performance assessed by the rmsep on the

Ž .unseen data set the test set .

3.2. The state of play

w xTo recap, the NN predictions from Ref. 11 using an
Ž .NN model formed on Fermentation 1 the training set

gave an rmsep of 64% of the mean value of the measured
Ž .glucose curve on Fermentation 2 the test set with raw

Ž .data using no pre-processing before applying the NN as
shown in Fig. 1.

As in all prediction figures in this paper, the measured
data are shown as a solid line and the predictions are
shown by individual points. The upper plot gives the
relation of these points to the ideal 1:1 line of perfect

Fig. 1. Neural Network prediction of Fermentation 2 from a model
formed on Fermentation 1 using the raw data with no pre-processing
other than normalisation and headroom scaling. The optimum training
occurred at 36 epochs at a training error of 0.02. The rmsep was 64%.

Fig. 2. Neural Network prediction of Fermentation 2 by Fermentation 1:
the leading zeros were non-median-averaged and the rest of the data were
median-averaged to remove outliers. The optimum training occurred at 30
epochs at a training error of 0.02. The rmsep was 19%.

prediction; and the lower plot shows the actual function
being modelled along with the relation of the predicted
points to this function. The two representations are neces-
sary since biochemically, the yeast’s resting state before
the addition of glucose will not necessarily be identical to
the resting state to which it returns after the glucose is
used up, since storage polymers such as glycogen and
trehalose will have been formed as a result of glucose

w xmetabolism 23–25 . On this basis, it may be expected that
the leading zeros will be predicted less well if the model
forms predominantly on the much larger section of finite-
and post-glucose data. The multivariate method used has,
in effect, to model two separate systems. However, the
prediction to some degree of the leading zeros is a vital
check that the model is not merely forming on drifts and
trends in the data, since data reflecting glucose utilisation
are monotonic. If modelling were to occur merely on the
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Fig. 3. Schematic of the operation of the deme 5Inject2Way. Five initial
populations are randomised, then after every 10 generations, the best 5%
of individuals are swapped radially and bi-directionally between the four
satellite populations and the hub.

basis of a trend, then the leading zeros would be predicted
to the same absolute levels as the initial glucose concentra-
tion, since the model would see them as identical to the
high glucose readings. If merely modelling a trend in the
data, the x-variables would be identical for samples taken
both before and immediately after addition of glucose.
Thus, the prediction of the leading zeros acts as a marker
that the model is actually forming on a glucose-related
response, and not merely on unconnected coincidental

w xexperimental drift 11 .
Median averaging in each variable with respect to sam-

ple number was used on this data as a robust weighting
method to remove the many large glitches in the data sets
w x11 . It relies on the fact that glucose-related phenomena
change slowly during a fermentation, and any sudden
changes are spuria. Consequently, using median-averaged

Žleading zeros smears the discontinuity at sample 6 the
.addition of glucose and hampers its modelling. Exploiting

w xthis argument, it was found in Ref. 11 that substituting
the non-median-averaged leading zeros into the median-
averaged data gives the advantage of both well-predicted
Ž .if noisier leading zeros and a closely fitted glucose curve.
Increasing the number of leading zeros, by direct copying,
till there are roughly as many as non-zero readings, so the
net sees the zeros as often as the non-zeros during each
training epoch, improves the predictions substantially to
the point that the prediction of Fig. 2 is obtained with
rmsep of 19%.

All the points are well-modelled except for the few after
the addition of glucose, when the yeast could not be
expected to respond instantly anyway. It is well-known
that there is a significant phase of activation of the Hq–
ATPase following the addition of glucose to a resting cell

w xsuspension 26,27 .

These predictions on raw and median-averaged data
form the baseline that GP has to outperform in order to be
of value and to justify the large computational load neces-
sary to form GP models.

