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One result of genome-sequencing programmes is the
discovery of many genes with unknown functions.
There is also a recognition that rather than testing
specific hypotheses by experiment, the large
quantities of expression profiling data now being
generated [1–5] can be used to generate explanations
that become the new hypothesis [6] in a continuing
cycle of hypothesis generation and testing (Fig. 1).

Machine learning of complex networks

Consider genetic or metabolic networks. Given the
PARAMETERS (see Glossary) (e.g. the nature of
interactions, feedback loops, etc.) and rate equations 
of a kinetic model of a metabolic or genetic network, 
it is possible to ‘run’ the model inside a computer 
(by solving the appropriate differential equations) 
and determine the time evolution of the metabolic
VARIABLES, which include the fluxes and concentrations
of metabolites and other catalytic and signalling
molecules (e.g. [7–11]). However, the variables are
determined by the parameters, not vice versa, and
what we often wish to do is to solve the ‘inverse
problem’, in which we measure the variables (such as
the levels of metabolites or gene products) and derive
the parameters from them [12,13]. This problem is
known as predictive modelling or structural equation
modelling [14–16], and it shares the goals of machine
learning [17,18], in which the aim is to find rules that
effect a NONLINEAR MAPPING between inputs and outputs
in complex systems (Fig. 2). The majority of current
analyses are of course focused on microarray data.

Initially, only clustering methods were used to
analyse these complex data sets [19–21]. These and
related methods [22–24] are referred to as
‘unsupervised’ learning methods, and they use only
knowledge of the ‘input’ (microarray) data to represent
the ‘closeness’ (e.g. patterns of relative increase or
decrease or temporal co-expression) of a high-
dimensional array vector (i.e. a list of numbers
representing the expression level of a great many
genes) to another such list in some low-dimensional
space (i.e. a smaller number) which may be visualized
(e.g. by the extraction of principal components [25]).
This assumes that things that are nearer to each other
in this low-dimensional space are more ‘like’each other,
a strategy often known as ‘guilt by association’ [26,27].

However, problems based on input–output mapping
of the type shown in Fig. 2 are best analysed using
‘supervised’methods. With these – in contrast to the
clustering methods – we include knowledge of the
output or ‘class membership’ in the analysis and ‘train’
the system when presented with the input vector to
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Genetic programming (GP): A technique in which we evolve
computer programs to solve specific problems, typically those cast
as a nonlinear mapping problem as in Fig. 2. Although the principles
go back further [a], it was popularised by John Koza of Stanford
University in a series of books [b–d]. A web-accessible introduction
can be found at http://www.geneticprogramming.com/. Our current
work uses the software gmax-bio™ (http://www.abergc.com).
Nonlinear mapping problem: This describes a problem which can
be cast, as in Fig. 2, in terms of the transformation of a set of input
data to an output such that varying the input varies the output.
Initially the nature of the mapping is unknown (and nonlinear),
and the aim is to discover it.
Operator (or function): Something that takes one or more inputs
and transforms them into something else. In genetic
programming trees of the type shown in Fig. 3, the operators are
represented by the purple rectangles and each has only one
output. Operators can be arithmetic (e.g. plus, minus, divide,
multiply, log, square root, etc.), logical (e.g. IF A<B output = 1,
ELSE output = 0; IF A is true AND B is true output 1, ELSE output 0;
etc.), trigonometric (e.g. input = A, output = sin(A)) and so on.
Parameters and variables: In the mathematical modelling of
biological networks we discriminate between parameters and
variables. The parameters of a system are those things that are
either controlled at known values by the experimenter or are
inherent to the system and do not change during the experiment. As
well as all the initial conditions and the structure of the network in
terms of its interactions, examples of the parameters might include
pH (if buffered) and the Michaelis and catalytic rate constants of
enzymes, or the concentration of an added effector, such as IPTG in a
gene expression induction study. The variables of such a system are
those things that change during an experiment, and in metabolic
networks would especially be the concentrations of metabolites and
metabolic fluxes. In genetic networks they might also be the
concentrations of proteins and of signalling molecules.
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effect a mathematical transformation that will produce
the desired output [18]. Bootstrapping or cross-
validation methods (e.g. [28]), using data for which the
answer is known but which were not seen during the
training phase, ensure that the mappings produced are
robust and generalize appropriately. So, for instance,
microarray data were recently collected from breast
tumour biopsies where the patient outcome was known
[29]. By a series of iterative trials – training – a set of
transcripts could be identified that were good predictors
of outcome. A similar strategy was used to advantage
with serum proteins and ovarian cancer [30].

