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a b s t r a c t

Electronic noses (e-noses) are increasingly being used as vapour sensors in a range of application areas. E-
noses made up of arrays of organic field-effect transistors (OFETs) are particularly valuable due the range
and diversity of the information which they provide concerning analyte binding. This study demonstrates
that arrays of OFETs, when combined with a data analysis technique using Genetic Programming (GP),
can selectively detect airborne analytes in real time. The use of multiple parameters – on resistance, off
eywords:
FET
lectronic nose
enetic programming
attern recognition
eal-time

current and mobility – collected from multiple transistors coated with different semiconducting polymers
gives dramatic improvements in the sensitivity (true positive rate), specificity (true negative rate) and
speed of sensing. Computer-controlled data collection allows the identification of analytes in real-time,
with a time-lag between exposure and detection of the order of 4 s.

© 2009 Elsevier B.V. All rights reserved.
ultiparametric

. Introduction

The detection of gases has a wide range of applications in
number of fields including air-quality monitoring [1], food

poilage detection [2], environmental protection [3], homeland
ecurity [4] and medical diagnostics [5]. Currently, sensors use a
ariety of detection methods including spectrometry of various
ypes [6–9], surface plasmon resonance [10], catalytic bead sens-
ng [11] and carbon nanotube sensing [12]. Early sensors used a
ingle measurement to identify a particular chemical, or family
f chemicals. More recently, electronic noses, or ‘e-noses’, have
een developed [13,14], using a variety of technologies including
hemiresistors using metal oxides [15] or conducting polymers
16], optical sensors [17] and mass sensors [18]. Like biologi-
al noses, these contain arrays of sensors, resulting in multiple
easurements which are then analysed using pattern recognition
echniques. Theoretically, this multiparametric approach confers
he ability to identify a very large number of different chem-
cals with high specificity. Indeed, with a sufficient number of
arefully chosen sensing elements, an e-nose could be a near-

∗ Corresponding author. Tel.: +44 0 161 2751680.
E-mail address: david.wedge@manchester.ac.uk (D.C. Wedge).

925-4005/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.snb.2009.09.030
universal vapour sensor. In practice, however, all existing e-noses
detect only a family of related chemicals, primarily due to the
difficulty of producing the variety of sensing materials required
for universal sensing [19]. The great majority of existing sensors
are further limited by the requirement for measurements taken
after a sensor has reached an equilibrium state [13], resulting in
typical response times of 5–10 min [14]. For safety-critical tasks,
such as the detection of poisonous vapours, this time-lag is clearly
problematic.

Sensors based on organic semiconductors are highly suitable
for vapour detection applications, owing to their ability to rapidly
absorb analytes at room temperature, frequently affecting a num-
ber of their measurable electrical properties. Organic field-effect
transistors (OFETs) are transistors which contain 3 terminals,
known as source, drain and gate and which use organic semicon-
ducting polymers in their conductive channel. They have recently
been developed as low-cost electronic products for use in flexible
devices [20], light-emitting displays [21], pressure sensors [22] and
chemical sensors [23].
OFETs generally have low detection limits and, if carefully
designed, can also have low threshold voltages, short response
and recovery times, high signal-to-noise ratios and good selectivity
[24]. An important, but largely unexploited, advantage of transis-
tors is that a number of different parameters may be extracted from

http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:david.wedge@manchester.ac.uk
dx.doi.org/10.1016/j.snb.2009.09.030


3 d Actuators B 143 (2009) 365–372

e
t
a
c
t
s
a
o
a

O
s
f
r
n
f

b
w
t
h
i
m
p
t
o

F
a
m
g
m
c

66 D.C. Wedge et al. / Sensors an

ach one [25], enriching the data available during vapour identifica-
ion. When used within an e-nose, as here, OFETs have a further vital
dvantage. A very large number of different active materials may be
reated by the polymerisation of different monomers, so affecting
he interaction between analyte and transistor. Observed sub-
tituent effects include polarisation [26], steric hindrance [27] and
cid–base interactions [23]. The wide variation in OFET response
ffers the possibility of an array of transistors, each of which can
dd information for use during pattern recognition [26].

