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Abstract 

We introduce diffuse-reflectance absorbance spectroscopy in the mid-infrared as a novel method of chemical imaging for 
the rapid screening of biological samples for metabolite overproduction, using mixtures of ampicillin with Eschetichiu coli 
and Stu$zylococc~~ nureus as model systems. Deconvolution of the hyperspectral information provided by the raw diffuse 
reflectance-absorbance mid-infrared spectra was achieved using a combination of principal components analysis (PCA), 
artificial neural networks (ANNs) and partial least squares regression (PLS). Whereas a univariate approach necessitates 
appropriate data selection to remove any interferences, the chemometricslhyperspectral approach could be employed to permit 
filtering of undesired components to give accurate quantification by PLS and ANNs without any preprocessing. The use of 
PCs as inputs to the ANNs decreased the training time from some 12 h to ca. 5 min. Equivalent concentrations of ampicillin 
between 0.05 and 20 mh4 in an E. coli or S. aureus background were quantified with >95% accuracy using this approach. 

Keywords: Infrared spectroscopy; Multivariate calibration; Metabolic microscope; Strain improvement programmes; High throughput 

screening; DRASTIC; PLS; Neural networks 

1. Introduction 

As well as the increasing use of combinatorial 
chemical libraries [l-6], there is a large and continu- 

ing interest in the screening of microbial cultures for 

the production of biologically active metabolites (e.g. 
[7-20]), which can provide structural templates for 
synthetic programmes using rational methods of drug 
design. Methods based on synthetic oligonucleotides 

[21,22], phage display [23-251 and DNA shuffling 
[26,27] can provide further levels of diversity from 
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biological starting points. Modem screens for such 
metabolites are targeted on the modulation of parti- 
cular biochemical steps in the disease process and can 
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show a high degree of both specificity and sensitivity. 
This sensitivity means that metabolites showing activ- 
ity during screening need be produced only in very 
small amounts by the organism. In such cases, increas- 
ing the titre of the metabolite is vital to provide enough 
material for further biological evaluation and chemical 
characterization and, eventually, for commercial pro- 
duction. 

The process of titre improvement will normally 
involve the search for overproducing mutants derived 
from the original producing organism (see e.g. [12]), 
but titre-improving mutants are rare, typically at fre- 
quencies of 10m4 or less [28], and therefore many 
thousands of mutants need to be screened in search of 
an overproducing strain [29]. Previous methods of 
high-throughput screening (I-ITS) for mutants include 
the assessment of antibiotic activity of the metabolites 
(e.g. [30]) or use of rapid chromatographic methods 
such as thin layer chromatography (e.g. [31]) or 
fluorescence and luminescence methods such as the 
scintillation proximity assay [32-361. Such methods 
historically can typically accommodate 10 OOO- 
50000 isolates per month. 

The ideal method for culture screening on plates 
(and indeed for the analysis of fermentor broths gen- 
erally) would have minimum sample preparation, 
would analyse samples directly (i.e., be reagentless), 
would give information about recognizable chemical 
characters, and would be rapid, automated, non-inva- 
sive, quantitative and (at least relatively) inexpensive. 
These requirements indicate a spectroscopic solution, 
and we have recently demonstrated that the use of 
pyrolysis mass spectrometry (PyMS) in combination 
with a variety of chemometric methods allows rapid 
screening of cultures for metabolite overproduction 
[37-391, some 2 min per sample once these have been 
introduced to the carousel. However, the important 
conclusion to be drawn from these studies is that 
whole-cell or whole-broth spectral methods which 
measure all molecules simultaneously do contain 
enough spectral information from target molecules 
of interest to allow their quantification when the entire 
spectra are used as the inputs to modem chemometric 
methods based on supervised learning. The discrimi- 
natory power of these chemometric methods is such 
that in one study [37] we were able to assay quantita- 
tively for the concentrations of ampicillin in mixtures 
with the Gram-positive Stuphylucoccus aureus when 

the training set consisted of mixtures of ampicillin 
and an entirely different biological background, viz. 
the Gram-negative Escherichiu coli. This shows, 
importantly, that chemometric methods of this type, 
which are designed to effect the quantification of 
biomolecules in complex biological backgrounds, 
may indeed be made highly resistant to changes in 
the background concentrations of metabolites and 
macromolecules. 

