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Abstract 

Recently, a number of novel ways of considering the control, regulation and thermodynamics of microbial 
physiology have been developed and applied. We here present an overview of the new concepts involved, of 
their limitations and of the most recent attempts to deal with those limitations. We conclude that there no 
longer exist reasons of principle for vagueness in discussions of the control of microbial physiology and 
energetics. Further, the novel conceptual methods serve to remove part of the discordance between holistic 
and reductionistic views of microbial physiology. 

1. Introduction 

In a microbial cell of a few cubic microns, thou- 
sands of processes occur simultaneously at rather 
appreciable rates. For the fitness of the cell it is 
mandatory that the rates of these processes are well 
adjusted to each other. Whilst some of this ad- 
justment occurs 'automatically' through mass-ac- 
tion effects, much involves more sophisticated con- 
trol mechanisms. Biochemists and molecular biol- 
ogists may study control at the level of single pro- 
cesses, whilst cell physiologists' may consider 
control and regulation at the integrated level of 
entire cells. In general, however, the sheer com- 
plexity of metabolism has precluded the establish- 
ment of strict relationships between the molecular 
and the cellular level. In recent years, however, 
concepts and methodologies have been developed 
that serve to relate the two levels. Because they 
have to deal with complexity, many of these meth- 
ods implement mathematics, yet they have brought 

concepts that can also be grasped and employed 
more intuitively. Whilst giving some insight into 
the quantitative power of some of these methods, 
this overview will lean towards conveying some of 
the conceptual advances which they represent. 

We shall begin by reviewing some of the concepts 
of a method rationally to analyze the control of 
metabolic fluxes in metabolic pathways, i.e., Me- 
tabolic Control Analysis (MCA; a review of appli- 
cations of MCA to microbial physiology will be 
found elsewhere in this volume; Van Dam & Jan- 
sen 1991). Subsequently, we shall outline noncon- 
ventional aspects of MCA that pertain to chemo- 
stats. Next we shall point at two limitations inher- 
ent to conventional MCA, i.e., its emphasis on 
metabolism in cells of constant composition with 
immutable enzyme activities, and its limitation to 
small changes. Subsequently, we shall discuss some 
recent advances that lift these limitations. One is a 
recent extension of MCA that makes use of the fact 
that cellular physiology tends to be organized in 
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terms of recognizable chunks ('modules') that each 
carry out their own task and regulate each other. 
We shall elaborate this method in some detail for 
the particular case of ammonia assimilation in E. 
coli, as it is regulated through a covalent mod- 
ification cascade affecting the activity of glutamine 
synthetase. Finally, we shall discuss analysis meth- 
ods that may be used whenever changes are not 
small, such as Mosaic Non Equilibrium Thermo- 
dynamics and Biochemical Systems Theory. 

2. Metabolic control analysis and 
microbial physiology: the concepts 

The metabolic control analysis (MCA) devised by 
Kacser, Burns, Heinrich, Rapoport, and Rapoport 
in the early 1970s, and more recently extended by 
others (see later), provides both a strategy and a 
formalism for the quantitative description of the 
control of metabolism under (mainly) steady-state 
conditions. It relates the 'local' kinetic properties 
of enzymes to their 'global' properties like their 
contribution to the control of variables such as 
fluxes and intermediary metabolite concentra- 
tions. From this point of view, it constitutes in 
principle an ideal formalism for attacking the prob- 
lems on which this Special Issue is focussed, viz. 
Quantitative Aspects of Microbial Metabolism. To 
this end, we begin by providing a short review of 
the salient features of MCA. 

MCA has been reviewed several times in recent 
years (e.g. Groen et al. 1982; Kell & Westerhoff 
1986 a, b; Brand & Murphy 1987; Kacser & Porte- 
ous 1987; Westerhoff & van Dam 1987; Kell et al. 
1989; Kell & Westerhoff 1990; Cornish-Bowden & 
C~irdenas 1990; Van Dam & Jansen 1991). Its chief 
distinction, from our point of view, is that it can 
relate the properties of individual components of a 
system (e.g. 'external' metabolites, or enzymes in a 
metabolic pathway) to their global behavior in con- 
tributing to the control of a metabolic flux. 

Flux-control coefficients 
We first define what we mean by a pathway. The 
operational definition used in the MCA is that a 
pathway is a system that consists of a flux from 

starting substrates at fixed concentrations (S in Fig. 
1) to products that are also maintained at constant 
concentrations (P in Fig. 1). Alternatively, concen- 
trations of substrates and products are such that 
changes in them do not affect enzyme activities in 
the pathway (because of saturation). The pathway 
is to include the production and utilization of all 
(generally allosteric) effector molecules ('internal 
effectors') acting on the pathway. This functional 
isolation of the pathway of interest from the rest of 
the cellular metabolism is based upon the fact that 
different parts of metabolism are or may be isolat- 
ed kinetically from each other. In other words, in 
conventional MCA, we deal with metabolic steady 
states that are not affected by other responses of 
the system such as the induction of relevant gene 
products. 

When studying a typical metabolic pathway, not 
least in terms of maximizing fluxes of biotechnolog- 
ical interest, it is traditional to ask questions such as 
'which enzyme is rate-limiting'? The metabolic 
control analysis shows that the contribution of an 
individual enzyme to the control of flux through a 
pathway is both a systemic property and can be 
expressed in quantitative terms. Now we know, of 
course, that removing all of the enzyme in a path- 
way will reduce the flux to zero; however, this only 
tells us that the enzyme is in the pathway of in- 
terest. To obtain a meaningful analysis, therefore, 
we must determine the change in flux caused by a 
small (strictly an infinitesimal) change in enzyme 
a c t i v i t y  (kca t or Vmax). TO obtain a dimensionless 
number, we use the fractional change in enzyme 
activity and in flux. Thus, using the new, unified 
terminology (Burns et al. 1985), we define a flux- 
control coefficient C~i a s  ( ( d J / J ) / ( d v i / v i ) ) s  s = (d In 
J/d In Vi)ss,where vi is the activity of enzyme el, and 
the subscript ss (steady-state) implies that the com- 
parison is made after the system has relaxed to its 
steady state(s). J represents the steady-state flux 
through the system. Here it is to be understood that 
the change in enzyme activity vi is brought about by 
changing a parameter that affects that activity. The 
flux-control coefficient therefore equals the slope 
of a log-log plot of J vs vi at the concentration 
(activity) of ei prevailing. 