Here, we describe a method that combines the use of multiple
FETs with the collection of multiparametric data from each OFET,

o that a large number of predictive features may be extracted
rom a modestly sized sensor array. The high dimensionality of the
esulting data necessitates the use of a pattern recognition tech-
ique and we demonstrate the use of genetic programming (GP)

or this task.
The main drawbacks of OFETs have been the overheads required,

oth in terms of data collection and analysis and in the hard-
are required to support them. However, recent advances in both

he hardware and software associated with single OFET sensors
ave resulted in a substantial increase in the portability of such
nstruments and the speed and reliability with which detection
ay be performed, as we have reported previously [23]. This

aper builds on these technological advances, by showing that
hey can be extended to arrays of sensors. The practical utility
f these techniques is shown through the detection of dimethyl

ig. 2. Equipment used during data collection. (a) Cross-section of an OFET used in this
re the source and drain terminals. Polytriarylamine (PTAA) is the polymer used as a sen
oderating the surface polarity. (b) Diagram of the circuit used to characterise the OFETs.

ain resistor, Rg , acts as a voltage amplifier with gain. The gain, G, is defined as G = Rg/Rf +
easures the circuit output voltage, which has the value GVD . (c) Photograph of our exp

hamber), (2) the electronic circuit illustrated in Fig. 1b, (3) the data acquisition device (D
Fig. 1. Structure of the polymers used as sensing materials: (a) polymer 1 (X = CH2,
R = OMe), polymer 3 (X = S, R = Me); (b) polymer 2 (R = OMe), polymer 4 (R = Me).

methylphosphonate (DMMP), a precursor to organophosphate
nerve agents, as well as acetone, methanol and propan-1-ol.

2. Experimental

2.1. Polymer structures and preparation

Here, we use 4 OFETs based upon polytriarylamines (PTAAs) as

shown in Fig. 1. These semiconducting polymers [28] have elec-
trical properties that respond reversibly to low-level exposure to
nitrogen dioxide, alcohols and other vapours [23,29]. An impor-
tant reason for using PTAAs is that they are amorphous. While

study. An aluminium ‘finger’ represents the gate terminal and the gold contacts
sing layer and octadecyltrichlorosilane (OTS) improves the device performance by
The operational amplifier (‘OpAmp’), together with the fixed resistor Rf and variable
1. VS , Rg and Rp all are controlled by the data acquisition device (DAQ), which also
erimental set-up showing (1) OFET in a standard socket (to be placed in exposure
AQ) and (4) the laptop displaying the user interface of the controlling program.
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emi-crystalline polymers give higher mobilities they may be less
ffective as sensing materials since the presence of grain bound-
ries leads to greater variation between devices [30]. The particular
olymers shown in Fig. 1 were chosen to provide materials with
arying electron-donating properties and flexibilities.

Polymers 1–3 were prepared by modification of a microwave-
ssisted method reported previously [31]. The requisite aniline
nd dibromoaryl (1 equiv.) were dissolved in degassed toluene.
odium-t-butoxide (3.2 equiv.), tris(dibenzylidineacetone dipalla-
ium(0) (1 mol%) and tri-t-butylphosphine (6 mol%) were added
nd the mixture stirred under nitrogen in an oil bath at 100 ◦C for
0–30 min. The polymerisations were quenched by the addition
f 4-bromoanisole which acts as an end cap. The products were
igorously purified and obtained as bright yellow solids. Polymer 4
as obtained commercially as a blend with poly(�-methylstyrene)

rom Merck.

.2. Transistor preparation and structure

The transistor preparation procedure has been described in
etail previously [32]. The transistors were initially prepared by
vaporating aluminium under a 10−6 Torr vacuum onto UV-ozone
leaned 100 nm Si/SiO2 wafers and anodising the sample to 5 V
o produce ∼8 nm thick Al2O3 dielectric layer, which acted as a
igh-capacitance gate insulator in the bottom-gate. The substrates
ere then treated using octadecyltrichlorosilane (OTS). The insu-

ating layer had a capacitance of 640 nF cm−2. The devices were
hen spin-coated with solutions of the semiconducting polymers
n toluene and rectangular gold top contacts (2 mm × 1 mm) were
dded using evaporation through a shadow mask. The channel
idths and lengths were 2 mm and 10 �m, respectively, with a
aximum error of 0.5 �m. The OFET structure used in this study

s illustrated in Fig. 2a.