As recently reviewed by Magee [40], the chemi- 
cally based discrimination of intact microbial cells, 
referred to as whole-organism fingerprinting, involves 
the concurrent measurement of large number of spec- 
tral characters that together reflect the overall cell 
composition, the commonest spectral approach for 
this indeed being PyMS. There are, however, four 
general problems with using PyMS data as the input to 
supervised learning systems of this type: (i) the 
method is hardly non-destructive (although this is 
unimportant for broths, and for plates this could be 
dealt with by replica plating), (ii) it does not lend 
itself to in situ measurements, (iii) it still suffers 
somewhat from spectral drift (although recent 
advances suggest that this problem may be overcome 
[41]), and (iv) data acquisition still requires nearly 
2 min per sample. Recently, a number of studies 
[42-47] have illustrated how even visible spectroscopy 
of petri plates could be used to identify colonies with 
high levels of electron transport chain components of 
interest, though this would not, of course, work 
directly for most target molecules. Most importantly, 
however, just as has been widely done with PyMS, 
Naumann and co-workers (e.g. [48-551) have shown 
that FT-IR absorbance spectroscopy (in the mid-IR 
range, defined by IUPAC as 4000-200 cm-‘=2.5- 
50 pm) provides a powerful tool with sufficient resol- 
ving power to distinguish intact microbial cells at the 
strain level. 

In view of the above, we therefore considered that 
the combination of FT-IR and supervised learning 
methods would permit us to extract the chemical 
concentration of the substance of interest, in a similar 
manner to that which we developed with PyMS. 
Sample preparation for absorbance measurements 
on biological samples of this type is rather tedious, 
however. Instead, and because FT-IR may be carried 
out using rejfectunce methods, we considered that one 
should seek to obtain spectra as a function of spatial 
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location, and by combining the spectroscopy with 

We therefore here describe the utilisation of our 

supervised learning methods obtain images in which 
metabolite concentrations are encoded as colours or 

development of diffuse reflectance/absorbance FT-IR 

contours, i.e. to construct a merubolic microscope. In 
this regard, it is particularly noteworthy that White’s 

spectroscopy in the mid infra-red as a quantitative 

group [56,57] have shown the ability of diffuse reflec- 
tance FI-IR (DRIFT) spectroscopy without any che- 

tool for the rapid analysis of all samples of bio- 

mometric processing, to effect the discrimination of 
microbes on surfaces. In a related vein, Yan and co- 

technological interest, specifically by exploiting 

workers [58] recently showed that IT-IR could be 
used to analyse solid-state pins as used in combina- 
torial chemistry, whilst Gremlich and Berets [59] used 

the ability of modem, supervised learning methods 

FT-IR internal reflection spectroscopy for a similar 
purpose. 

to take multivariate spectral inputs and map them 
directly to the concentration of one or more target 
determinands (see above and [60]), using as before 
[37] mixtures of ampicillin with E. coli and S. aweus 
as model systems. 

2. Experimental 

2.1. Preparation of mixtures of ampicillin with 
E. coli and S. aureus 

The bacterial strains used were E. coli HBlOl [61] 
and S. aureus NTCC 65 11. Both strains are ampicillin- 
sensitive, indicating that any spectral features 
observed are not due, for instance, to ,&lactamase 
activity. The mixtures were prepared as previously 
[37]. The strains were grown in 500 ml liquid medium 
(glucose (BDH), 10.0 g; peptone (LabM), 5.0 g; beef 
extract (LabM), 3.0 g; per litre water) for 16 h at 37°C 
in a shaker. After growth the cultures were harvested 
by centrifugation, washed and resuspended in physio- 
logical saline (0.9% NaCl). Ampicillin (desiccated 
u[-]-cY-aminobenzylpenicillin sodium salt, 598% 
(titration), Sigma) was prepared to give final concen- 
tration ranges of 0.05-2 mM in 0.05 mM steps and 
0.5-20 mM in 0.5 mM steps in suspensions of 
18 mg ml-’ (dry weight) of bacterial cells. 

