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The importance of metabolomic data in functional genomic investigations is increasingly becoming evident, as is its utility in

novel biomarker discovery. We demonstrate a simple approach to the screening of metabolic information that we believe will be

valuable in generating metabolomic data. Laser desorption ionisation mass spectrometry on porous silicon was effective in

detecting 22 of 30 metabolites in a mixture in the negative-ion mode and 19 of 30 metabolites in the positive-ion mode, without the

employment of any prior analyte separation steps. Overall, 26 of the 30 metabolites could be covered between the positive and

negative-ion modes. Although the response for the metabolites at a given concentration differed, it was possible to generate direct

quantitative information for a given analyte in the mixture. This technique was subsequently used to generate metabolic footprints

from cell-free supernatants and, when combined with chemometric analysis, enabled us to discriminate haploid yeast single-gene

deletants (mutants). In particular, the metabolic footprint of a deletion mutant in a gene encoding a transcriptional activator

(Gln3p) showed increased levels of peaks, including one corresponding to glutamate, compared to the other mutants and the wild-

type strain tested, enabling its discrimination based on metabolic information.
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1. Introduction

Saccharomyces cerevisiae is among the most well-
studied organisms of the post-genome era. However,
even for such an important model eukaryote over 2000
ORFs (about 30% of protein-encoding genes in its
genome) remain poorly characterised (http://
www.yeastgenome.org/); that is to say there is no
unequivocal knowledge about the genes’ role. Whilst
functional genomic investigations involving transcrip-
tomic and proteomic analyses are being actively pursued
to enhance our understanding of gene functions (e.g.,
Bader et al., 2003; Jones et al., 2003; Vazquez et al.,
2003; Wu et al., 2004), there is more to gain from
examining the metabolomes that can provide valuable
additional information (Castrillo and Oliver, in press;
Oliver et al., 1998; Raamsdonk et al., 2001; Vaidyana-
than, 2005; Vaidyanathan et al., 2005). This is high-
lighted by the significant role metabolites play in the
regulation of gene function, several of which can go
unnoticed when transcriptomes and proteomes alone are

analysed (Daran-Lapujade et al., 2004; Ideker et al.,
2001; ter Kuile and Westerhoff, 2001). There is thus
considerable interest in developing strategies for analy-
sing metabolomes, of which metabolic footprinting
shows promise for rapid and high-throughput screening
and analysis (Allen et al., 2003, 2004; Kaderbhai et al.,
2003; Kell et al., in press).

Metabolites secreted into the culture medium, as a
result of ‘‘overflow metabolism,’’ can provide valuable
information on microbial behaviour, in addition to that
from intracellular metabolites, and these ‘‘metabolic
footprints’’ can be used for functional genomic investi-
gations (Allen et al., 2003, 2004; Kaderbhai et al., 2003).
The main attraction in such analyses is the avoidance of
the need to extract metabolites from within cells and the
associated discrepancies/difficulties that are involved in
the analyses of intracellular metabolites, such as rapid
quenching of metabolism and separation from extra-
cellular metabolites. Whilst techniques such as direct-
infusion electrospray ionisation mass spectrometry
(DI-ESMS), NMR spectroscopy, GC-MS, FT-IR and
Raman spectroscopies, can be used for deriving meta-
bolic footprints (Goodacre et al., 2004; Dunn et al.,
2005; Dunn and Ellis, 2005), alternative technologies
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that can rapidly generate useful information about
metabolite levels with minimal sample intervention
would provide a welcome addition to the functional
genomics ‘‘toolbox.’’ Such rapid screening methods
would be used prior to more elaborate and directed
metabolite analyses, as part of a hierarchical approach.

Laser desorption ionisation mass spectrometry on
porous silicon (DIOS), pioneered by Siuzdak et al. (Wei
et al., 1999; Shen et al., 2001; Go et al., 2003a, b;
Trauger et al., 2004) has been shown to be a simple and
useful method for analysing small molecules without the
intervention of matrix ions and adducts typically asso-
ciated with MALDI-MS analyses. In these investiga-
tions the emphasis has been on the analysis of one or
two small molecules, usually in isolation. The suitability
of the technique for the analysis of mixtures of small
molecules (as would be encountered in metabolomic
investigations) has, to our knowledge, not been shown.
We therefore studied the application of DIOS with
cluster analysis for metabolic footprinting, and report
here the proof-of-principle of this concept for the dis-
crimination of different yeast single gene deletant
(hereafter referred to as mutant) strains.