.3. Electronic components

For p-type semiconductors, as used here, a conductive accu-
ulation layer is established in the transistor channel on the

pplication of a sufficiently large negative voltage to the gate
erminal. The minimum gate voltage required to establish an accu-

ulation layer is called the ‘threshold voltage’, VT. VT is a convoluted
unction of the properties of all components of the OFET, and is one
f the device’s most important characteristics. Above VT, the OFET
s said to be ‘on’; below VT it is said to be ‘off’. The existence, and
onductivity, of the accumulation layer is probed by the application
f a voltage to the drain terminal, and measurement of the resulting
rain current, ID.

In our method, transistors are characterised using the circuit
hown in Fig. 2b, using the ‘gain method’ [32]. The gate terminal is
rounded, and the drain terminal is linked to ground by a small
esistor, Rp, so it is effectively grounded, too. A square wave of
mplitude +/−VS is applied to the source terminal by a data acqui-
ition device (DAQ), to switch the OFET ‘on’ and ‘off’ periodically.
he DAQ also adjusts RP and trims gain, G, so that GVD(on) = VS. Rp

s selected to have a value of approximately RSD/1000, so VD is
egligible. Under these conditions the ‘on’ resistance, RSD, and ‘off’
urrent, ID(off) may be calculated using the relationships RSD = GRP,
nd ID(off) = GVD(off)/RSD. ID(off) is an important parameter since it
ndicates the bulk conductivity of the polymer, whereas RSD is an
ndication of its conductivity in the presence of a field-effect.

The circuit shown in Fig. 2b has been implemented on a

espoke printed circuit board (PCB). Rp is the programmable resis-
or AD7376 from Analog Devices, which can have its resistance
et to one of 128 values, up to 1 M�, using a 7-bit data-word.
ain, G, is applied via a voltage divider using a fixed resistor, Rf, of

esistance 2 M� and a variable ‘gain resistor’, Rg, which is the pro-
ators B 143 (2009) 365–372 367

grammable resistor AD5235 from Analog Devices. This has 1024
possible resistances up to 25 k� (corresponding to G ≈ 80), set via
a 10-bit data-word.

2.4. Data collection and pre-processing

Data collection may be performed at a fixed VS or using a series
of stepped VS values. The advantage of the second procedure is that
additional parameters – threshold voltage VT and mobility, � – may
be calculated from a series of ID(on) values, obtained at different VS.
These quantities are important electrical properties of the OFET,
and contain valuable discriminatory information in sensor appli-
cations [25]. ID(on) is typically in the nanoamp region for the OFETs
used in this study, and its measurement traditionally involves the
use of expensive, manually operated equipment and is therefore
impractical for use in a portable vapour sensor. However, use of
the circuit in Fig. 2b circumvents this difficulty. The described elec-
trical drive scheme ensures that the OFET always operates in the
‘saturation’ regime, when it is ‘on’, i.e. above VT. In this regime, Eq.
(1) holds [32], where W and L are the width and length of the tran-
sistor channel and Ci is the gate oxide capacitance per unit area.
It follows that a graph of (VS/G)1/2 against VS will render a straight
line with an x-intercept equal to VT and a slope proportional to �1/2.
Rather than physically drawing a graph, a line of best fit may be cal-
culated in silico via least-squares optimisation and hence � and VT

inferred.

VS

G
= W

2L
RP�Ci(VS − VT )2 (1)

The method just described has been applied previously to a single
transistor [23,32]. The sensing equipment reported here extends
this method into an electronic nose, through the use of 4 transistors,
each coated with a different polymer.

The time taken for quick (fixed-voltage) characterisation is
approximately 0.7 s. During full (stepped voltage) characterisation
we use 6 different voltages, so the time required for full characteri-
sation of each transistor is approximately 4 s. In our experiments a
simple digital switch allows the characterisation of one transistor
at a time, so the time for full characterisation of all 4 transistors
is of the order of 15 s and for quick characterisation is approxi-
mately 3 s. The times required would scale up linearly with more
transistors. However, in principle a commercial implementation
could characterise all transistors in parallel, thereby reducing the
full characterisation time to 4 s and the quick characterisation time
to 0.7 s, for any number of transistors.

