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In this postgenomic era, there is a specific need to

assign function to orphan genes in order to validate

potential targets for drug therapy and to discover new

biomarkers of disease. Metabolomics is an emerging

field that is complementary to the other ‘omics and

proving to have unique advantages. As in transcrip-

tomics or proteomics, a typical metabolic fingerprint or

metabolomic experiment is likely to generate thou-

sands of data points, of which only a handful might be

needed to describe the problem adequately. Extracting

the most meaningful elements of these data is thus key

to generating useful new knowledge with mechanistic

or explanatory power.

Since the completion of the first whole-genome sequence of
a free-living organism (that of the bacterium Haemophilus
influenzae [1], although the sequencing of a human
mitochondrion long predates it [2]), we began to realize
the paucity of our knowledge with respect to the existence,
let alone the function, of the novel genes thereby
uncovered. Sequencing of the microbiologist’s pet organ-
ism, Escherichia coli, revealed that a staggering 38% of the
total 4288 open reading frames had not been observed or
studied before [3]. More recently, completion of the human
genome sequence [4,5] has accelerated further the demand
for determining the biochemical function of orphan genes
and for validating them as molecular targets for thera-
peutic intervention.

The search for biomarkers that can serve as indicators
of disease progression or response to therapeutic inter-
vention has also increased. Functional studies have thus
emphasized analyses at the level of gene expression
(transcriptomics), protein translation (proteomics) includ-
ing post-translational modifications, and the metabolic
network (metabolomics), with a view to a ‘systems biology’
approach of defining the phenotype and bridging the
genotype-to-phenotype gap [6].

There is active debate in the research community over
the exact definition of the ‘metabolome’, but it was first
defined by Oliver et al. [7] as the quantitative complement
of all of the low molecular weight molecules present in cells

in a particular physiological or developmental state.
Another definition states that the metabolome consists
‘only of those native small molecules (definable non-
polymeric compounds) that are participants in general
metabolic reactions and that are required for the main-
tenance, growth and normal function of a cell’ [8].

Although the metabolome is certainly ‘complementary’
to transcriptomics and proteomics, it might be seen to have
special advantages. In particular, it is known from both the
theory underlying metabolic control analysis [9,10] and
experiment [11] that, although changes in the quantities of
individual enzymes might be expected to have little effect
on metabolic fluxes, they can and do have significant
effects on the concentrations of numerous individual
metabolites. In addition, the metabolome is further down
the line from gene to function and so reflects more closely
the activities of the cell at a functional level. Thus, as the
‘downstream’ result of gene expression, changes in the
metabolome are expected to be amplified relative to
changes in the transcriptome and the proteome [12]. As
expected, metabolic fluxes (at least as exemplified by
glycolysis in trypanosomes) are not regulated by gene
expression alone, which provides a further rationale for
pursuing metabolomics [13].

In this review we describe the growing field of
metabolomics, the needs and means by which metabolome
data can be generated, and how this information can be
turned into knowledge.

Measuring the metabolome

The ultimate starting point of a metabolomic experiment is
to quantify all of the metabolites in a cellular system (i.e.
the cell or tissue in a given state at a given point in time).
Currently this is impossible, given the lack of simple
automated analytical strategies that can effect this in a
reproducible and robust way. The main challenges are the
chemical complexity and heterogeneity of metabolites, the
dynamic range of the measuring technique, the through-
put of the measurements, and the extraction protocols.
Ideally, metabolomics should be non-biased but, consider-
ing the above, at best it can be thought of as ‘non-targeted’.
Moreover, the paucity of our knowledge with respect to
known metabolites is staggering, although perhapsCorresponding author: Royston Goodacre (r.goodacre@umist.ac.uk).
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understandable at present; for example, there are esti-
mated to be up to 200 000 different metabolites in the plant
kingdom [6] and, even though the numbers might be
significantly smaller in individual mammalian systems,
the fate of a toxin can lead to a plethora of intermediates
and products before it is adequately detoxified [14].