2. Materials and methods

2.1. Microbial growth

Ten MATa haploid Saccharomyces cerevesiae
mutants and the corresponding wild-type strain (table 1)
were grown in batch cultures using a minimal medium as
described earlier (Allen et al., 2003). Briefly, ammonium
was the main nitrogen source and a cocktail of amino
acids consisting of arginine, aspartate, glutamate, histi-
dine, leucine, lysine, methionine, serine, threonine,
tryptophan and valine, all at 1 mM concentration, was
available for growth. The mutants were grown as three
biological replicates. After 24 h of growth (sufficient
time for the mutants to have entered the stationary
phase of growth [Allen et al., 2003]), the cells were

centrifuged and the cell-free broth was collected and
stored at )80 �C until analysed.

2.2. Metabolite cocktail

This consisted of the amino acids (in L-form) alanine,
arginine, asparagine, cysteine, glutamine, glycine, histi-
dine, isoleucine, leucine, lysine, methionine, phenylala-
nine, proline, serine, threonine, valine (all at 30 lM),
aspartate, glutamate, tryptophan (all at 3 lM), tyrosine
(0.3 lM), the organic acids fumarate (3 lM), citrate,
malate, lactate, pyruvate, succinate, oxaloacetate (all at
30 lM), and the metabolites 4-aminobutyric acid,
putrescine and D-glucose (all at 30 lM).

2.3. Mass spectrometry

Frozen, cell-free supernatants were thawed and dilu-
ted 1 in 10 using deionised water. The diluted samples
were spotted directly on to a DIOS porous silicon target
chip (Mass Consortium Inc., San Diego, CA, USA). The
DIOS chip was then attached to a standard stainless
steel target plate using double sided sticky conductive
carbon tape (Structure Probes Inc., West Chester, PA,
USA) and analysed in a Kratos Axima CFR+MALDI-
ToF mass spectrometer (Kratos Analytical, Manchester,
UK), in both the positive and negative-ion modes. 150
shots were averaged for each sample in both the acqui-
sitions, and typical spectral collection times were 2 min
per sample. Each biological replicate was analysed four
times (technical replicates). The DIOS chip was washed
with methanol several times (typically five) and reused
where required, for replicate analyses.

2.4. Data analysis

The mass spectral data were imported into MATLAB
(The Math Works, Natick, MA, USA) and processed
for analysis as described (Goodacre et al., 1998;
Raamsdonk et al., 2001). The spectra (in the mass range

Table 1

The MATa haploid mutants used in the study and their physiological significance

Mutant ORF Description (/mutation in) Identifier

BY4741 Wild type strain (MATa; his3D1; leu2D0; met15D0; ura3D0) wh

YDR508c (gnp1D) Broad-specificity amino-acid permease. High-affinity glutamine permease s1

YBR294w (sul1D) Sulfate permease I s2

YCR037c (pho87D) Low affinity phosphate transporter s3

YPR138c (mep3D) Low affinity ammonium permease s4

YKL040c (nfu1D) Iron homeostasis c1

YCR044c (per1D) Involved in manganese homeostasis c2

YAL062w (gdh3D) NADP-glutamate dehydrogenase c3

YER040w (gln3D) Transcription factor for positive nitrogen regulation.

Responsible for nitrogen catabolite repression (NCR)-sensitive transcription.

g1

YKR034w (dal80D) Transcriptional repressor for allantoin and GABA catabolic genes.

Negative regulator of multiple nitrogen catabolic genes

g2

YLR013w (gat3D) Transcription factor activity. Similarity to nitrogen regulatory proteins g3
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100–500 m/z) were binned to 0.1, 0.2 or 0.5 m/z and
normalised to total ion counts. Principal components
analysis (PCA) was performed using the NIPALS
algorithm and a selected number of PCs (typically those
contributing to more than 95% of the explained vari-
ance) chosen for discriminant function analysis (DFA),
where the mutant type was used as the a priori known
class information. Clustering on the PC-DFA space was
then studied. Reproducibility was assessed by choosing
one of the biological replicates for each mutant class as
the test set and retaining the other two biological rep-
licates in the training set.