There are a great many possible machine learning
methods that can be applied to mappings of this type.
They include neural [31,32], statistical [24], logic-based
[33], rule-based [34,35] and evolutionary computing
[36,37] strategies. Our focus is on the last, and in
particular on a subset of methods popularized as ‘genetic
programming’(GP) [5,38–43]. (Note that our use of ‘GP’
here is strictly in its computer science sense.) Here we
shall concentrate on the more traditional tree-based
encoding [44] (Fig.3). The attraction of the tree structure
is that it is possible to ‘mutate’any program by removing

a subtree (along with everything below it) and replacing
it with anything else that has a single output, thereby
preserving the syntax (i.e. the number and nature of
inputs that the node above it expects). Similarly, one
can effect ‘recombination’between two programs by
removing a subtree from each of two (or more) programs
and swapping them around. Evolutionary computing
strategies of this type then allow one to evolve simple
rules to solve complex data mining problems,
according to the general algorithm given in Fig. 4.

The result of this process is a rule that not only
effects the desired nonlinear mapping, but that also
has explanatory power: we learn not only which input
variables are important to the output of interest, but
also the functional form of the relationship between
them. This is obviously generic in character, and has the
attraction that the combination of a small number of
input variables and nonlinear OPERATORS allows a simple
and robust mapping that simultaneously identifies
both the important input variables and how they
interact. Most significantly, however, if the inputs are
genetic markers or transcript levels from, for example,
a microarray measurement and the output is a disease
presence or absence (coded 1 or 0, respectively) or
other high-level trait, the rule evolved would in fact be
an exact genotype–phenotype mapping. In this sense,
we see that the gene encodes the program.

Genes as computer programs

We are of course used to considering developmental
processes in terms of an ordered programme of genetic
expression events, where genes are turned on
temporally. What are the consequences of accepting the
direct analogy of genes as computer programs? I think
the most important will lie in several main areas
(Table 1). First, these methods provide an effective
approach to biomarker or ‘surrogate marker’detection
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Fig. 1. Scientific advance
can be seen as an
iterative cycle linking
knowledge and
observations. The
hypothetico-deductive
mode of reasoning [60]
uses background
knowledge to construct a
hypothesis that is tested
experimentally to
produce observations.
This is only half the story,
however, as the inductive
mode of reasoning is
based purely on
generalizing rules (or
hypotheses) from
examples; that is, it is
purely data driven (and
the hypothesis is the end,
not the beginning).
Because of the high
dimensionality of typical
data, computer-intensive
methods are required to
turn the data into
knowledge.
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Fig. 2. The genotype–phenotype (nonlinear) mapping problem. (a) All data sets can be
viewed in terms of a spreadsheet table, in which different samples (individuals, objects)
appear in different rows, and the values or classes of variables (properties) associated
with them appear in different columns. (Of course data for some variables could be
missing in some samples, whether because they were not collected, are considered
unreliable, do not apply to the particular individual, or whatever.) It is frequently the
case that we wish to account for some of the properties in terms of appropriate
combinations of some of the other variables. The ones we want to account for are
usually termed the ‘dependent variables’, ‘y-variables’ or ‘y-data’, and the ones
contributing to the explanation are usually called the ‘explanatory variables’,