One might ask why bother with metabolomics when
transcriptomics and proteomics are currently so popular?
Another answer, in addition to the above, is simple and
stems from evolution. To measure the amount of, say, a
specific fructose 1,6-bisphosphatase from different organ-
isms, one has to know a priori the DNA sequences or
protein sequences (plus post-translational modifications)
from each organism to design suitable complementary
oligonucleotides to capture mRNA on a nucleotide array
[15] or to effect protein identification via two-dimensional
gel electrophoresis and mass spectrometry (MS) [16]. By
contrast, the substrate and product of this enzyme,
fructose 1,6-bisphosphate and fructose 6-phosphate,
have the same basic chemical structure irrespective of
the organism from which they are extracted and so, after
one has learnt how to quantify these metabolites in
parallel and in various sample matrices, a more or less
universal approach that spans the species barriers can be
adopted.

Alterations in cells, biofluid or even cell media that are
induced in response to environmental or developmental
stimuli, or to a genetic mutation, result in changes in the
quasi steady-state amounts of intermediate pathway
metabolites and/or in the end accumulation of terminal
metabolites. To capture these changes, the metabolites
and their quantities must be monitored both spatially and
temporally. Because the metabolic complement is even
more dynamic than the proteome, analysis can be
envisaged at different levels.

Although it would be ideal to have information on the
status of the whole metabolic complement of a cell, there
might be instances when it would suffice to derive
information on only a portion of the total metabolome.
For example, it might be sufficient to monitor selectively
only the relevant metabolites that contribute to a specific
pathway that is directly associated with function
(although this begs the answer in a way that is normally
unsupportable because one does not necessarily know
a priori which pathways to monitor [17]). In some
instances, it might be necessary only to monitor changes
in the overall or partial metabolic pool structure and to
classify samples without determining the quantities of
individual metabolites. Box 1 lists some of the common
definitions used in metabolomics.

Technology platforms for metabolomics

Metabolites are chemical entities and can be analysed by
the standard tools of chemical analysis such as molecular
spectroscopy and MS. The resolution, sensitivity and
selectivity of these technologies can be enhanced or
modified by coupling them to gas chromatograpy (GC) or
liquid chromatography (LC) steps. The technologies
commonly exploited for different metabolomic strategies
are shown in Figure 1. Generally, the technology platform
of choice depends on the type of sample to be analysed.

Biofluids are perhaps the most easily obtained sample and
can be analysed by nuclear magnetic resonance (NMR)
with little or no sample preparation [18–20], whereas
tissues and cells from animal, plant or microbial systems
necessarily require some sample pretreatment.

For metabolite target analysis and metabolite profiling,
studies can be geared to monitor specific metabolites by
selective analysis and well-developed calibration methods.
As suggested in Figure 1, this can be achieved by
conventional techniques, such as separation by GC or
high performance liquid chromatography (HPLC) coupled
to a suitable detection system. A notable recent advance is
the use of the so-called ‘hydrophobic interaction chroma-
tography’ (HILIC) method for detecting many polar plant
compounds in a MS-friendly manner [21].

NMR spectroscopy has been shown to provide valuable
information on metabolites, typically directly from bio-
fluids with little or no sample preparation steps [18,19].
Because NMR is based on the fact that nuclei such as 1H,
13C, 31P can exist at different energy levels in a strong
magnetic field because they possess nuclear spin, it can
generate valuable structural information. Magic angle
spinning NMR can also be used in intact tissues, often
giving uniquely powerful insights.

For comprehensive analysis of the metabolome (i.e.
metabolomics), it is essential to use strategies that have a
wider coverage in terms of the type and number of
metabolites analysed. Sample preparation can be elabor-
ate and can involve dividing samples into aliquots before
selective enrichment and the analysis of different classes
of metabolite in each aliquot. Such pre-fractionation steps
and subsequent parallel measurements are required to
optimize analyses and to facilitate the detection of even
minor changes in a structurally diverse metabolome data
set. A combination of several analytical techniques might
have to be used for such studies; for example, parallel LC
separations can be coupled to MS- and/or NMR-based
detection methods. Most extraction procedures reported in
the literature so far are less comprehensive and thus
biased, because they miss out on some or other metabolites

Box 1. Classification of metabolomic approaches

† Metabolite target analysis: analysis restricted to metabolites of,

for example, a particular enzyme system that would be directly

affected by abiotic or biotic perturbation [70].

† Metabolite profiling: analysis focused on a group of metabolites,

for example, a class of compounds such as carbohydrates, amino

acids or those associated with a specific pathway [70].

† Metabolomics: comprehensive analysis of the whole metabolome

under a given set of conditions [70].