3. Results and discussion

DIOS spectra of a cocktail of 30 metabolites con-
sisting of 20 amino acids and a few (5) organic acids
showed spectral information pertaining to the metabo-

lites in the protonated [M+H]+, sodiated [M+Na]+ or
potassiated [M+K]+ forms in the positive-ion mode
(figure 1a) or the deprotonated form [M–H]) in the
negative-ion mode (figure 1b). As expected, the basic
metabolites (arginine, histidine, putrescine) dominated
the positive-ion spectra, whilst the acidic ones (malic
acid, citric acid) dominated the negative-ion spectra.
When the metabolites were analysed in isolation, at an
equimolar concentration of 30 lM, the response of the
individual metabolites was different from each other, as
illustrated for analysis in the negative-ion mode, in fig-
ure 1c. Cysteine, glucose, oxaloacetate, putrescine and
succinate did not show detectable signals. Differences in
the response could be observed for metabolites with
identical or near identical mass, so that it is possible in
favourable cases, to assign signals from mixtures to one
or the other metabolite. The deprotonated forms of
oxaloacetate and asparagine are expected to have a

Figure 1. Desorption ionisation mass spectra on porous silicon of a metabolite cocktail containing 30 standard metabolites (refer to text for

details) in (a) the positive-ion mode and (b) the negative-ion mode; (c) Relative median metabolite response for each of the thirty metabolites

when analysed individually at 30 lM concentration, in the negative-ion mode; (d) The observed relative median response in the negative-ion

mode, corresponding to each metabolite in the cocktail when the mixture was analysed; (e) Quantitative information (calibration curve) in the

positive-ion mode for histidine obtained by spiking a metabolic cocktail containing the twenty amino acids minus histidine (at 50 lM each), with

histidine at concentrations of 0–100 lM and monitoring peak areas relative to TIC (error bars indicate 1 standard deviation either side of the

mean); (f) Average negative-ion spectra of cell free supernatant from the culture of a mutant (g1) after 24 h of growth. Note the prominent

phosphate peak which was removed when these data were analysed by clustering algorithms.
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signal at m/z 131.1 in the negative-ion mode. Whilst
asparagine shows a detectable response at this m/z,
oxaloacetate was not detectable. A detectable response
at this m/z in a mixture containing both species can thus
be assigned to asparagine. Similarly, glutamine gives a
better response than does lysine at m/z 145.1, and the
response at this m/z in a mixture containing both can be
expected to have a greater contribution from glutamine.
However, for leucine and isoleucine, both of which are
expected to give a response at m/z 130.2 in the negative-
ion mode, the difference is marginal, making it difficult
to assign contributions directly.

The median response of the metabolites when anal-
ysed in a mixture showed 22 detectable signals at the
expected m/z corresponding to the 30 metabolites in the
negative-ion mode (figure 1d). Tyrosine, fumarate, glu-
tamate, aspartate and tryptophan were present at lower
concentration than the rest, and consequently showed
lower signal responses. The presence of other metabo-
lites appears to influence the detection of a response to a
particular metabolite, as well as the concentration of the
metabolite in the mixture, as almost all the signals were
lower than expected. In the positive ion mode, signals at
m/z corresponding to 19 of the 30 metabolites in the
mixture could be detected. Siganls at m/z corresponding
to metabolites like succinate, lactate and glucose in the
mixture, which gave little or no signal in the negative-
ion mode could be detected as sodium or potassium
adducts in the positive-ion mode, albeit with a weak
signal. Overall, excluding four of the metabolites that
had the same nominal mass as four others, signals cor-
responding to all the other metabolites (26 in number)
could be detected in the positive or the negative ion
mode, at varying levels of signal intensity.