‘x-variables’ or ‘x-data’. In the present case the explanatory variables will be genotypic
or expression profiling data, and the dependent variables are phenotypic traits such as
disease susceptibility. (b) Machine learning in its commonest forms uses data set out as
in (a) but represents them as an association or nonlinear mapping between coupled
inputs (x-data) and outputs (y-data). The aim of machine learning is then to use some or
all of the inputs and determine a mathematical transformation that produces the correct
output(s) when presented with the relevant input. Here, the inputs might typically be
expression profiling data from a series of microarray (c), proteome or metabolome
experiments, or allelic or polymorphism markers (d), in which one also has knowledge
of the phenotypes of interest of the same individuals (which are then the outputs).
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in phenotypic mapping, where both the inputs and
outputs are phenotypic, and where by transcriptomic
[45], proteomic [46] or metabolomic [5,47–50] methods
we can map the underlying causes to observable
phenotypes. Second, we can effect genotype–phenotype
mapping directly by using the presence or absence of
particular polymorphisms as the input, and the trait
of interest as the output, for example in ‘disease
association’ studies. In both of these cases, the power
of the GENETIC PROGRAMMING is that it provides a
straightforward and natural approach to the analysis of
‘synthetic phenotypes’or multigenic traits in which the
phenotype depends on the presence of multiple alleles
(for a notable example in which each of six loci needed
to be present to see a ‘blockbuster’phenotype, see [51]). 

Third, we can use such associations in quantitative
trait loci (QTL) (and other genetic) mapping where the
inputs are any complex phenotypic data (e.g. from
expression profiling) and the outputs (encoded 1 or 0) are
the presence or absence of a suitable genetic marker in
the relevant organism. The phenotypic rules that are
evolved will only ‘fire’ (return a value close to 1) when
the genetic markers are present, but can themselves be
considered to be an expression of the genotype; thus, the
rules themselves are pseudo-genetic markers, which we
refer to as ‘phenogenes’. Such rules might be of the form:
IF (understated environmental conditions) the ratio
of proteome spot 472: proteome spot 1511 >3.7, 
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Fig. 3. Encoding or
representing an
input–output relationship
as a tree. In a tree-based
structure, the input
variables that are selected
are the ‘terminals’
(orange circles) and are
acted on by operators or
functions (purple boxes)
that form nodes. The tree
is read from the bottom
upwards. The ‘tree’
representation on the left
is exactly equivalent 
to the red ‘equation’
representation on the
right. In genetic
programming (GP), any
transformation function
can be used as an
operator (including
arithmetic, trigonometric,
logical and so on). The GP
is synonymously a
program and a rule. 
(a) A numerical example.
(b) An example using
SNPs to predict disease
susceptibility.
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Fig. 4. The basic principle of evolutionary computing. We have an
initial population of programs of the type shown in Fig. 3, commonly
created by randomly combining subsets of the input variables and
functions. We evaluate them to establish their ‘fitness’, which normally
means their ability to give the correct input–output mapping (although
we can also ‘penalize’ the fitness of bulky programs in favour of simpler
ones). We then select – in part on the basis of fitness – some of these to
act as parents, and use them to breed another generation (by mutation
and recombination of those preferentially selected). This essentially
darwinian process continues through the evaluation cycle repeatedly
until a stopping criterion is met. This could be several generations, a
continuing failure to improve, or a complete solution of the problem.

Table 1. Some important nonlinear input–output mappings that could benefit from the analogy of ‘genes as programs’, and from

the use of genetic programming in learning rules that represent the nonlinear mapping