† Metabolic fingerprinting: classification of samples on the basis of

provenance of either their biological relevance or origin [70].

† Metabolic profiling: often used interchangeably with ‘metabolite

profiling’; metabolic fingerprinting is commonly used in clinical and

pharmaceutical analysis to trace the fate of a drug or metabolite [71].

† Metabonomics: measure of the fingerprint of biochemical pertur-

bations caused by disease, drugs and toxins [18,72].

The terminologies are still evolving and there can be overlaps in

their definition; however, the above classification highlights the

options available for monitoring the metabolome and serves as a

very good starting point.
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and result in the modelling of only a portion of the
metabolome (i.e. metabolite profiles). But even in those
investigations, the information content that is obtainable
points to the potential of monitoring metabolomes
comprehensively.

The current popular method for global metabolite
analysis in plants is GC-MS, although this method is
limited in the molecular mass of the targets that it can
measure and thermolabile ones are necessarily missed.
Non-volatile polar metabolites often need to be derivatized
to convert them to less-polar, volatile, thermally stable
derivatives before they can be separated on a GC column.
Although efficient derivatization methods are available,
low sample throughput can be a limiting factor in large-
scale metabolite profiling because typical metabolite
acquisition times are of the order of 10–30 min. Deconvo-
lution is then needed to quantify metabolites that are
unresolved by GC. This process is aided by MS, but
suitable deconvolution algorithms must be developed.
Improved deconvolution algorithms and faster spectral
acquisition by time-of-flight (TOF) measurements [22]
have, however, resulted in the detection of over 1000
components from plant leaf extracts at a throughput of
over 1000 samples per month [23].

Another recent advance is the MSFACTS program
developed by Sumner and colleagues [24]. The end result of
this procedure is a list of metabolites (either known
metabolites found in databases such as KEGG or unique
MS profiles associated with a specific GC retention time)
and a list of their relative concentrations.

Recent interest in GC-GC-MS is increasing the number
of metabolites that can be separated in a single analysis
run [25], and methods involving flow injection analysis
using direct infusion into electrospray ionization (ESI),
coupled to TOF or Fourier transform ion cyclotron
resonance (FT-ICR) MS analysis are also becoming
popular [26,27]. In particular, FT-ICR-MS is exciting
because it is sensitive and, with its high mass resolution
(.106) coupled to software that can exploit the infor-
mation in isotope patterns, can produce the empirical
formulae for metabolites directly [28].

Metabolic fingerprinting is fast and would be ideally
suited for rapid characterizations if prominent changes in
the metabolome could be captured in a reproducible
manner. Techniques that can handle a large number of
samples with minimal sample preparation but are still
capable of providing relevant chemical information are
well suited for generating rapid fingerprints. In this
regard, crude extracts or whole cells can be analysed by
MS [29], NMR [11], Fourier transform infrared (FT-IR) or
Raman spectroscopies [30]. NMR fingerprinting is cur-
rently the method of choice for ‘metabonomics’, but many
researchers, aware of its comparatively poor sensitivity,
are complementing this approach with MS-based technol-
ogies. Although its sensitivity is poor, NMR does provide a
uniform detection system of equal sensitivity for all
proton-containing molecules; by contrast, MS (particularly
in direct infusion) is selectively sensitive, prone to matrix
effects (often and erroneously lumped together as ‘ion
suppression’) and can be insensitive to some classes of
analyte.

Figure 1. Technologies for metabolome analysis. (a) General strategies for meta-

bolome analysis. CE, capillary electrophoresis; DIESI, direct-infusion ESI, which

can be linked to Fourier transform ion cyclotron resonance mass spectrometry

(FT-ICR-MS); NMR, nuclear magnetic resonance; RI, refractive index detection; UV,

ultraviolet detection. (b) Example of an FT-IR spectrum of a biofluid. In this exper-

iment, 10 ml of rat urine was dried and analysed on a Bruker IFS66 instrument

between 400 and 600 cm21, with 4 cm21 resolution and 256 co-adds (R.G. and

G.G.H., unpublished). (c) Capillary gas chromatography–time-of-flight–mass

spectrometry (GC-TOF-MS) analysis of human serum. In a 15 min run, 722 peaks

could be discriminated (W.B.D. and D.B.K., unpublished).
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A metabolic fingerprinting approach yields data of a
similar format to that described above: the first list
contains mass-to-charge (m/z) ratios, chemical shifts or
wavenumbers for MS, NMR or FT-IR, respectively, and the
second list contains their relative contribution. Although
current technology is far from generating comprehensive
information on metabolite pools (metabolomes), there is
already sufficient complexity in the information to begin to
reconstruct the networks involved [31].