Although the responses differed for each metabolite,
the peak areas normalised to the total ion current (TIC)
varied in proportion to the concentration of the
metabolite, even in a mixture, as demonstrated in fig-
ure 1e for histidine, when varying concentrations of
histidine were spiked in a metabolic cocktail containing
19 of the 20 amino acids in the mixture (histidine was
omitted). Varying the concentration of histidine resulted
in a proportional change in the normalised peak area at
m/z 156.2, where the protonated histidine gives a signal
in the positive-ion mode. It was possible to detect a
proportional response for histidine from 1 lM to 1 mM,
with linear responses over different concentration ran-
ges. The calibration curve obtained in the concentration
range 0–100 lM is shown in figure 1f. This demon-
strates clearly that, in addition to detecting spectral
signals, it is also possible to obtain quantitative infor-
mation using this technique.

In order to assess the suitability of this technique for
metabolomics studies, we investigated the classification
of yeast mutants based on their metabolic footprints.
We selected 10 MATa haploid mutants (table 1) of
S. cerevisiae, derived from the wild type strain BY4741.

Three of these (c1–c3) are associated with the central
metabolic pathways and/or in maintaining homeostasis,
three others (g1–g3) are associated with the regulation of
gene expression (influencing activity of transcription
factors), and the rest (s1–s4) are associated with external
sensing/transport and/or signal transduction. The
strains were cultivated to the stationary phase of
growth, as this had been shown previously to give the
most reproducible metabolic footprint (Allen et al.,
2003). The cell free supernatants were then harvested
and their dilutions analysed using DIOS-MS in both the
positive- and negative-ion modes, without any prior
analyte separation stages (such as chromatography).

Much of the spectral information in the positive-ion
mode appeared to be suppressed with dominant K+ and
Na+ ions, possibly due to the high salt concentrations in
the growth medium. However, the negative-ion spectra
showed peaks that corresponded to organic acids of
primary metabolism, some of which were components of
the growth medium. A typical spectrum (average of
replicate measurements) in the negative-ion mode (fig-
ure 1f) is dominated by a signal at m/z 97 that corre-
sponds to phosphate in the growth medium (this signal
completely suppresses other signals in negative-ion
DIESMS). To minimise this dominant influence the
spectra were analysed from m/z 100 to m/z 500. After
spectral preprocessing the dimensionality of the data was
reduced by PCA to extract the predominant variance and
the first few PCs that contributed to over 95% of the
variance analysed by DFA to obtain discriminant
information.

Figure 2a shows a pseudo 2D scores plot of the
samples for the first two discriminant functions (first 60
PCs used for DFA), and it can be seen that the mutant
labeled g1 clearly separates out from the rest of the yeast
strains including the wild type. Although the a priori
information used in the clustering is the mutant classi-
fication itself, the reproducibility of the discrimination
can be observed by the clustering of the test set (labeled
with an asterisk) along with the training set. An
inspection of the first combined PC-DFA loadings (fig-
ure 2b) demonstrates that the major variations modeled
are based on the changes in m/z 145.1 and 146.1. These
mass units correspond to those of the deprotonated
forms of the amino acids glutamine (and/or lysine, a-
ketoglutarate) and glutamate, respectively. A compari-
son of the mean spectra of the g1, g2 and the wild-type
strains shows clearly the difference between the strains in
peak at m/z 146 attributable to glutamate (figure 2c),
and in particular that this peak is more intense in g1
compared to the rest. These results are corroborated by
observations from DIESMS of the samples in the posi-
tive-ion mode (figure 2d), where glutamate and gluta-
mine peaks showed a higher response for g1, compared
with g2 and the wild type. Similarly, it was also observed
from GC-MS analysis of the mutants (data not shown)
that the mean peak area corresponding to glutamate for
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the metabolic footprint of g1 mutant was higher than
that of g2 or the wild type.

From table 1, the mutant g1 can be identified as
YER040w which is a single deletion mutant in GLN3,
which encodes a transcriptional activator of genes regu-
lated by nitrogen catabolite repression that is, itself, reg-
ulated by the type of the nitrogen source available for use.