Except for systems that exhibit 'channelling' 



rather than pool behavior (see Welch & Keleti 
1988; Kacser et al. 1990; Kell & Westerhoff 1990; 
Welch & Keleti 1990; Ovfidi 1991), the sum of the 
flux-control coefficients of the enzymes in (or act- 
ing upon) a pathway equals 1. This relationship, 
known as the flux-control summation theorem, 
means that if we find that a particular enzyme has a 
flux-control coefficient of say 0.1, we know the rest 
of the flux control resides in other enzymes. It is 
also worth pointing out that if one considers 
branched pathways, the enzymes in the branch 
other than that containing the flux of interest ('ref- 
erence flux') will tend to have negative flux-control 
coefficients (since increasing their activity will de- 
crease the flux of interest); the sum of the flux- 
control coefficients of the enzymes in the branch of 
interest will therefore tend to exceed 1 (Kacser 
1983). 

Other control coefficients 
We may also define control coefficients for the 
control of flux by the external (starting) substrate 
concentration (C J) and by external modulators 
such as inhibitors (C~), or for the control of inter- 
mediary metabolite concentrations (IX]) by en- 
zyme activities (concentrations) (CeX). The latter 
are known as metabolite concentration-control 
coefficients, and have a summation equal to zero. 
Each of these coefficients are defined in a similar 
way to the flux-control coefficients, i.e. as (d In 
superscript / d In subscript)ss. 

Parameters and variables 
The MCA lays great stress on the distinction be- 
tween parameters and variables. Parameters are 
those factors which are set by the experimenter 
(typically temperature, pH and the starting or 
'clamped' substrate concentrations) or by the sys- 
tem itself (typically in this case Km, K~ and Vma x 

values), and which are unchanging during the 
course of  an experiment. As it stands, therefore 
(but see later), conventional MCA does not consid- 
er changes in enzyme concentrations caused for 
instance by the induction or repression of genes. 
Variables are those factors which attain a constant 
value only when the system attains a stable steady 
state. The most important variables are the flux J 
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Sol  X Y,  " Z ,  "P 

Fig. I. (A) a sample metabolic pathway. S and P are supposed to 

be present  at effectively fixed concentrat ions,  whereas the con- 

centrations of Y and Z,  as well as the fluxes can vary. 

(B) Microbial culture in chemostat  written so as to be amenable  

to metabolic control analysis; the first reaction is that of  the 

pump introducing substrate,  present  in the feed at concentrat ion 

So, into the chemostat .  The substrate concentration in the che- 

mostat  is now a variable and referred to by X. 

and the concentrations of intermediary metabo- 
lites. We would also stress that variables cannot 
control fluxes, so that it is quite inappropriate to 
ascribe a control of a flux to a low concentration 
(relative to a Km) of an intermediary metabolite, 
say; a particular metabolite concentration adopts a 
low value in a steady state because of the properties 
of the enzymes producing and consuming it. 

Elasticity coefficients 
Of course, enzyme activities do depend upon the 
concentrations of their substrates (and of other 
effector molecules), and the MCA describes these 
interactions in terms of so-called elasticity coeffi- 
cients or elasticities. These are defined in a form 
that is mathematically very similar to that of the 
definition of the control coefficients; thus, the elas- 
ticity of enzyme ei towards (the concentration of) 
substrate X is E~ = 9 In v~/S In X, i.e. the fraction- 
al change in enzyme turnover number caused by a 
fractional change in substrate concentration, sub- 
ject to the important constraint that the change is 
carried out with all other parameters and variables 
held constant at their steady state values (Burns et 
al. 1985). 

The connectivity theorems 
Elasticities and control coefficients describe, in 
quantitative terms, respectively local and global 
properties of the metabolic system. The question 



196 

then arises as to how these may be related to each 
other, since of course the behaviour of the metabo- 
lic system of interest does depend upon that of its 
constituent parts. The MCA formalizes this in 
terms of the so-called flux-control and concentra- 
tion-control connectivity theorems. Perhaps the 
easiest way to think about the flux-control connec- 
tivity theorem is to imagine adding a non-compet- 
itive inhibitor to a steady-state pathway consisting 
of a linear series of metabolites ( A . . .  --> . . .  E) 
whose metabolism is catalyzed by a series of en- 
zymes (el to e4) obeying reversible Michaelis-Men- 
ten kinetics. If the inhibitor is a specific inhibitor of 
enzyme e3, the first effect will tend to be a build-up 
of its substrate (C). This will either cause enzyme e3 
to speed up (if [C] was originally somewhere near 
the Km of e3) or will have no effect on the turnover 
of the enzyme (if e3 was already saturated with 
respect to C). In the first case, from our definitions 
above, e3 would have a high elasticity (large change 
in turnover for small change in substrate concentra- 
tion) but a low flux-control coefficient (little 
change in pathway flux for a significant change in 
effective enzyme concentration or activity), where- 
as in the second case the converse would be true. 
More generally, the flux-control connectivity theo- 
rem shows that the sum of the products of the 
flux-control coefficients of the enzymes in a path- 
way and their elasticities towards a given metabo- 
lite is zero. Other theorems relate the metabolite 
concentration-control coefficients to the elastici- 
ties. 