4. Results of GP modelling

The data in Fermentation 1 are sectioned into odd and
even samples: the odd 24 samples forming the training set
and the even 23 samples, the validation set. The GP model
formed on these was used to predict the 49 unseen samples
of Fermentation 2 comprising the test set. Note that the
validation and training sets are taken from one fermenta-
tion and the test set from another, entirely separate fermen-
tation. In a situation such as NLDS, where instrument
response can vary considerably, this means that the train-
ing and validation sets may resemble each other much
more closely than either resembles the training set. Hence,
the modelling process may be expected to overtrain. This

Fig. 4. Non-linear GP prediction of Fermentation 2 using a model formed
on Fermentation 1. Data use no pre-processing. The rmsep was 26% at
generation 198.
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Fig. 5. Linear GP prediction of Fermentation 2 using a model formed on
Fermentation 1. Data use no pre-processing. The rmsep was 28% at
generation 199.

means that the GP predictions shown in this paper will be
suboptimal compared to the general case with three com-
pletely independent data sets recorded from a constant
instrument. Hence, the performance of GP shown here
should be regarded as a lower-bound on what may be
expected from a GP in the general case.

Initially, raw data were used to compare with Fig. 1,
and to see if the GP was capable of forming its own robust
weighting to clean up the data with no pre-processing.
Non-linear and conditional functions were included in the
node set. The nodal functions thus used were )rqy sin
cos tan exp log sqrt if )s . The deme 5Inject2Way
Ž .invented in-house by RJG was chosen to ensure a large
and rapid spread of best-candidate solutions through the

w xpopulation to cover the very contorted error surface 11
rapidly. The operation of this deme is represented in Fig.
3.

Five populations of 10,000 individuals each were run
for 200 generations, at which point training was terminated
for reasons of time and computational load. The best

individual turned up at generation 198, suggesting that the
training process could plausibly be beneficially continued
given the necessary computing power. This individual
gave an rmsep of 26%, shown in Fig. 4, which compares
favourably with the best neural network prediction of Fig.
1, even though the former used no pre-processing on the
data.

Interestingly, it was found that including non-linear and
conditional functions was not as important as initially
expected. An identical training run using only linear nodes
Ž . Ž)rqy with no conditionals referred to as ‘linear’

.GP or LGP produced a similar prediction with an rmsep
of 28% at generation 199 as shown in Fig. 5.

This again showed that in the time allotted, training had
not converged completely and could be improved upon by
a longer run, but more importantly, it also showed that the
GP had no problem formulating its own non-linear sub-
trees from linear nodes. It also had surprisingly little
problem with the discontinuity at object 6, actually approx-
imating it better than the ‘non-linear’ GP in Fig. 4 which
includes the conditional nodes which might be expected
important to model discontinuities. It is hypothesised that

Žthe GP uses the protected-divide limited to protect against
.division-by-zero errors to construct an ersatz discontinu-

ity. The advantage of using only linear nodes is that the
equation tree produced by the GP can be deconvolved by
program. Deconvolving an equation tree involving stacked
non-linear functions and conditionals into something un-
derstandable can be intractable even for modern symbolic
algebra programs. For example, the rule generating the
prediction of Fig. 4 is given in Table 1.

GP was then applied to the median-averaged versions of
the fermentor data sets. Again, LGP was used as exactly as
above, the results being shown in Fig. 6.

The rmsep of the prediction was brought down to 17%
after 196 generations, which is better than any prediction

Table 1
Typical GP rule for a tree of maximum depth 10 including conditional
and non-linear function nodes