The product of GLN3 is under the control of the
TOR signaling pathway, which mediates the cell’s
response to nutrient supply, and is a key element in the
regulation of the expression of a number of genes in
S. cerevisiae in response to the availability of different
sources of nitrogen (Mitchell and Magasanik, 1984;
Beck and Hall, 1999; Cooper, 2002). The TOR cascade
has a prominent role in regulating translation, ribosome
biogenesis and amino-acid permease stability, in addi-
tion to transcriptional regulation (Cardenas et al., 1999;
Kuruvilla et al., 2001). The GLN3 regulatory system
responds to intracellular glutamine levels (Mitchell and
Magasanik, 1984; Crespo et al., 2002), and is activated
under nitrogen-limiting conditions or when a poor
nitrogen source is available.

In yeast, the quality of the available nitrogen source
controls the expression of genes encoding proteins
responsible for the uptake and assimilation of nitroge-
nous compounds (Kuruvilla et al., 2001; Magasanik and
Kaiser, 2002). Four GATA transcription factors, the
activators Gln3p and Gat1p/Nil1p and the repressors

Dal80p and Deh1p/Nil2p/Gzf3p mediate the regulation
of this process (Cooper, 2002). In the presence of a good
source of nitrogen, such as glutamine or ammonium, the
GLN3 product Gln3p is retained in the cytoplasm in a
phosphorylated form bound to Ure2p, and is inactive.
Upon a shift to a nitrogen-poor environment or in the
presence of poor nitrogen sources such as proline, urea
or glutamate, Gln3p is dephosphorylated, dissociated
from Ure2p, and enters the nucleus to promote tran-
scription of the genes needed for the transport and
catabolism of the available poor nitrogen source. Gln3p
activates genes encoding glutamine synthetase, gluta-
mate synthase, glutamate dehydrogenase (all enzymes
involved in nitrogen source metabolism), in addition to
those encoding the GATA activator, Gat1p/Nil1p and
the repressor, Dal80p (Daugherty et al., 1993; Maga-
sanik and Kaiser, 2002). It thus plays a crucial role in
the regulatory mechanism under nitrogen limiting con-
ditions. Deletion mutants of GLN3 show poor activities
of some of the above enzymes (Mitchell and Magasanik,
1984; Courchesne and Magasanik, 1988) in the presence
of glutamate. Under the culture conditions employed in
our study, after the depletion of ammonium (the pri-
mary nitrogen source) the utilisation of secondary
nitrogen sources (such as glutamate) would be hampered
in the gln3 deletion mutant, leaving some of these
sources unused in the medium. Alternatively, the
metabolites detected in the medium that contribute to

Figure 2. (a) PC-DFA score plot constructed using the first 60 PCs (analysed on spectra binned to 0.1 m/z) showing the discrimination of

mutants g1 and s4 from the rest of the yeast mutants and the wild type strain. The test set is marked with an asterisk, and the separating clusters

encircled for clarification. (b) The first loadings plot of the PC-DFA. Note the prominent peaks at m/z 145 and 146 seen clearly in the expanded

portion of the loadings. (c) Mean spectra of g1 (gln3D), g5 (dal80D) and the wild type wh (BY4741) strains showing the differences in the spectra in

the region where the prominent discriminatory effect is observed. Note the higher peak intensity at m/z 146 (corresponding to glutamate) for g1

compared to the rest. (d) Mean spectral response corresponding to glutamine (m/z 147) and glutamate (m/z 148) in the positive-ion direct infusion

electrospray ionisation mass spectra of the three strains as in (c) (error bars represent one standard deviation about the mean).

S. Vaidyanathan et al./Laser desorption ionisation mass spectrometry approach 247



the discrimination of these mutants from the rest could
have been excreted as a result of improper metabolism.
Such excretions are not uncommon in S. cerevisiae cul-
tivations (Velasco et al., 2004). Although the physio-
logical reasons for the discrimination are difficult to
ascertain within the current experimental setup, the fact
that the metabolic footprint of the gln3mutant separates
from that of the dal80 mutant (g2) which is also asso-
ciated with regulation of nitrogen metabolism, albeit
with a different mechanism (Daugherty et al., 1993;
Cooper, 2002), suggests that the technique adopted in
this investigation has the ability to discriminate between
similar physiological processes and thus is a potentially
valuable tool in functional genomic investigations.