A number of approaches, some of which use 
matrix methods, have been devised which relate 
the control coefficients to the elasticities (e.g. Fell 
& Sauro 1985; Westerhoff & Kel11987; Sauro et al. 
1987; Reder 1988; Small et al. 1989; Cascante et al. 
1989). For linear pathways, it is possible to express 
the control coefficients in terms of the elasticities 
alone, whereas branched pathways require, addi- 
tionally, a knowledge of the flux-ratio at the 
branches (Westerhoff & Kell 1987; Sauro et al. 
1987; Small & Fell 1989). For the pathway of Fig. 
1A, the analysis is as follows (Westerhoff & Kell 
1987; Sauro et al. 1987; Westerhoff & Van Dam 
1987). First one writes the matrix E, which contains 
information both concerning the enzyme proper- 

ties (elasticity coefficients, e) and concerning the 
structure of the system (in the sense of where the 
flows flow): 

] E = 1-~2 _ ~  1 
Here the row of l's reflects the fact that the exam- 
ple is that of a linear pathway, r~ is the elasticity 
coefficient of the first reaction with respect to the 
concentration of metabolite Y, etc. Inversion of 
this matrix gives the matrix that gives all control 
coefficients: 

[ c]  

c =  c Y c2 v c Y = E 

C z c z J  

C~ quantifies the control exerted by enzyme 1 on 
the steady state pathway flux. C~ does this for the 
control exerted by enzyme 2 on the concentration 
of metabolite Z. This procedure can be extended to 
pathways of any complexity, where for the more 
complex cases, the method of Reder (1988) is the 
most systematic one (see also Holstein & Green- 
shaw 1991). 

For a specific inhibitor, the flux-control coeffi- 
cient of the inhibitor equals the flux-control coeffi- 
cient of the target enzyme times the elasticity of the 
target enzyme towards the inhibitor. In other 
words, for a 'perfect' inhibitor, the flux-control 
coefficient equals the ratio of the initial slopes of 
normalized flux and normalized enzyme activity 
when plotted against the inhibitor concentration 
(Groen et al. 1982, Kell & Westerhoff 1986 a,b; 
Westerhoff & Kell 1988; Kell et al. 1989). 

Measurement of flux-control coefficients 
The measurement or estimation of flux-control 
coefficients follows in principle directly from their 
definition: one modulates the concentration or ac- 
tivity of an enzyme and measures the consequent 
change in flux, between steady-state conditions in 
which no other parameters have changed. Methods 
for doing this, with selected examples, include (see 
also van Dam & Jansen 1992): (a) titrations with 



specific metabolic inhibitors (Groen et al. 1982; 
Walter et al. 1987; Cornish et al. 1988), (b) varia- 
tion of enzyme concentration by variation of their 
expression in diploid organisms (Flint et al. 1981; 
Middleton & Kacser 1983), (c) modulation of en- 
zyme concentration by recombinant DNA meth- 
ods in which the expression may be controlled by 
using a promoter of variable strength such as the tac 
promoter (Walsh & Koshland 1985), or by other 
molecular cloning methods (Heinisch 1986; Schaaf 
et al. 1989), and (d) variation of enzyme concentra- 
tions in systems reconstituted in vitro (Torres et al. 
1986). Method (a) requires that the specificity of 
the inhibitors used is known, and preferably abso- 
lute, whilst the molecular genetic methods require 
that pleiotropic effects are absent, at least for the 
systems studied using conventional MCA. 

Each of these methods suffers from the problem 
that as the flux-control coefficients become small, 
as they will indeed tend to do for long pathways, 
they become increasingly difficult to distinguish 
from zero, and in fact, with these approaches, val- 
ues less than approximately 0.1 are probably not 
very reliable quantitatively. In say an inhibitor ti- 
tration, the accuracy also depends upon how far 
one may inhibit the flux before the flux-control 
coefficient itself changes significantly (i.e. the 
curve bends round). In some pathways, such as that 
described in Fig. 5 of Kell et al. (1989), this may be 
a long way, whereas in other cases (e.g. Groen et 
al. 1982; Savageau & Voit 1982) the distribution of 
control depends strongly on the absolute flux. The 
biological significance of these very interesting dif- 
ferences is not yet understood. Statistical problems 
associated with the estimation of flux-control coef- 
ficients are discussed by Small (1988) and Small & 
Fell (1990). 

Flux-control coefficients in supercomplexes 
If one is trying to distinguish 'pool' from 'chan- 
nelled' metabolism, a particularly interesting prob- 
lem arises. To describe it we may imagine a 'per- 
fect' (so-called 'static') channel (Keleti & Ov~idi 
1988), in which 'free' metabolites either do not 
exist or are not used (significantly) as substrates for 
'their' enzymes due to unfavourable Km values. In 
this case, the entire pathway and its intermediates 
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behave as a 'supercomplex' such that inhibiting one 
of the enzymes present (by say 1%) will inhibit the 
flux in direct proportion so that the enzyme would 
apparently have a flux-control coefficient of 1. If 
similar inhibitors were used for other enzymes in 
the complex, this would also be true for them, so 
that the flux-control summation theorem would 
appear to be violated when judged by these means 
(Kell & Westerhoff 1985, 1990; Westerhoff & Kell 
1988); if the supercomplex contains n enzymes, the 
sum of the apparent flux-control coefficients would 
be n. In contrast, if one modulated the concentra- 
tion of enzyme present in the system by adding 
enzyme (whether directly or by cloning), the en- 
zyme added would not be able to participate in 
supercomplex formation, so that adding enzyme 
would not increase the flux and the flux-control 
coefficient would be zero! Heinisch (1986) in- 
creased the concentration of the phosphofructoki- 
nase (PFK) enzymes by cloning the 2 relevant 
structural genes, and acquired data which suggest- 
ed that PFK has a rather low flux-control coeffi- 
cient (although the data, in terms of the constancy 
of the flux from glucose to ethanol, are probably 
not good enough to exclude a value below approxi- 
mately 0.2). If one were to carry out similar experi- 
ments for the rest of the glycolytic system (more 
than 13 enzymes), one would probably obtain simi- 
lar data in each case. Schaaf et al. (1989) extended 
this study to include 8 glycolytic enzymes, to similar 
effect. One might therefore conclude either that the 
system exhibits pool behaviour, the distribution of 
control is rather homogeneous and the flux-control 
coefficients are too small to measure reliably, or 
that the system operates as a supercomplex. These 
possibilities may be distinguished by cloning both 
'up' and 'down' in enzyme concentration. 