2.2. Dime reflectance-absorbance FT-IR 

Four replicate 5 pl aliquots of the above samples 
were transferred into wells in a sandblasted aluminium 

The IBM-compatible PC used to control the IFS28 

plate (measuring 10 cm by 10 cm) and dried at 50°C 
for 30 min. The plate was mounted onto a motorised 

was programmed (using OPUS version 2.1 software 

stage and the samples analysed using a diffuse re- 
flectance TLC accessory [62-64] connected to a 

running under IBM OS/2 Warp provided by the man- 

Bruker IFS28 FT-IR spectrometer (Bruker Spectro- 

ufacturers) to collect spectra over the wavenumber 

spin Ltd., Banner Lane, Coventry CV4 9GH, UK) 
equipped with a liquid Nz-cooled MCT (mercury- 
cadmium-telluride) detector. A schematic of the gen- 

range 4000-600 cm-’ 

eral optical arrangement of this accessory is shown in 

. Spectra were acquired at a rate 

Fig. 1. 

of 20 s-l and the spectral resolution was 4 cm-‘. To 
improve the signal-to-noise ratio 256 spectra were co- 
added and averaged. Each sample was represented by 
a spectrum containing 882 points, and spectra were 
displayed in terms of absorbance using the Opus 
software. 

.,,... with bok la eeatre 
to remove specakr 

Fig. 1. Scheme of the Bruker TLC unit for diffuse reflectance- 

absorbance Fourier transform infrared spectroscopy. Infrared light 

passes through the sample, is diffusely reflected from the rough 

metal backing plate, passes through the sample again and is sent to 

the detector. The elliptical mirror contains a small hole to remove 

light reflected specularly. 
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2.3. Pre-processing and exploratory analysis 

Spectral data were exported from the Opus software 
used to control the FT-IR instrument, converted to 
ASCII format and imported into Matlab version 4.2~. 1 
(The MathWorks, Inc., 24 Prime Park Way, Natick, 
MA, USA), which runs under Microsoft Windows NT 
on an IBM-compatible PC. 

2.4. PCA and PLS 

Matlab was used to perform principal components 
analysis (PCA) according to the NIPALS algorithm 
[65], so that exploratory data analysis could be con- 
ducted. PCA is a multivariate statistical technique 
which can be used to identify correlations amongst 
a set of variables (in this case 882 wavenumbers) and 
to transform the original set of variables to a new set of 
uncorrelated variables called principal components 
(PCs). The objective of PCA is to see if the first 
few PCs account for most (>90%) of the variation 
in the original data [66]. If they do reduce the number 
of dimensions required to display the observed rela- 
tionships, then the PCs can more easily be plotted and 
‘clusters’ in the data visualized [67]; moreover this 
technique can be used to detect outliers [68]. PLS 
modelling was performed as previously described 
[69]. PLS is a multivariate technique similar to 
PCA, but with the components extracted using both 
x- and y-data and then regressed onto the (known) 
training results while forming the model. This results 
in a more parsimonious model in situations where the 
variance of interest may not be the largest variance in 
the samples. 

2.5. Artificial neural networks 

All artificial neural network (ANN) analyses were 
carried out with a user-friendly, neural network simu- 
lation program, NeuFrame version 1,l ,O,O (Neural 
Computer Sciences, Lulworth Business Centre, Nut- 
wood Way, Totton, Southampton, Hams), which runs 
under Microsoft Windows NT on an IBM-compatible 
PC. In-depth descriptions of the modus operandi of 
this type of ANN analysis are given elsewhere [37- 
39,41,64,70-80]. 

Before training commenced, the values applied to 
the input and output nodes were normalised between 0 

and 1, and the connection weights set to small random 
values [81]. The network was trained by the standard 
back-propagation method [82,83]. Each training 
epoch represented connection weight updatings and 
a recalculation of the root mean squared @MS) error 
between the true and desired outputs over the entire 
training set. This process was repeated until an accep- 
table level of error was achieved. 