Further analysis of the dataset after removal of the g1
mutant data showed that the mutants s1 and s4 can be
discriminated based on their metabolic footprints
(figure 3). Indeed, s4 can be seen to cluster separately
even when g1 is included in the analysis (figure 2a), but
the discrimination is better following removal of the g1
DIOS data. Whilst s4 discrimination is observed only in
the analysis of the spectral data with 0.1 m/z resolution
(figure 3a), s1 discrimination is observed when a 0.5 m/z
resolution is used (figure 3c). This is possibly due to
overlap of spectral information and the difficulty in
discriminating between the information due to s1 in the
presence of more data (i.e., the information is possibly
lost in the presence of too many peaks). From table 1,
these mutants can be identified to be YDR508c and
YPR138c. The first mutant is a gnp1 deletant and thus

lacks a broad-specificity amino acid permease/high-
affinity glutamine permease. The second mutant is
deleted for MEP3, which encodes a low affinity
ammonium permease. Inspection of the first loadings
plot for these two discriminations (figure 3b, d) shows
changes at m/z 118.5, 147.5 and 347.5 contributing most
to the discrimination of s1, whilst m/z 155.1, 157.1, and
173.3 are among the peaks contributing to the discrim-
ination of s4. Although there are several metabolites
that could potentially contribute to these masses, two
candidates for the mass unit at 118, threonine and/or
homoserine have a known physiological significance. It
is known that GNP1 is expressed under both rich and
poor nitrogen conditions and cells lacking GNP1 exhibit
reduced levels of glutamine transport (Zhu et al., 1996).
Gnp1p has also been implicated in threonine and
homoserine uptake systems in yeast and excretion of
these metabolites into the medium with deletion mutants
have been observed (Velasco et al., 2004).

One of the candidates for m/z 157.1, 4-methylene-L-
glutamine has been associated with C5-branched dibasic
acid metabolism in three Saccharomyces species
(S. paradoxus, S. mikatae, and S. bayanus) (KEGG
database – http://www.genome.jp/kegg/) and is possibly
excreted in this case. MEP3 along with MEP1 and
MEP2, all encode ammonium permeases that scavenge
ammonium from the medium for use as a nitrogen source
(Marini et al., 1997). These genes are expressed when low
ammonium concentrations are present in the growth
medium, but are repressed at high concentrations of a

Figure 3. Discrimination of mutants after excluding g1 spectra from the analysis (a) PC-DFA score plot of analysis performed on spectra binned

to 0.1 m/z, constructed using the first 65 PCs, showing the discrimination of mutant s4. (b) The first PC-DFA loadings plot showing the regions of

major variance in the spectral data, corresponding to the analysis in (a). (c) PC-DFA score plot of analysis done on spectra binned to 0.5 m/z,

showing the discrimination of mutant s1. (d) The first PC-DFA loadings plot showing the regions of major variance in the spectral data

corresponding to the analysis in (c). The test set is marked with an asterisk and the clusters encircled for clarification, in (a) and (c).
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good nitrogen source (>20 mM ammonium). Mep3p,
which displays the lowest affinity of the three, is most
sensitive to lowering of the ammonium concentration
below 1 mM (Marini et al., 1997). There is also evidence
that fungal Mep proteins mediate diffusion of the
uncharged ammonia species across the cytoplasmic
membrane (Soupene et al., 2001), and that Mep3p par-
ticipates in colony morphogenesis (Minarikova et al.,
2001). Given the above, it is difficult to pinpoint the exact
metabolites excreted under the current experimental
setup. However, it is very likely that the peaks contrib-
uting to the discrimination are associated with metabo-
lites that directly reflect the deletion of the respective
genes.

In summary, desorption ionisation on porous silicon
offers considerable promise for rapid metabolic anal-
ysis, such as in the metabolic footprinting demon-
strated here, enabling rapid screening of mutants prior
to more elaborate analyses and perhaps for the
detection of transient cellular processes that may go
unnoticed under more elaborate sample preparation
conditions when the number of samples that are
acquired may be limited. The evaluation of the tech-
nique for such applications is a subject of future
investigations.
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