Van Dam and Jansen (1991) give a detailed over- 
view of the application of MCA to understanding 
the control of microbial metabolism in a number of 
systems. 

3. Metabolic control analysis, chemostats and 
bioreactors 

In conventional control analysis, a pathway is de- 
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limited by substrates and products that are kept at 
constant concentrations (see above). In standard 
MCA, asking to what extent microbial growth is 
determined by the concentration of the growth- 
limiting substrate, takes the following form: One 
grows the cells at one, fixed substrate concentra- 
tion and determines the growth rate. One then 
increases the substrate concentration by p%, main- 
tains it at the new level whilst measuring the new 
steady-state growth rate (p being taken as small as 
consistent with accurate experimentation). The 
percentage change in growth rate divided by p is 
the coefficient of growth control by that substrate. 

For important growth substrates, the substrate 
concentrations at which this control coefficient sig- 
nificantly exceeds zero, are so low that it is experi- 
mentally unfeasible to maintain them constant 
throughout an experimental definition of the 
growth rate, especially because the latter requires 
the cells to reach a steady state. Moreover, a better 
way to grow cells under steady-state conditions is to 
grow them in a chemostat (Monod 1942). In a 
chemostat, however, it is the growth rate, rather 
than the substrate concentration, that is set by the 
experimenter; parameter and variable are re- 
versed. 

In chemostats then, the pertinent experiment is 
to manipulate the growth rate (by manipulating the 
dilution rate) and measure the relative change in 
concentration of the growth limiting substrate. Be- 
cause of the small value of this concentration, this is 
usually quite difficult, but for a limited number of 
cases this has now been accomplished (see Van 
Dam & Jansen 1991 for review). This then will give 
a coefficient for the control of substrate concentra- 
tion in the chemostat (denoted as [X]) by the 
growth rate: C~ 1. The inverse of this coefficient is 
numerically equal to the coefficient of control of 
growth rate by the substrate concentration, as mea- 
sured in the non-chemostat experiment. The proof 
of the latter property is as follows. Let us consider a 
small increase in dilution rate of the chemostat. C[~] 
now is the relative change in concentration of the 
growth limiting substrate in the culture, divided by 
the relative change in dilution rate: dln[substrate]/ 
dlnD. Looking at it from the perspective of the 
cells, the substrate concentration has increased and 

they have responded by proceeding to a new 
growth rate. For the cells the situation must, in 
principle, be quite the same as that in a batch 
culture where the substrate concentration, kept at 
a fixed magnitude, is now kept at a slightly in- 
creased value. They adjust their growth rate. 
Therefore, C~ is equal to dlnlJl/dln[substrate]. Be- 
cause D and J are equal, C J = 1/C~ I. 

An alternative way of looking at the control of 
growth rate in a chemostat is to add the influx pump 
as a first reaction ('reaction 0') to the metabolic 
pathway (see Fig. 1B) with the property of having 
zero elasticity coefficients with respect to all me- 
tabolite concentrations. This first reaction then sets 
the constant flux (i.e., growth rate), and makes the 
pathway substrate an internal variable. Metabolic 
control analysis, including the calculation of con- 
trol coefficients from elasticity coefficients, may 
now be performed. First one writes the matrix E: 

E =  

1 0 0 0 
1 
1 
1 - e ~  - e ~  - e ~  

Inversion of this matrix gives the matrix that gives 
all control coefficients: 

C =  

c g  c]  
c x c x c x 

c ;  
c z c z c f  

C~ quantifies the control exerted by the pump (set 
at dilution rate D) on the steady-state growth rate 
J. Because of the zeros in the matrix E, the control 
matrix bears zeros at the same positions. This im- 
plies that C~ = 1 and C~ = 0 for any i; all control on 
growth rate lies in the pump and no control resides 
in any of the enzymes in the bacteria. Indeed, if in a 
chemostat the activity of an 'important' enzyme in 
the bacteria was increased (e.g., by addition of 
IPTG in the case of an operon under the control of 
the lac promoter), the growth rate of the bacteria in 
the newly attained steady state would not change; it 
would still equal the dilution rate of the chemostat. 
What would change of course is the concentration 



of the growth substrate in the chemostat; C x does 
n o t  equal zero; in a chemostat the cellular enzymes 
do control the concentration of the growth sub- 
strate, as they continue to control the concentra- 
tions of metabolites. It should be noted that in the 
definition of control coefficients used here, the 
change in enzyme activity is supposed to be the 
same for all individual bacterial cells. If, in con- 
trast, one of the cells were to mutate, then its 
growth rate would be enhanced and it could still 
out-compete the wild-type cells, although again, its 
ultimate steady-state growth rate (after finishing 
the competition) would return to the preset dilu- 
tion rate of the chemostat. In a chemostat, all con- 
trol on growth rate resides in the pump and cellular 
enzymes do not control the growth rate in a chemo- 
stat. Under comparable conditions in batch cultur- 
es the same enzymes would control growth rate. In 
either case, we note that the dynamics of these 
systems are sufficiently complex that it is doubtful 
that a 'true' steady state is attained (Kel le t  al. 
1991). 

The above is an illustration of a potentially pow- 
erful aspect of MCA: because its definitions are so 
akin to definitions used in technological process 
optimization, its analyses can be made congruent 
with analyses of the process optimization of bio- 
reactors. Indeed, the technological processes 
around the bioprocess (in this simplest example 
represented by the dilution rate D) can be taken 
into account by describing them as additional 'me- 
tabolic' processes. For instance, one may define, 
measure, and come to understand a coefficient of 
control of the aeration apparatus on the intracellu- 
lar ATP concentration or on the concentration of 
the relevant bioproduct. 