3. Results and discussion 

IT-IR analysis of ampicillin in mixtures with 
bacterial cells provides a model for determining the 
presence of a metabolite of interest in industrial 
fermentations. Many studies on the quantification of 
particular determinands in mixtures using FT-IR have 
been based on the contribution of only one or a few 
spectral features. The FT-IR spectrum of ampicillin 
contains such a characteristic marker band at 
-1767 cm-’ [84] which is lost after cleavage of the 
/3-lactam ring by P-lactamase (Fig. 2). Integration of 
the peak area at 1767 cm-’ from diffuse reflectance 
IT-IR measurements for a range of concentrations 
(0.5-20 mM) of ampicillin mixed with S. aureus was 
used in a simple (quasi-)univariate linear regression 
(i.e., y = mx + c) in order to estimate the ampicillin 
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Fig. 2. Typical IT-IR diffuse reflectance-absorbance spectra of 

(A) 100 pmol ml-’ ampicillin (desiccated o[-]-a-aminobenzylpe- 

nicillin sodium salt, 298% (titration), Sigma); (B) 1000 units ml-’ 

p-lactamase (Type 1 from Bacillus cereus. One unit will hydrolyse 

1 .O pmole of ampicillin per min at pH 7.0 at 25”C, Sigma) and (C) 
‘A’ following the addition of 20 units of P-lactamase in ‘B’ and 

incubation at 25°C for 20 min. 
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titre. The 20 integrals in the training set were fitted 
linearly to the concentrations to generate the expres- 
sion y = 0.16x + 0.827. This expression was then 

used to predict the training and test sets, producing 
RMS errors of 1.27 and 1.21 respectively. Although in 
this particular case a reasonable degree of accuracy 

was obtained by using simple linear regression ana- 
lysis on a single spectral feature, it is likely that for 

most analyses of authentic fermentations this type of 

single-band method could not be successfully applied 
because of the cell background variability. Multivari- 
ate analysis, however, in combination with modem 

chemometric techniques such as PLS and ANNs, 
allows us to predict the ampicillin concentration using 
full-spectrum calibration. This approach was used to 

predict the concentration of ampicillin in mixtures 

with E. coli and S. aureu~ cells from the full spectral 
results using PLS regression [69,85-871, artificial 

neural networks (ANNs) and PCA scores as input 
to ANNS (PC-ANNS). 

Fig. 3 shows the FT-IR spectra for a range of 

concentrations of ampicillin in mixtures with S. aur- 

eus and E. coli. Initially, all 882 data points derived 
from the absorbance spectra were used as inputs for 

training ANNs. Fig. 4 shows the result of using neural 
networks to predict the concentration of ampicillin in 

the range OS-20 mM in mixtures with S. aureus cells 
using this multivariate method. However, because of 
the large number of inputs this approach proved to be 
particularly time consuming (and typically took 12 h 

to compute), and at all events the use of all the 
variables means that some will be irrelevant or colli- 

near and thus detrimental to the quality of the model 

formed [88-911. To obey the so-called Parsimony 

principle [90] and to circumvent the possibility of 
over-fitting, PCA was used to reduce the number of 
input nodes [64]. Fig. 5 shows the effect of using PCs 
on the ability of X-4-l ANNs (where X is the number 
of PCs applied to the input nodes) to quantify the 

levels of ampicillin in an E. co/i background. When 

very few PCs are used (c4 PCs) generalisation is poor 
because insufficient spectral information is accounted 

for; conversely as the number of PCs used is increased 
these incorporate noise and the predictive ability of the 
ANNs decrease. All six mixture data sets were 
reduced using PCA and the PCs used to train ANNs. 
An example of the improvement in the accuracy of 
prediction for quantification of ampicillin in a mixture 
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Fig. 3. IT-IR diffuse reflectance-absorbance spectra of (A) E. 

coli; and (B) S. aureus; with different concentrations of ampicillin. 

with S. aweus (for the 0.5-20 mM ampicillin range) is 

shown in the comparison of the results for a PC-ANN 
trained with 15 PCs vs. one trained on the total spectra 

(882 data point); the RMS errors for the test sets were 

0.503 and 0.874 respectively (Figs. 4 and 6 and 
Table 1) whilst the number of epochs was 900 for 
the reduced data and 50000 for the full spectral 

approach; this equates to a decrease in training time 
of from approximately 12 h to only 5 min, whilst also 
improving the ANNs predictive ability. 