Previous sensor arrays have usually been allowed to reach an
equilibrium state before measurements are made [13], for 2 rea-
sons. The first is that manual characterisation of transistors is
a fairly slow process. In particular, the calculation of � and VT

requires measurements at several voltages and these have had to
be made under steady-state conditions to avoid temporal changes
in G affecting the validity of Eq. (1). The speed of our automated
characterisation method largely solves this problem: except in the
presence of very fast gain changes, obtaining measurements every
0.7 s is sufficiently fast to achieve a pseudo-steady-state condition,
in which changes in G between measurements may be neglected
during the calculation of � and VT, even though a true steady-state
(chemical equilibrium) has not been reached. The second reason is
that pattern recognition methods have been insufficiently flexible
to accurately classify time-varying data [33]. To solve this prob-
lem, we have used genetic programming (GP) to perform pattern

recognition, as described in Section 1.8.

For each transistor and each analyte, data were collected for
6 min: 2 min pre-exposure; 2 min exposed; and 2 min recovery.
This corresponds to approximately 90 measurements for each tran-
sistor. The present study uses the exposed data plus 5 baseline
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ata, sampled immediately before exposure, resulting in approx-
mately 35 points for each transistor. To ensure that the transistors

ere ‘on’, VS amplitudes were set well above VT values. For poly-
ers 1–4 the respective unexposed VT values were 0.15 V, −0.3 V,
0.7 V, −1.5 V and the VS ranges were 1.2–2.2 V, 1.5–2.5 V, 1.5–2.5 V
nd 2.2–3.2 V. During fixed-voltage characterisation, VS was taken
rom the middle of the VS range.

In full characterisation mode, 4 properties (average RSD, average
D(off), � and VT) may be deduced for each of 4 different transistors.
owever, the VT values were found to be highly variable because

he extrapolation procedure is very sensitive to noise. VT was not
herefore used for pattern recognition, leaving 12 properties. In
uick characterisation mode, � values are unavailable, so there are

ust 8 available properties. We used the values of these proper-
ies as inputs to a GP. Immediately before exposure, 5 consecutive

easurements were taken and these values were averaged to give
baseline measure. The inputs to GP were then the differences

etween the measured values and this baseline, starting immedi-
tely after exposure.

Before being used in GP, all data were normalised to a range
f [−1, +1] using a linear transformation. This prevents individual
arameters from dominating the pattern recognition task as a result
f a large range, rather than their inherent predictive value.

.5. Data acquisition

The acquisition of data for transistor characterisation was fully
ontrolled by a bespoke program running on a laptop computer.
his program has been written in the Visual Basic language, using
he DT-Open Layers and DT-Display class libraries provided with
he data acquisition module DT9813 from Data Translation Inc.
p and Rg are optimised via a series of estimates, based upon the
nowledge that the measured output voltage is proportional to Rp

nd G. Rp is set once (before exposure) by setting the gain to 1000,
S to the midpoint of the range of voltages to be applied and then
djusting Rp until the output on-voltage is equal to VS. This ensures
hat the measured gain values will be in the region of 1000, which
e have found empirically to give highly stable measurements. Rp is

hen fixed and the tasks of setting the amplitude of VS and adjusting
he gain are alternated.

The interface between the laptop controller and the PCB was
rovided by the DT9813 module. A USB connection services all of
he digital inputs and outputs to this module as well as providing
ower. The DT9813 has the following input/output (IO) channels:

2 analogue output channels. One is used to supply voltage to
power one of the components on the PCB. The other provides
the oscillating VS signal, at a frequency of 30 Hz.
16 analogue input channels. In the set-up reported here, only
2 analogue input channels are used: one for the output of the
PCB, i.e. GVd, and one for the supply voltage VS. The additional
channels will be used in the future when (and if) transistors are
characterised in parallel rather than in series.
4 digital output channels. These are used to control (program)
components on the PCB.
4 digital input channels. One of these is used to monitor the
counter component on the PCB, so that it can be re-set upon
reaching its final (16th) position.
Fixed 0 V (ground), +2.5 V and +5 V analogue outputs, which pro-
vide power to some of the PCB components and provide the gate

voltage (equal to 0 V) to the transistors.