Domain Input and its encoding Output and its encoding Refs

Genetic basis of disease or other traits Quantitative transcriptome data Disease presence or severity [61,62]
Genetic basis of disease or other traits Polymorphism presence/absence, SNP and/or haplotype data Disease presence or severity [63–65]
Genetic mapping of quantitative Expression profiling data (transcriptome, proteome, Presence/absence of a molecular [53,54]
  traits   metabolome)   genetic marker (e.g. RFLP, SNP, etc.)
Strain improvement in Expression profiling data (transcriptome, proteome, Productivity or titre [66]
  biotechnology   metabolome)
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THEN {gene or allele name, but not the genes encoding
proteins 472 or 1511} is present. It is clear that the
evaluation of such a rule will return either 1 (true) or
0 (false). An attraction of this particular idea, which 
is related to the concepts of ‘genetical genomics’ [52]
and ‘expression level polymorphism’ (D. St Clair and
R.Michelmore, unpublished results, cited in [53]), is that
it is possible to evolve any number of these phenogenes
from expression profiling data obtained from suitable
mapping populations, and thus have very high density
markers indeed. This is because for any n expression
profiling markers that one has, the number of
combinations that use any m of them scales as nm [43].
The presence or absence (1 or 0) data of the phenogenes
are then read into standard software for QTL mapping
[53–56]. Finally, these methods are of interest in any
area where a large number of potential loci, but a much
smaller number of actual loci, contribute significantly to
a continuous output of interest, such as the productivity
of a particular strain in biotechnology. Here we know
that changing the concentration of individual enzymes

is unlikely to change the flux to desirable end-products
significantly, due to the organization of enzymes into
metabolic pathways obeying nonlinear kinetics [57–59].
The availability of transcriptome and/or proteomic
profiles with associated yield values at suitable times
will enable an efficient nonlinear mapping to determine
which combinations of genes should best be altered
(and how) so as to effect the desired yield improvement.

Conclusions

A genotype–phenotype mapping can be encoded in the
form of a tree (or indeed a directed acyclic graph [18]).
The methods of genetic programming allow us to evolve
such trees by mutation and recombination, to produce
good representations that permit an efficient, robust and
parsimonious mapping. In this sense, the rule evolved
by the GP is the nonlinear mapping, relating events at
the genetic level to the higher-order processes that are
typically of medical, agricultural or biotechnological
interest. In other words, a genetic locus can fairly be
represented as a kind of computer program.
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Genetic variation among extant humans carries
information about the evolutionary history of our
species. Unlinked regions in the genome represent
independent realizations of this evolutionary process
and thus, with polymorphism data from enough loci,
it should be possible to infer many aspects of our

evolution [1–4]. Conversely, a better understanding of
the evolutionary history of humans should help us to
predict patterns of genetic variability, thereby aiding
in the design and interpretation of genome-wide
association studies [5,6]. It will also help us to
interpret polymorphism data from regions of the
genome that have experienced natural selection [7].

With these myriad goals in mind, researchers have
collected polymorphism data from more than
400 regions of the human genome in over 40 studies.
The loci have been sequenced in different laboratories
and distinct strategies have been implemented
regarding the number and variety of geographic
sampling localities, the number of individuals
considered and so forth. The patterns of variability
recovered have been extremely varied. To some
extent, this variability is expected: patterns of
polymorphism will differ greatly from locus to locus
by chance, even if they have been generated by
exactly the same evolutionary process [8,9]. However
this variance might also reflect differences among
study designs. If there are aspects of the sampling
strategy that influence patterns of variation, their
identification should inform the design of future
studies. It can also point to important features of the
evolutionary history of human populations [10].

It is commonly quoted that 85% of human genetic
diversity is found within populations [11], a finding
usually interpreted as evidence that human
populations are genetically very similar to one 
another [12]. Although this is certainly true (if only
because, on average, two humans are identical at
99.9% of their DNA), this level of population structure
is sufficient to have profound effects on levels of linkage
disequilibrium in some contexts [5,13]. Furthermore, 
a high proportion of alleles seem to be specific to
samples from single populations [14]. It therefore
seems plausible that the geographic sampling scheme
influences the allele-frequency spectrum as well as
levels of allelic associations. To investigate this
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Although many studies have reported human polymorphism data, there has

been no analysis of the effect of sampling design on the patterns of variability

recovered. Here, we consider which factors affect a summary of the allele-

frequency spectrum. The most important variable to emerge from our analysis

is the number of ethnicities sampled: studies that sequence individuals from

more ethnicities recover more rare alleles. These observations are consistent

with fine-scale geographic differentiation as well as population growth. They

suggest that the geographic sampling strategy should be considered carefully,

especially when the aim is to infer the demographic history of humans.
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