The results from the multivariate analysis using 

PLS, ANNs and PC-ANNs clearly shows that it is 
possible to form a model capable of quantifying 

unknown concentrations of ampicillin between 
0.05 mM and 20 mM from either an E. coli or S. 
aureus cell background. In order to see if the back- 
ground (i.e., the E. coli or S. uureus cells) affected the 
ability to determine the concentration of ampicillin, a 
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Fig. 4. The estimates of trained 882-10-l neural networks vs. the 
true ampicillin concentration (0.5-20 mh4) in S. aureus. The input 
layer was scaled for each input node such that the lowest 
absorbance for each wavenumber was set to 0 and the highest to 
1. The networks were trained using the standard back propagation 
algorithm for approximately 5 x lo4 epochs. Open circles represent 
spectra that were used to train the network and closed squares 
indicate ‘unknown’ spectra which were not in the training set. The 
calculated linear tit (bold line) and expected proportional fit 
(broken line) are shown. The RMSEP for the test set was 0.874. 

combined model based on spectral data from both sets 
of backgrounds was used for predicting unknown 
concentrations from spectral data of ampicillin in 
either an E. coli or S. aureus background alone 
(Table 2). Use of the combined model for predicting 
the ampicillin concentration (in the range OS-20 n&I) 
with PC-ANNs produced a test set RMS value of 0.75 
(Table 2) compared with 0.611 for E. coli and 0.503 
for S. aweus models used with their cognate sets 
(Tables 1 and 3). 

Diffuse reflectance FT-IR can be used to produce 
maps of spectral profiles from surface scans. After 
processing of the data by chemometric methods, an 
image (consisting of a colour or surface contour map) 
of a particular metabolite(s) can be constructed. We 
were able to utilise this approach (using full spectrum 
calibration by PLS) to build up a chemical image map 
showing the concentrations and distribution of ampi- 
cillin applied to the surface of a metal plate in an 
E. coli cell background (Fig. 7). 
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Fig. 5. An example of the effect on 46 RMSEC and % RMSEP of 
training X4-1 ANNs with test set cross-validation, where X is the 
number of PC scores used to train the AhWs. Open circles 
represent spectra that were used to train the network and closed 
squares indicate ‘unknown’ spectra which were not in the training 
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Fig. 6. The estimates of trained 15-4-l neural networks vs. the true 
ampicillin concentration (0.5-20 mM) in S. aureus. The input layer 
was scaled for each input node such that the lowest PC score was 
set to 0 and the highest PC score to 1. The networks were trained 
using the standard back propagation algorithm for 900 epochs. 
Open circles represent spectra that were used to train the network 
and closed squares indicate ‘unknown’ spectra which were not in 
the training set. The calculated linear fit (bold line) and expected 
proportional fit (broken line) are shown. The RMSEP for the test 
set was 0.503. 
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Table 1 

Comparison of partial least squares (PLS), artificial neural network (ANNs) and ANNs with principal component scores as input (PC-ANNs) 

in the deconvolution of diffise reflectance FT-IR spectra from ampicillin mixed in S. aureus 