Fig. 2c is a photograph of the experimental set-up, showing
n OFET, the PCB, the DAQ and a laptop running the controlling
rogram.
ators B 143 (2009) 365–372

2.6. Transistor exposure

The data used for pattern recognition was collected separately
for each transistor, due to technical difficulties in accommodating
4 transistors in the exposure chamber and in order to obtain more
frequent measurements from each transistor. However, the laptop
program is capable of collecting data from up to 16 transistors near-
simultaneously, by cycling through the transistors. In future we
intend to expose 4 (or more) transistors simultaneously.

OFETs were connected by copper wires to the source, drain,
and gate contacts with Leit-C glue (Fluka) [29]. They were sep-
arately exposed to 4 different vapours containing, respectively,
acetone, DMMP, methanol and propan-1-ol (Sigma–Aldrich). The
vapours were prepared by bubbling nitrogen through the liq-
uids at a controlled flow rate of 25 standard cubic centimetres
per minute (sccm) and a constant temperature of 22 ◦C. The
resulting vapour concentrations were 480,000, 2500, 270,000 and
35,000 ppm, respectively. Prior to delivery through a Teflon tube
close to the transistor channel, the concentrations of the gener-
ated vapours were halved by mixing with 25 sccm of pure nitrogen
[23]. The resulting concentrations are higher than those required by
commercial sensing devices and further investigation is required to
test the lower detection limit of the device, i.e. the point at which
the signal-to-noise ratio makes detection impossible. The flow rates
of the vapours and of nitrogen were controlled by a Tylan FC-260
mass flow controller. The volume of the exposure chamber was
approximately 900 cm3. However, the delivery tube was directed
straight at the transistor at close proximity, in order to minimise
the time required to displace the gas in the vicinity of the transistor.

2.7. Classification task

All of the transistors showed a large response upon exposure
(partly as a result of the relatively high concentrations used in
this demonstration), so separating the data for the exposed and
unexposed states is a trivial task. Here we present the results of
performing a more difficult task, that of distinguishing between the
responses to the different vapours. Separate GPs were evolved to
identify each vapour, i.e. to classify the collected data into is/is not
acetone, is/is not DMMP, is/is not methanol and is/is not propanol.

2.8. Genetic programming (GP)

GP is a highly flexible method for solving a variety of problems,
inspired by the process of Darwinian evolution via selection, repro-
duction and mutation [34]. It randomly generates a ‘population’ of
possible solutions to a problem. In this case, the solutions are math-
ematical functions that relate the input variables to a prediction of
the presence/absence of a particular analyte. Each solution is rep-
resented as a tree: a possible solution is illustrated in Fig. 3. Each
solution has an associated ‘fitness’. In this case, the fitness measure
is the area under the receiver–operator characteristic (AUROC). This
is a measure of the extent to which a function can separate positive
and negative cases, commonly used as an indicator of the effective-
ness of medical diagnosis [35]. An AUROC value of 1.0 indicates that
positive and negative cases are completely separable, i.e. a cut-off
value may be chosen such that all positive cases give an output
above this value and all negative cases give outputs below this
value. On the other hand an AUROC value of 0.5 indicates that a
predictor gives results that are no better than random. Intermedi-
ate AUROC values may be compared to show the relative efficacy

of different predictors.

The population of candidate solutions undergoes a process of
simulated ‘evolution’. Those solutions that have a relatively high
AUROC are selected for ‘reproduction’. Either a single parent is ran-
domly mutated to produce offspring or 2 parents are selected for
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Fig. 3. A possible GP solution. It represents the function, out-
put = � + � + I /R − 0.5. Most GP solutions are much more complex,
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Table 1
Combinations of transistors used in training GPs. 100 runs were performed using
each of the 15 different combinations shown.

No. of transistors Polymer 1 Polymer 2 Polymer 3 Polymer 4

1
√

√
√

√

2
√ √
√ √
√ √

√ √
√ √

√ √

3
√ √ √
√ √ √
√ √ √

√ √ √

T
A
c

1 2 D(off),4 SD,3

ontaining over 50 nodes, on average. All inputs (RSD , ID and � values) are nor-
alised to a range of [−1, +1] in a pre-processing step before use in a GP, to prevent

ariables with a large range from dominating the functions produced.

e-combination. During the former, a subtree is randomly removed
rom the parent and replaced by a new randomly generated subtree.
n the latter operation, a cut-point is randomly selected in each par-
nt and the subtrees below these cut-points are swapped between
he parents to produce 2 new offspring. Initially, the average fit-
ess of the population is poor. However, as a result of the repeated
roduction of offspring and the replacement of less fit parents by
hese new solutions, the average fitness of the population increases.
fter several generations have passed, the average fitness no longer

mproves. At this point, the best solution is identified as the output
f the GP.