Ž Ž .if )s y M143y8.69218
Ž Ž ..Ž Ž Ž Ž ..sin tan M47 y q y M143 rM1 M131
Ž Ž Ž ..if )s exp if )s M66 M127y2.30924 7.14908 M150
Ž Ž Ž Ž Ž . .Ž Ž Ž ..y q q y q M128 M97 y8.6921 if )s sin rM1 M131
Ž Ž ..Ž Ž .sin exp 4.01055 ) exp 4.01055
Ž .. ..log M115 y9.66665
Ž Žy if )s M92y3.15320
Ž Ž ..sqrt ) M55 M8
Ž .. .. . ..q M128 M130 y8.69218 M1 M134
Ž Ž . ..if )s qy3.13356 M98 y2.40252 M145 M114
Ž Ž .Žq y M134 M144 q M44
Ž Ž Ž Ž Ž Ž .q y q q q ) M115 M8
Ž Ž . ..y tan M137 M144
Ž Ž ...Ž .. .y M143 tan M 71 q M33 M8 M64
Ž Ž .q )y4.02348 M8
Ž Ž . ......y rM145 M97 M144

Mx is variable number x.
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Fig. 6. Linear GP prediction of Fermentation 2 using a model formed on
Fermentation 1. Data use no pre-processing. The rmsep was 17% at
generation 196.

achieved in previous analysis by neural net modelling. The
best individual occurring at generation 196 again suggests
that termination of the training at generation 200 is prema-
ture and would not have allowed the global minimum to be
found precisely.

Again it is of note that the discontinuity is modelled. It
is also very interesting to observe that, having formed a
subtree to model a discontinuity, the GP has then used this
to form a piecewise-linear approximation to the rest of the
glucose curve. This provides a convincing example in the
continuing argument about how effective crossover is at
preserving useful subtrees as opposed to disrupting them

w xduring later training 28 .
The error surface for NLDS data is very noisy, with

many local minima and a tightly defined global minimum
w x11 . This makes it a very testing problem for any mod-
elling method to solve. To maximise the likelihood of the
global minimum being found, either a small population can

be trained for a long time till one of the individuals
mutates into its vicinity, or a large initial population can be
employed to increase the likelihood of one initial individ-
ual being close enough to the global minimum to train
easily into it in a reasonable number of generations. It has

w xbeen shown 12 that a GP with a population size of n
individuals converges quicker than a simple random beam
search of n individuals, so the computationally favoured
search strategy for a complex error surface such as that for
NLDS data sets, which requires the use of a large popula-
tion, is to use this large population to train a GP. This
ensures that rapid convergence is achieved by the GP to
compensate for the large computational load of such a
population size using any search method.

To investigate the utility of a large initial population, a
GP with identical parameters to those above was run on

Žthe median-averaged data with the leading zeroes replaced

Fig. 7. Linear GP prediction of Fermentation 2 using a model formed on
Fermentation 1. We used median average pre-processing on all data
points except the leading zeros. The rmsep was 9.5% at generation 117.
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by their non-median-averaged counterparts in order to
minimise the smearing effect at the discontinuity. The
initial population was increased by a factor of 10, to five
populations of 100,000 individuals. The resulting GP took
1 dayr150 generations on a Pentium II 300, but produced
an rmsep of 9.5% at generation 117, after which the
predictions diverged showing that this GP had reached
optimal training at this point and further training merely
produces poorer generalisation. This prediction is a factor
of 2 better than the best neural net prediction on the same
data, using the rmsep as a metric, and is shown in Fig. 7.
Note especially that the GP is much better at modelling the
leading zeros without compromising the prediction of the
finite glucose levels, and that it does this with no need to
increase the number of leading zero samples artificially as
is necessary for adequate modelling by a NN.

5. Conclusions

NLDS data provide a rigorous test-bed for multivariate
modelling methods, having a small signal variation hidden
in large uncorrelated instrumental fluctuations. The result-
ing error surface is very noisy and the global minimum
appears to be very localised, requiring a very efficient
search strategy to be used by the modelling process. The
relationship between measured variables and the reference
variable is also non-linear, restricting the choice of mod-
elling methods. Neural nets achieve respectable calibra-
tions, but can be significantly superceded in model accu-
racy and precision by GP, at the cost of a heavy computa-
tional load to form the model even compared to that of
NN. Once formed, like NN, the model is very rapid to
apply to unseen data.

Several features of application of GP to real calibration
data appear from the above work.