Method 
Factors 

Epochs 

PCS 

0.05-2 mM Ampicillin 0.5-20 mM Ampicillin 

PLS ANNS PC-ANN.9 PLS ANNS PC-ANNS 

I 8 

50000 1000 50000 900 

15 15 

RMSEP 

Training set 0.061 0.066 0.048 0.294 0.398 0.229 

Test set 0.066 0.074 0.064 0.540 0.874 0.503 

Table 2 

Comparison of partial least squares (PLS), artificial neural network (ANNs) and ANNs with principal components scores as input (PC-ANNs), 

for predicting the concentration of ampicillin in a test set containing ampicillin mixed in either E. coli or in S. aureus using a model trained on 

a combination of diffuse reflectance FI-IR spectra from cognate sets 

0.05-2 mM Ampicillin 0.5-20 mM Ampicillin 

Method 

Factors 

Epochs 

PCS 

PLS 

10 

ANNS 

100000 

PC-ANNS 

6000 

20 

PLS 

9 

ANNS PC-ANNS 

100000 2250 

15 

RMSEP 

Training set 0.114 0.050 0.046 1.484 0.664 0.669 

Test set 0.138 0.068 0.072 1.206 0.350 0.750 

Table 3 

Comparison of partial least squares (PLS), artificial neural network (ANNs) and ANN with principal component scores as input (PC-ANNs) in 

the deconvolution of diffuse reflectance-absorbance FT-IR spectra from ampicillin mixed in E. coli 

0.05-2 mM Ampicillin 0.5-20 mM Ampicillin 

Method 

Factors 

Epochs 

PC’S 

PLS 

I 

ANNS 

50 000 

PC-ANNs 

15000 

15 

PLS 

6 

ANNs PC-ANNS 

50000 3000 

20 

RMSEP 

Training set 0.057 0.038 0.034 0.898 0.482 0.415 

Test set 0.1 0.093 0.075 0.743 0.879 0.611 

4. Conclusions 

Driven in part by the activities of the remote sensing 

community [92], there is a burgeoning interest in the 
rapid acquisition of diffuse reflectance spectral data 
from various spatial locations, detecting hundreds of 
wavelengths simultaneously (most commonly in the 
visible and near infrared), and coupled increasingly to 

advanced data reduction and visualization algorithms, 

an approach often referred to as hyperspectral imaging 

[93-1011. Such remote-sensing analyses occasionally 
use the mid-IR part of the spectrum [102-1051. One of 
the problems with this approach to remote sensing, 
however, is the strong and variable absorbance of 
radiation by the atmosphere itself [101,106,107], a 
problem from which we do not suffer. 
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Fig. 7. A chemical image derived from the IT-IR spectra of samples of E. coli with different concentrations of ampicillin Q.tg ml-‘) on the 
surface of a sandblasted aluminium plate. El-IR spectra were recorded at 1 mm intervals and the e values were based on full spectrum 
c~ibration using PLS. 

Diffuse reflectance FTIR in combination with a 
multivariate calibration chemometric approach to data 
analysis could be used to effect the rapid quantifica- 
tion of a ph~aceutic~ product (ampicillin) in a 
(variable) biological background (E. coli and S. aureus 
cells), a situation representative of metabolite over- 
production in a screening or titre improvement pro- 
gramme [37]. Spectral variation contributed by shift- 
ing baseline due to instrumental interference and 
differences in the biological backg~und between 
samples could largely be eliminated by PC-ANNs, 
thus giving an RMS error of 0.503 compared with 1.21 
from using the ‘quasi’-univariate approach for OS- 
20 mM ampicillin in S. aureus. Although diffuse 
reflectance methods are well known to suffer difficul- 
ties in quantitative work (the concen~ation region for 
which Kubelka-Munk theory [log-l 111 holds is nor- 
mally quite small, for instance [ 112]), it is clear that 
the combination of modem chemometric methods 
with the diffise reflectance-absorbance approach 
overcomes these most satisfactorily. As an analytical 
tool for HTS the DRASTIC approach (using a spectro- 
meter with a TLC accessory and automated sample 
handling) would be capable of quantifying a particular 
determinand from in excess of 50 000 samples per day, 
a substantial improvement on current processing cap- 
ability using bastions methods such as HPLC. Thus 

we have here shown for the first time that the hyper- 
spectral approach using diffuse reflectance-absor- 
bance spectroscopy coupled to modem supervised 
learning methods provides a novel, rapid, powerful 
and general approach to the problem of screening for 
metabolite overproduction in biological and biotech- 
nological systems. 
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