A population of 100 solutions was used. The starting popula-
ion was generated randomly using the ‘ramped half-and-half’ [34]

ethod, which gives candidate solution-trees with a variety of
hapes and sizes. Terminals were randomly chosen from the set
f all inputs together with a set of constants of the same size as
he input set and a range of [−1.0, 1.0]. For example, if there were

inputs being used, the constant set would be made up of the
et {−1.0, −0.6, −0.2, 0.2, 0.6, 1.0}. Non-leaf nodes were randomly
elected from the function set {+, −, ×, ÷, IF, NOT, AND, OR, MIN,

AX}. Evolution was carried out in steady-state mode, whereby

ndividual solutions were replaced one at a time, using ‘tournament
election’. In this procedure, the parent(s) of the new solution were
elected as the best of 4 randomly selected solutions. Similarly,

able 2
verage AUROC values for GP predictions (with standard deviations in brackets). Values ar
ombinations of transistors, repeated 100 times with different partitions of training and t

Characterisation mode Number of transistors Acetone

Quick

1 0.77(±0.15)
2 0.85(±0.12)
3 0.92(±0.09)
4 0.98(±0.09)

Full

1 0.81(±0.13)
2 0.88(±0.11)
3 0.93(±0.09)
4 0.98(±0.07)
4
√ √ √ √

the solution to be replaced was selected as the worst individual
in a randomly selected 4-way tournament. The occurrence of 100
replacements was considered to constitute a ‘generation’.

The data were divided using stratified sampling into training,
validation and test sets in the ratio 6:3:1. GPs were evolved using
the training set to obtain AUROC values. Evolution was stopped
once there had been no improvement in the average AUROC value
on the validation set for 25 generations. The best solution was then
selected, based on AUROC values, and a cut-off value was set so
as to minimise the quantity (FPR2 + FNR2), where FPR is the false
positive rate and FNR is the false negative rate, upon applying the
chosen function to a combined data set containing the training and
validation data. The chosen function and cut-off were applied to
the test set in order to obtain sensitivity and specificity values.

Assuming that data from between 1 and 4 different transistors
are used in GP training results in 15 possible combinations of tran-
sistors, as listed in Table 1. For each combination, 100 runs were
performed, with data partitioned such that every point appeared
in a test set 10 times, in order to assess the reliability of the GP
predictions.

3. Results

3.1. Area under the receiver–operator characteristic (AUROC)

AUROC values for all possible combinations of 1, 2, 3 or 4 tran-
sistors are given in Table 2, with standard deviations across 100
runs in brackets. The AUROC values are graphed in Fig. 4. They

show that increasing the amount of data available by the addition
of extra transistors leads to an increase in AUROC values. The stan-
dard deviations indicate that the reliability of the results is also
improved.

e obtained for predictions on test data. They have been averaged across all possible
est data.

DMMP Methanol Propanol Average

0.74(±0.16) 0.74(±0.16) 0.69(±0.17) 0.73(±0.16)
0.82(±0.14) 0.82(±0.14) 0.75(±0.17) 0.81(±0.14)
0.86(±0.14) 0.84(±0.14) 0.77(±0.16) 0.85(±0.13)
0.87(±0.15) 0.89(±0.16) 0.77(±0.16) 0.88(±0.14)

0.77(±0.14) 0.84(±0.14) 0.76(±0.15) 0.79(±0.14)
0.88(±0.12) 0.88(±0.13) 0.82(±0.14) 0.86(±0.12)
0.92(±0.09) 0.91(±0.11) 0.86(±0.13) 0.91(±0.10)
0.94(±0.09) 0.91(±0.11) 0.87(±0.13) 0.92(±0.10)
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Fig. 4. Area under the receiver-operator characteristic (AUROC) values for GP pre-
dictions. Values are obtained for predictions on test data. They have been averaged
across all possible combinations of transistors, repeated 100 times with different
partitions of training and test data. A value of 1.0 indicates complete discrimination
between the presence and absence of an analyte while a value of 0.5 indicates a null
(random) prediction. (a) The results using a quick (fixed-voltage) regime; (b) the
results for a full (stepped-voltage) regime.