GP appears to be able to improve upon more conven-
tional non-linear modelling methods such as neural net-
works even when training is terminated prematurely, so the
large computational load of modelling with GP may not be
prohibitive if prematurely terminated training still pro-
duces a model to within the required solution specifica-
tions.

To optimise training for a particular task, a GP should
ideally include nodes of the form of known features of the
solution. For instance, a non-linear problem should use
non-linear nodes, a problem known to consist of a sum of
Lorentzian functions should include a Lorentzian node, or
a GP using wavelet nodes could simulate a wavelet trans-

w xform 29 . In practice, the GP displays a surprising ability
to synthesise subtrees to simulate any required function
nodes even if these are not explicitly supplied in the
original nodal set. Even such potentially difficult problems
as discontinuities can be modelled very effectively from
simple nodal primitives.

For the noisy error surfaces associated with many diffi-
cult laboratory problems which do not readily yield to
simple and less intensive modelling methods, the GP should
be configured with a large initial population and run for a
restricted number of generations. This finds the global
minimum quicker than the alternative option of a small
population run for many generations. A small population
will drop into the global minimum quickly by luck or
eventually by mutation, so it is easy to terminate in a local
minimum prematurely, or simply to incorrectly dismiss the
problem as intractable.

Given the computational load of GP, it would not be the
method of choice for problems which yield to simpler
methods. However, the above data show that it can be very
beneficial on problems that have defeated other methods.
The conversion of the completely useless raw data NN
model of Fig. 1 to the quite useable model of Fig. 4 is
particularly demonstrative of this, while the relative ease
with which one can implement GP on parallel computer
architectures makes its further exploitation especially at-
tractive.

Acknowledgements

AMW and DBK thank the Wellcome Trust, under the
terms of the Sir Henry Wellcome SHoWCASe Award
scheme, and RJG and DBK thank the UK EPSRC, for
financial suppport.

References

w x1 U. Zimmermann, Electric field-mediated cell fusion and related
Ž .electrical phenomena, Biochim. Biophys. Acta 694 1982 227–277.

w x2 T.Y. Tsong, R.D. Astumian, Bioelectrochemistry and Bioenergetics
Ž .15 1986 457.

w x3 R. Pethig, D.B. Kell, The passive electrical properties of biological
systems: their significance in physiology, biophysics and biotech-

Ž .nology, Phys. Med. Biol. 32 1987 933–970.
w x4 D.B. Kell, R.D. Astumian, H.V. Westerhoff, Mechanisms for the

interactions between nonstationary electric fields and biological
systems: I. Linear dielectric theory and its limitations, Ferroelectrics

Ž .86 1988 59–78.
w x5 A.M. Woodward, D.B. Kell, On the nonlinear properties of biologi-

cal systems— Saccharomyces cereÕisae, Bioelectrochemistry and
Ž .Bioenergetics 24 1990 83–100.

w x Ž .6 D.B. Kell, A.M. Woodward, Anal. Proc. 28 1991 378.
w x7 A. McShea, A.M. Woodward, D.B. Kell, Nonlinear dielectric prop-

erties of Rhodobacter capsulatus, Bioelectrochemistry and Bioener-
Ž . Ž .getics 29 2 1992 205–214.

w x8 A.M. Woodward, D.B. Kell, On the relationship between the nonlin-
ear dielectric properties and respiratory activity of the obligately
aerobic bacterium Micrococcus luteus, Bioelectrochemistry and

Ž . Ž .Bioenergetics 26 3 1991 423–439.
w x9 A.M. Woodward, D.B. Kell, Confirmation by using mutant strains

that the membrane-bound Hq –atpase is the major source of nonlin-
ear dielectricity in Saccharomyces cereÕisiae, FEMS Microbiology

Ž . Ž .Letters 84 1 1991 91–95.
w x10 A.M. Woodward, D.B. Kell, Dual-frequency excitation—a novel