In the biotechnological context it is relevant to 
ask if MCA may be used in studies meant to in- 
crease yields or efficiencies of biotechnological 
processes. Previously we have indicated a strategy 
for such optimizations (Kell & Westerhoff 1986 a, 
b; Westerhoff & Kell 1987). If the interest lies in 
obtaining an intermediary metabolite of a microbe, 
then one should first obtain an estimated map of 
the metabolic pathway of interest. Subsequently, 
one should obtain estimates of kinetic properties of 
the enzymes in the pathway of interest. Rather 
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than extensive knowledge of all kinetic properties, 
it suffices to know the so-called elasticity coeffi- 
cients of the enzymes with respect to the metabo- 
lites. These elasticities correspond to the kinetic 
orders by which the rates depend on the metabolite 
concentrations, i.e., for a normal, far-from equilib- 
rium Michaelis-Menten enzyme the elasticity for 
the substrate is Km/([S]+Km), i.e., 1 far below the 
K m and approaching zero far above the Km. One 
then puts this information into a matrix of elasticity 
coefficients (see above for an example), inverts this 
matrix, and obtains the coefficients for the control 
of pathway flux and metabolite concentrations by 
pathway enzymes. Above we demonstrated this 
procedure for the pathway of Fig. 1A. The chemo- 
stat may be analyzed by using the extended path- 
way of Fig. 1B, as also illustrated above. The en- 
zymes that have the highest control coefficients 
with respect to the metabolite concentration of 
interest (or with respect to production rates of me- 
tabolites, though, in a chemostat, not with respect 
to growth rate, see above) are the candidates for 
genetic or other engineering, either by modifying 
their intracellular concentration or their elasticity 
coefficients (Kell & Westerhoff 1986 a). 

Engineering approaches that affect more than a 
single enzyme at the same time can be dealt with 
similarly (Westerhoff & Kell 1987). The MCA as 
illustrated above for Fig. 1 yielded a matrix C of 
control coefficients as the inverse of a matrix E. For 
a manipulation that affects the activity of more 
than a single enzyme, one may write the change in 
enzyme activities as a column vector dln(e~), din 
(e2), dln(e~). The change in variables that occurs 
when that change in enzyme activities is imple- 
mented is then given by the matrix product of C and 
this column vector: [dnJJ [dnel] 

d In X = C d In e2 
d In Y d In e 3 

This property may also be used in the reverse 
sense. If one wishes to change the microbes' metab- 
olism, say the pathway flux by 10%, the concentra- 
tion of X by - 5 % ,  leaving the concentration of Y 
unaffected, one may substitute these values for the 
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vector on the left hand side of the above equation 
and then invert the equation to read: [ 'nel] [010] 

6 In e2 = E - 0.05 
6 In e 3 0.00 

where we used the fact that E equals the inverse of 
the C matrix. The left hand side of the above equa- 
tion gives the best first-order estimates of the 
changes in enzyme activities one should establish in 
order to obtain the desired change in the microbe's 
physiology. The above example demonstrates how 
one can in principle calculate how to manipulate 
the cell in order to produce a desired metabolic 
phenotype. Although, obviously, the calculation 
has its limitations, it seems too simple not to make 
it before one embarks on extensive projects of 
genetic engineering. 

4. Limits  to convent ional  metabol ic  control  

analysis  

Enzyme activities regulated by other pathways 
are not considered 
As described above, metabolic control analysis was 
developed for the purpose of the analysis of the 
control of pathways of intermediary metabolism. 
Such pathways were conceptualized as a set of en- 
zymes present at fixed activities (concentrations), 
acting on metabolites whose concentrations were 
freely variable. The steady-state metabolite con- 
centrations and the pathway flux(es) are then a 
function of the enzyme concentrations, and it is the 
latter functional dependence that is quantified by 
the control coefficients. 

In microbial physiology, the conceptual frame- 
work in which the enzyme concentrations are con- 
stant is valid only for short-term phenomena. For 
time-windows exceeding say 5 minutes, enzyme 
concentrations are likely to change due to changes 
in their rates of transcription, translation or degra- 
dation, and such changes are often relevant for the 
regulation of metabolic pathways. Well-known ex- 
amples of the latter are the induction of the lac 
operon by lactose and the repression of the his 

operon by histidine. The corresponding type of 
regulation has rarely been considered in MCA (but 
see Barthelmess et al. 1974; Westerhoff et al. 
1990), though it has been considered in Biochem- 
ical Systems Analysis (e.g., Savageau 1976). 

Regulation of the amount of enzyme is not the 
only phenomenon that interferes with the conven- 
tional concept of MCA. It is also assumed that 
activation or inactivation of an enzyme, e.g., 
through covalent modification in reactions cata- 
lyzed by other enzymes, do not occur as part of the 
internal variation of the system. However, very 
notable examples of this are found in the signal 
transduction pathways of both eukaryotes and pro- 
karyotes. 

The recognition that regulated gene expression 
and covalent enzyme modification is not yet part 
and parcel of MCA raises a number of questions: 

- Is it possible to extend MCA so as to include 
these phenomena? 

- Are the laws that govern metabolic regulation 
also applicable if regulation through variable 
gene expression or covalent enzyme modifica- 
tion occurs in parallel? 

- Is it possible quantitatively to weigh the relative 
importance of regulation at the metabolic, gene- 
expression and covalent enzyme modification 
levels? 

We believe that the answers to these questions are 
in the affirmative, and will shortly (section 5) seek 
to show this with respect to the glutamine syn- 
thetase regulatory cascade of Escherichia coli. 
There is an additional problem with MCA, how- 
ever, and that is that in principle it considers only 
small changes in system parameters. 

Large changes are not considered 

As reviewed above, MCA discusses control of 
physiology in terms of control and elasticity coeffi- 
cients. These are defined in mathematical terms as 
derivatives of effects with respect to causes. Such 
derivatives may be translated into magnitudes of 
effects divided by the magnitude of their causes for 



very (in fact infinitesimally) small effects. The ad- 
vantage of definitions in terms of derivatives are 
that they are (i) unambiguous and (ii) they facil- 
itate application of mathematics, such that control 
laws can be deduced that specify the connections 
between the control coefficients. 