Fig. 5. Graphs of the change in RSD (M�) with exposure time (seconds) upon exposure t
refer to data collected from, respectively, (a) polymer 1, (b) polymer 2, (c) polymer 3 and
using a univariate approach.
ators B 143 (2009) 365–372

A comparison between ‘quick’ and ‘full’ modes of data collection
(Fig. 4a and b) indicates that the latter is, unsurprisingly, more infor-
mative. However, it should be noted that the use of 4 transistors in
‘quick’ mode gives AUROC values that are as good as those values
obtained from 1 transistor characterised in ‘full’ mode, despite tak-
ing two-thirds of the time to collect data. This comparison suggests
that a 2-phase detection method – involving initial screening at a
fixed-voltage followed by full characterisation if the target gas is
indicated by the first phase – might be an effective compromise
between speed and reliability.

Using data from 4 transistors in full characterisation mode leads
to the highest observed AUROC values. Predictors were created
for this data by selecting cut-off values above which a vapour
was predicted to be present, as described in Section 1.8. The
resulting classifiers had average sensitivity (true positive rate)
and specificity values of 0.91 and 0.96 for acetone, 0.86 and 0.88
for DMMP, 0.79 and 0.87 for methanol, and 0.79 and 0.83 for
propanol.

3.2. Input use analysis

In addition to yielding highly specific detection, GPs automati-
cally select the most valuable inputs to use during prediction. Each
predictor uses a different mathematical function and an analysis
of the functions used yields the frequency with which a parame-
ter from a particular polymer or a particular data-type (RSD, ID(off)
or �) was used in the solutions. Table 3 indicates that, while all
predictors are multiparametric, some emphasise the role of par-
ticular parameters in carrying out a particular classification. For
example, GPs that predict the presence of acetone tend to use RSD

values while predictors of propanol are more likely to use a mixture
of different parameter types. However, the preference for specific
parameters is not highly pronounced for the detection of any ana-
lyte, confirming the usefulness of a multiparametric, multisensor
approach.

o 4 different analytes, for OFETs coated with 4 different polymers. The subfigures
(d) polymer 4. The graphs illustrate the difficulty of separating analyte responses
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Table 3
Average usage of data from each polymer and parameter-type. Values represent the
number of times each type of input was used by the GPs, averaged across 100 GP
runs in which all 12 parameters were used.

Analyte Polymer Parameter-type

1 2 3 4 RSD ID(off) �

Acetone 6.9303 4.1177 2.2864 1.835 9.5347 3.4364 2.1983
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DMMP 2.5357 4.6987 7.0503 2.1033 9.4203 3.5646 3.4031
Methanol 7.5966 2.6388 4.2191 3.686 7.7188 5.5472 4.8745
Propanol 5.319 4.699 1.6997 3.8184 6.4998 3.7987 5.2376

.3. Univariate analysis

Univariate analysis gives further confirmation of the need for
multiparametric approach. A comparison between the data col-

ected during exposure to the different analytes shows that there
s very strong overlap in the ranges of any individual variable. This
s illustrated by Fig. 5, which shows the changes in RSD for all 4
FETs exposed to all 4 analytes. For any one polymer, the range of
hanges in RSD is similar for most or all of the tested analytes. For
his reason, it is not possible to separate the responses to different
nalytes using univariate analysis. However, multivariate analysis,
s used by GP, results in very good separability, as shown in Section
.1.

. Conclusion

In conclusion, OFET arrays have been shown to be effective
apour sensors, with high sensitivity (true positive rate) and speci-
city (true negative rate). The effectiveness of these arrays has
een shown to arise both from the use of multiple OFETs and from
he acquisition of multiple parameters from each OFET. The use
f an automated gain method of characterisation, combined with
he use of GP-based pattern recognition techniques, allows real-
ime monitoring of gaseous environments, with response times
etween initial exposure and detection of a few seconds. Future
ork will focus on the development and testing of polymers with

ncreased specificity for specific analytes and with clear responses
t low analyte concentrations. The use of larger arrays, containing
lternative organic semiconductors, is expected to further increase
he scope and reliability of this type of e-nose, with the ultimate
oal of creating a universal vapour sensor.
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