( )A.M. Woodward et al.rBioelectrochemistry and Bioenergetics 48 1999 389–396396

method for probing the nonlinear dielectric properties of biological
systems, and its application to suspensions of Saccharomyces cere-

Ž . Ž .Õisiae, Bioelectrochemistry and Bioenergetics 25 3 1991 395–
413.

w x11 A.M. Woodward et al., Rapid and non-invasive quantification of
metabolic substrates in biological cell suspensions using non-linear
dielectric spectroscopy with multivariate calibration and artificial

Ž .neural networks, Bioelectrochemistry and Bioenergetics 40 1996
99–132.

w x12 J.R. Koza, Genetic Programming: on the Programming of Comput-
ers by Means of Natural Selection, MIT press, Cambridge, MA,
1992.

w x13 J.R. Koza, Genetic Programming II: Automatic Discovery of
Reusable Programs, MIT press, Cambridge, MA, 1994.

w x14 J. Taylor et al., The deconvolution of pyrolysis mass spectra using
genetic programming: application to the identification of some Eu-

Ž .bacterium species, FEMS Microbiology Letters 160 1998 237–246.
w x15 J. Taylor et al., Genetic programming in the interpretation of fourier

transform infrared spectra: quantification of metabolites of pharma-
ceutical importance, in: Genetic Programming, Morgan Kaufmann,
Madison, WI, USA, 1998.

w x16 R. Shaffer, Optimization methods for the multivariate analysis of
infrared spectral and interferogram data, Ohio University, 1996.

w x17 H. Kubinyi, Variable selection in QSAR studies: II. A highly
efficient combination of systematic search and evolution, Quantita-

Ž .tive Structure Activity Relationships 13 1994 393–401.
w x18 R.J. Gilbert et al., Genetic programming: a novel method for the

quantitative analysis of pyrolysis mass spectral data, Analytical
Ž . Ž .Chemistry 69 21 1997 4381–4389.

w x19 R.J. Gilbert et al., Genetic programming-based variable selection for

high-dimensional data, GP-98: Proceedings of the Third Annual
Conference, 1998.

w x20 H.F. Gray et al., Genetic programming for classification and feature
selection: analysis of H-1 nuclear magnetic resonance spectra from

Ž . Ž .human brain tumour biopsies, NMR in Biomedicine 11 4–5 1998
217–224.

w x21 H. Martens, T. Næs, Multivariate Calibration, Wiley, Chichester,
1989.

w x Ž .22 R. Paton Ed. , Computing with Biological Metaphors, Chapman
and Hall, London, 1994.

w x23 J.M. Thevelein, S. Hohmanm, Trehalose synthase: guard to the gate
Ž .of glycolysis in yeast?, TIBS 20 1995 3–10.

w x24 J.C. Slaughter, T. Nomura, Intracellular glycogen and trehalose
contents as predictors of yeast viability, Enzyme Microb. Technol.

Ž .14 1992 64–67.
w x25 S.H. Lillie, J.R. Pringle, Reserve carbohydrate metabolism in sac-

charomyces cereÕisiae: response to nutrient limitation, J. Bacteriol.
Ž .143 1980 1384–1394.

w x26 R. Serrano, In vivo activation of the yeast plasma membrane AT-
Ž .Pase, FEBS Lett. 156 1983 11–14.

w x27 W.L. Bryan, R.W. Silman, Viability and initial kinetic parameters of
dry yeast inocula in batch fermentations, Enzyme Microb. Technol.

Ž .13 1991 2–8.
w x28 W. Banzhaf et al., Genetic programming—an introduction, On the

Automatic Evolution of Computer Programs and Its Applications,
Morgan Kaufmann, San Francisco, CA, 1998.

w x29 B.K. Alsberg, A.M. Woodward, D.B. Kell, An introduction to
wavelet transforms for chemometricians: a time-frequency approach,

Ž .Chemometrics and Intelligent Laboratory Systems 37 1997 215–
239.