However, in many actual cases of regulation, 
changes are not truly small; they may well amount 
to 200% rather than to 1%. In such cases, MCA is 
only a first-order approximation of the actual status 
of the control of the pathway (still better than the 
conventional qualitative analyses). Second order 
extensions to MCA have been developed, but are 
fraught with complexity. The question therefore is: 
are there alternative methods to MCA that deal 
with substantial changes during regulatory transi- 
tions in a better-than-first-order approximation? 
Below we shall discuss two of these approaches, 
called Mosaic Non Equilibrium Thermodynamics 
and Biochemical Systems Analysis. First however, 
we shall deal with the possibility that enzyme activ- 
ities and/or concentrations vary as a function of 
changes other than those made directly by the ex- 
perimenter. 

5. Modular metabolic control analysis 

The control of  the regulatory cascade of  glutamine 
synthetase in E. coli as a model system 
As we discussed in section 4, standard MCA dis- 
cusses a physiological system as a single network in 
which all reactions are connected. In actual prac- 
tice, cellular physiology is more organized than 
that. Several levels can be distinguished: the level 
of intermediary metabolism, the level of protein 
metabolism (synthesis, modification and degrada- 
tion), the level of mRNA metabolism (transcrip- 
tion and decay). At the level of protein metabolism 
one can observe cascades of enzymes covalently 
modifying one another. 

Conceptually, biochemists and cell physiologists 
have tended to separate the various levels of regu- 
lation of metabolism. Control is said to be at the 
level of transcription, at the level of translation, or 
'just' metabolic. Conventional MCA did not ac- 
knowledge such a separation. 
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Recently MCA has been developed so as to ana- 
lyze the contribution of the various controlling lev- 
els. Most explicitly this was done for systems with 
variable gene expression and for regulatory cas- 
cades: the modular metabolic control theory 
(Westerhoff et al. 1990; Kahn & Westerhoff 1991). 
The latter approach started from the general for- 
malism of Reder (1988) and has the advantage of 
providing a better understanding of the control of 
the hierarchical levels of a cascade. Here, the mod- 
ular control theory will be made explicit for the 
glutamine synthetase regulatory cascade, which is a 
complex and interesting system controlling the as- 
similation of NH~ in enteric bacteria (review: 
Rhee et al. 1988). 

Glutamine synthetase (GS) catalyses the incor- 
poration of ammonium into glutamate resulting in 
glutamine. The activity of GS can be modified by 
the enzyme adenylyl-transferase (ATe,) to produce 
the less active form GS-AMP. The same enzyme 
catalyses both adenylylation and deadenylylation 
(ATd) of GS. The transferase activity is stimulated 
by the regulatory protein Pu, while the deadenyly- 
lase activity is enhanced by the uridylyl form of Pn 
(Pn-UMP). The modification of P~I is catalyzed by 
uridylyl-transferase (UT,), which has also, in an 
analogy to adenylyl-transferase, a deuridylylation 
activity (UTa). UTo and UTa are regulated alloster- 
ically by c~-ketoglutarate and by glutamine. Thus 
UT is a sensor for the nitrogen status of the cell. 
This cascade can be divided into three modules (see 
the boxes in Fig. 2). Each module contains a set of 
reactions which are connected with each other, but 
not with reactions from other modules. Therefore 
separate modules interact solely via effector-type 
interactions, i.e. substances from one module may 
affect reactions in another module without being a 
substrate or a product in this other module. Thus, 
in Fig. 2, both c~-ketoglutarate and glutamine 
(which are in module 3) act as positive allosteric 
effectors of, respectively, UTu and UTd, whilst glu- 
tamine is a negative effector of UT,, in module 1. 
The structure of this metabolic network may be 
summarized in terms of a stoichiometry matrix N 
(see e.g. Reder 1988; Holstein & Greenshaw 1991), 
which consists of the stoichiometric coefficients of 
the reactions of the network. To clarify the mean- 
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, ~ 1 7 6 1 7 6  ....... 
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Fig. 2. Scheme of the pathways involved in ammonia assimila- 
tion in E. coli. 2-KG: a-ketoglutarate, Glu: glutamate, Gin: 
glutamine, GS: glutamine synthetase, PII: protein II, UTu: 
uridylyl transferase, UTd: deuridylylase, ATa: adenylyl trans- 
ferase, ATd: deadenylylase, GOGAT: glutamine-2-ketoglut- 
arate aminotransferase. 

ing of this stoichiometry matrix for the glutamine 
synthetase regulatory cascade, let x be the column- 
vector of the molarities [xi] and v the column vector of 
the rates [vi]; the time-dependent evolution of the 
system will be determined by the matrix product: 

dx/dt = N �9 v 

This can be expressed for the glutamine synthetase 
regulatory cascade (see Fig. 2). For the purpose of 
this article, we will simplify the treatment and con- 
sider that the GS/GOGAT cycle is the only route of 
ammonium assimilation, ignoring the glutamate 
dehydrogenase (GDH) route (as we would do with 
a glutamate dehydrogenase negative mutant). We 
obtain: 

- dPii/dt 
dPn-UMP/dt 
dGS/dt 
dGS-AMP/dt = 
da-KG/dt  
dGlu/dt 
dGln/dt 

In the stoichiometry matrix, the modular structure 
of the metabolic network is indicated by the dashed 
lines. In shorthand, we may write: 

N =  N 2 
0 

where N i indicates the stoichiometry matrix of the 
module of interest. Now we may build an elasticity 
matrix containing all elasticity coefficients (see sec- 
tion 2) of the system: 

e =  [alnlv~l/alnxj] 

Here ~ refers to partial differentiation. Each coef- 
ficient ~j of the elasticity matrix e quantifies the 
effect of molecular species j (at molarity xj) upon 
rate vi. The elasticity matrix e of the glutamine 
synthetase regulatory cascade is decomposed into 
blocks according to the modular structure of the 
system, as mentioned above: 

E= 
D o 

where tz~ (which is itself a matrix, hence written 
bold face) refers to module I (above), and so on. 
The block r4 is null because the state of the GS 
interconversion cycle (module 2) does not directly 
influence the rates of the P .  interconversion cycle 
(module 1). Similarly the block ~ is null because PH 
and PI]-UMP do not directly influence the metabo- 
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lic rates of module 3. In principle, the block 
differs from 0 because the GS interconversion cycle 
can also be directly influenced by the metabolic 
status. However, to simplify the presentation, this 
effect is neglected here. A more complete treat- 
ment will appear elsewhere (Kahn & Westerhoff 
1991). The block ~ is special, in that it contains the 
elasticities of the glutamine synthetase reaction to- 
wards GS and GS-AMP. If, for the sake of simplic- 
ity, we assume that GS-AMP is fully inactive, we 
can write: 

1 0 
0 0 
o o 
0 0 
0 0 
0 0 

This is because with the definitions for the rates 
given in Fig. 2: 

-dlnlv, I 
dlnlv2] 
dlnlv3l = 
dlnlv41 
dlnivs[ 
dlnlv6[ 

I-1 0-i 
10  o l 

to o l  

i ol o I 
o I 

I-.. ~ 

I dln[GS] 7 
dln[GS-AMP]J 

Similarly we can construct a matrix of control coef- 
ficients C containing all the flux control coefficients 
of the system, and decompose it into blocks follow- 
ing the modular structure of the system: 

C = [ cl  

where the submatrix C] contains the flux control 
coefficients describing the sensitivities of the fluxes 
within module i to changes in the process-activities 
in module j. 

Now suppose we have studied the metabolic part 
of this system (module 3) without operation of the 
regulatory cascade (that is, at a constant, clamped, 
level of GS adenylylation, equal to the steady-state 
level of GS adenylylation normally attained). We 
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can analyze the control of such a subsystem and 
place the resulting control coefficients into an in- 
trinsic control matrix which we will note C3. C3 will 
in general be different from the matrix C~ contain- 
ing the control coefficients of module 3 when the 
regulatory cascade is left to operate (that is, the 
level of GS adenylylation is allowed to vary freely). 
Note, however, that the elasticity matrix of the 
metabolic module 3 (or of any other module) is an 
intrinsic property and therefore is ~ both in the 
clamped and in the non-clamped system. Recently, 
we have been able to demonstrate a relationship 
allowing to calculate the matrix C 3 from the knowl- 
edge of the intrinsic flux control matrix C3, the 
intrinsic concentration control matrices S~, $2 and 
$3, and the elasticity matrices E (Kahn & West- 
erhoff 1991, I is the identity matrix): 

3 m  
C 3 - C 3 ( I - ~ . S 2 . ~ . S 1 . E ~ , S 3 )  - 1  

Here it has been assumed that module 3 does not 
directly affect module 2. The first term of this prod- 
uct is the intrinsic control matrix of the metabolic 
module, whereas the second term describes the 
effect of the cyclic regulation on the control within 
the module. Thus the control matrix can be calcu- 
lated as the product of an intrinsic control matrix 
and a regulatory term referring to the regulation 
through the other modules. Similarly, this can be 
done for the concentration control coefficients. 
The importance of these relationships is at least 
twofold: (i) the regulatory effects of a process on a 
flux in the same module are equal to the regulatory 
effects if the module were in isolation, divided by a 
term that measures the regulatory effects through 
all other modules (and that goes to 1 if those other 
effects are absent or incompletely connected), and 
(ii) it is possible to determine the control properties 
of the modules separately before constructing the 
control of the entire system. In this manner, mod- 
ular metabolic control analysis marries reduction- 
ism and holism (see section 7). 

Moreover, the above modular control analysis 
allows one to quantify the regulatory strengths 
(Kahn & Westerhoff 1992) of the cascade, which 
express quantitatively the sensitivities of nitrogen 
assimilation fluxes to fluctuations in the levels of PH 
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uridylylation. These are the elements of the follow- 
ing regulation matrix: 

R13= C3.  
= 

It is the product of an elasticity matrix ~ expressing 
the response of the GS adenylylation cycle to 
changes in Pn uridylylation, and of a control matrix 
C 3 expressing the control of nitrogen assimilation 
fluxes by GS adenylylation (Kahn & Westerhoff 
1991). 

This brief account of how Modular MCA can be 
applied to the GS regulatory cascade indicates that 
the way is now open for the quantitative analysis of 
rather more complex systems than was heretofore 
possible. First, one decomposes the system into its 
relevant disconnected modules. Second, the con- 
trol of each module is analyzed individually, by 
clamping the concentrations in the other modules. 
Third, the complex system is analyzed as a whole, 
both experimentally and by mathematical recon- 
struction. If experiment and mathematical recon- 
struction are consistent, one may consider that the 
model on which the latter was based is a sound 
quantitative model. Thus Modular MCA is a meth- 
od for treating the control of complex metabolic 
systems by exploiting their structure, when the 
completely direct treatment is too complicated. 

6. Larger changes: biochemical systems theory and 
mosaic non equilibrium thermodynamics 

The elasticity and control coefficients of MCA are 
defined as derivatives, i.e., as the ratios of infi- 
nitely small changes. In practical applications, 
these are replaced by ratios between small changes. 
However, as discussed in section 4, for many cases 
of interest in microbial physiology, larger changes 
are important. Why not then use the same defini- 
tions and theory for larger changes? Thus one 
might be inclined to define the coefficient of the 
control of enzyme i exerted on flux J as the percent- 
age decrease in flux divided by the percentage re- 
duction in activity of that enzyme. However, the 
magnitude of such a control coefficient would al- 

most always depend on the percentage change in 
enzyme activity. And, for a linear pathway, the flux 
control coefficient of each enzyme would tend to 
approach 1 when the inhibition of activity ap- 
proached 100%, since complete elimination of that 
enzyme will reduce the pathway flux to zero. In- 
deed, the magnitude of the sum of all the control 
coefficients would depend on the magnitude of the 
percentage change in enzyme activity made in the 
determination of the control coefficients. 

Up to this moment, no complete solution for this 
dilemma has been found. What is left for the analy- 
sis of larger changes is: 

(i) just use MCA and accept the result as approxi- 
mate for the description of the actual control 
and regulation 

(ii) perform a complete integration of all the kinet- 
ic equations of the system 

(iii) use approximating, but simpler descriptions 
(iv) use methods of artificial intelligence (Kell & 

Davey 1991). 

The disadvantage of approach (ii) is that it requires 
the precise knowledge of most kinetic character- 
istics of the system. In addition, because of the 
incongruence between standard integration sub- 
routines and the structure of metabolism and physi- 
ology, this procedure tends to lose touch with bio- 
chemistry. Object-oriented programming ap- 
proaches have recently been used in attempt to 
alleviate the latter problem (Stoffers et al. 1991). 

The third method has been applied, at times with 
considerable success. This degree of success may 
seem somewhat surprising as it would seem impos- 
sible to approximate the richness of the kinetics of 
cellular reactions by simpler rate equations and still 
simulate cellular behavior. However, the success 
becomes more understandable if it is granted that 
we are generally less interested in understanding 
the precise quantitative behavior of physiological 
systems than in understanding the essence of such 
behavior, even though the latter may include quan- 
titative aspects (such as synergism) (Savageau 
1976). 

Non Equilibrium Thermodynamics (NET) has 
been an approach, which, although its accuracy in 



describing all the kinetic features of biochemical 
kinetics is severely limited, could still make one 
understand the essence of phenomena such as free- 
energy transduction, coupling, and optimal states 
(Caplan & Essig 1983; Stucki 1980; Westerhoff & 
Van Dam 1987). For microbial growth this led to 
insights into why the efficiency of microbial growth 
may be as low as it is (Westerhoff et al. 1983; see 
however Heijnen 1991). A variant of NET, called 
Mosaic Non Equilibrium Thermodynamics 
(MNET) was developed so as to remove the most 
apparent inconsistencies between NET and bio- 
chemical kinetics (reviewed: Westerhoff & Van 
Dam 1987). It has been applied to enhance under- 
standing of what underlies the phenomenon of 
growth rate-dependent and growth rate-independ- 
ent maintenance metabolism (Hellingwerf et al. 
1982), as well as the basis for the distinction be- 
tween Carbon- and Energy-limited growth (West- 
erhoff & Van Dam 1987). The most recent review 
of this method may be found in Rutgers et al. 
(1991). 

MNET may be considered an extension of a 
branch of MCA that focuses on the control aspects 
of free-energy metabolism (Westerhoff & Van 
Dam 1987). Biochemical Systems Analysis (BST) 
is a method that is parallel to MCA. Its basic ap- 
proach may be rationalized as follows: If one de- 
scribes the dependence of a reaction rate on its 
substrate concentration by an elasticity coefficient, 
and one assumes that the elasticity coefficient does 
not change much as the substrate concentration is 
increased, then one may integrate and describe a 
reaction rate by: 

v = k" [S]~s 

Transition to logarithmic space allows one to in- 
tegrate systems with this type of rate equations in a 
simple way (Savageau 1976; Voit 1991). A problem 
arises when groups of reactions are aggregated or 
when reversible reactions are considered, but even 
for those cases the approximation has been shown 
to work reasonably well (Voit & Savageau 1987; 
Voit 1991). Up to this moment BST has been used 
to describe the general behaviour of biological sys- 
tems and indeed, qualitative conclusions of general 
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value have been attained. The application of the 
method in direct experimentation has remained 
limited, because the basic definitions in BST are 
somewhat remote from experimental observables, 
in contrast to the definitions of MCA and MNET 
(see however, Groen & Westerhoff 1990). 

7. Concluding remarks 

Methods to reduce complexity: 
the rationalization of reductionism 
In this paper we have discussed a number of mod- 
ern approaches to the quantitative analysis of mi- 
crobial physiology. This should be regarded as a 
parallel to the review of concrete applications of 
these methods by Van Dam & Jansen (1991). 

It is often suggested that the sole aim of quantita- 
tive methods should be to describe, accurately to 
the second decimal place, rates and concentrations 
in systems. We take issue with this. The more im- 
portant aim of these methods is to realize a basic 
tenet of biochemistry and biophysics, i.e., that, in 
principle biology should be explicable in terms of 
physical and chemical principles. And, 'explicable' 
should mean 'explicable in the physical chemical 
sense', i.e., in principle including the quantitative 
detail. 

Too often, the latter tenet has been subject to 
immaterial debate between holists and reduction- 
ists, the latter emphasizing studies of single mecha- 
nisms that occur in cells, the former stressing that 
doing so destroys the essence of cellular, orga- 
nismal and ecological organization. The methods 
we have discussed here provide a scientific link 
between molecular mechanisms (elasticity coeffi- 
cients) and properties of the cell as a whole (control 
coefficients). Indeed, laws such as the summation 
and the connectivity theorems (see above) are the 
very expression of the fact that the whole is more 
than the simple sum of its parts. 

Of course, we note that, to date, most of these 
types of analyses take into account only limited 
aspects of cellular organization. Organization on 
the basis of metabolic channelling (e.g. Welch & 
Keleti 1990) is not usually considered (see however 
Kell & Westerhoff 1985, 1990; Westerhoff and Kell 
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1988; Kacser et al. 1990; Ov~idi 1991), and neither 
are phenomena, often called 'self-organization', 
which invoke bistability and hysteresis (Nicolis & 
Prigogine 1977; see however Cortassa et al. 1991). 
In truth, it is not always easy, and may not be 
possible in principle, to put Humpty Dumpty back 
together again (Kell & Welch 1991). 
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