Databases for metabolomics

In a recent study, Lyman and Varian estimated that in
2000 the world produced between 1 and 2 exabytes
(1–2 £ 1018 bytes) of ‘unique’ information per year
(http://www.sims.berkeley.edu/how-much-info). This flood
of data is roughly 250 megabytes for every man, woman
and child on earth! IBM’s estimates are that information
within the life sciences doubles every 6 months (http://
www.bio-itworld.com/champions/janet_perna.html); this
data explosion comes from genomic sequencing, the
‘omics’ and high-throughput screening, as well as the
more traditional preclinical and clinical trials.

In his keynote address, A National Geographic Infor-
mation System – An Achievable Objective?, to the
Australasian Urban and Regional Information Systems
Association in 1990, Henry Nix said

“Data does not equal information; information does
not equal knowledge; and, most importantly of all,
knowledge does not equal wisdom. We have oceans of
data, rivers of information, small puddles of knowl-
edge, and the odd drop of wisdom.”

But can we cope with this torrent of data from
metabolomics? It is clear that in the era of postgenomic
biology, we shall need good databases, very good data and
even better algorithms with which to turn our data into
knowledge. The types of database that will be useful for
metabolomics are described in Box 2. Curation of these
databases is essential if they are to be useful to the wider
community. We are all aware of the number of incorrect
DNA sequences in databases (e.g. see [32]). It is relatively
easy to spot errors in DNA because of its low complexity;
however, it will be essential that metabolite profiles are
validated and the metadata are complete, so that other
researchers can use the same experimental protocol and

can compare their profiles against those of others stored in
the database.

The issue of precision is acute because, in contrast to the
traceable standards that facilitate machine calibration in
simple univariate measurements (e.g. blood glucose),
there are no simple standards for ‘omic measurements,
which have hundreds or thousands of variables and for
which machine drift can be acute. Freshly made up
cocktails of standards, together with the use of advanced
transformations [33], might help to solve to this problem.
The metadata also need to be captured correctly. A
systematic approach already exists for transcriptome
data [34] and is being developed for proteomics [35].
Such an approach is also being investigated for metabo-
lomics by Hardy and Fuell [36].

A paradigm shift from metabolic pathways to networks

and neighbourhoods

There has been a shift from mental constructs involving
metabolic pathways to those based on metabolic networks
and neighbourhoods [37,38], and many would argue that
the ‘Boehringer’ metabolic pathways map needs to be
updated both radically and conceptually. An excellent
example of this is illustrated by the experiments of
Willmitzer and colleagues [39] on the carbon sink in
potatoes. The aim of these experiments was to increase the
amount of starch in the tubers by the ‘rational’ over-
production of enzymes in the starch synthesis pathway.
Rather than producing nice large tubers, however, these
experiments decreased the size of the potatoes, suggesting
that other pathways, indeed networks, are involved.

This finding is almost universally applicable to other
crops, and ‘unexpected’ effects have been known in
metabolic engineering for many years (e.g. see [40,41]).
Thus, elucidation and visualization of metabolite neigh-
bourhoods need to be achieved to understand the
structural properties of the network [42,43]. This can be
done only at the level of the metabolome because fluxes
and thus relationships among metabolites through net-
works cannot be calculated accurately from transcripts or
proteins.

Correlation analysis of metabolites is one approach that
is being explored to discover novel pathways [44] and
hence to infer the metabolic network [45], and this method
needs to be linked with good visualization using biochemi-
cal network diagrams. Indeed, techniques for network
reconstruction that are being developed for transcrip-
tomics [46] are equally applicable to metabolomics and can
be overlaid. Such diagrams can be put into context with
previously known biochemistry and can also be used to
link in transcriptome or proteome data; some excellent
software for these applications has been produced by
Mendes and colleagues [47].

Hypothesis-generating strategies from metabolome

data

Many of the pattern-recognition strategies currently
pursued in metabolomics, and indeed in the analyses of
all ‘omic data, are based on ‘unsupervised’ techniques [48]
(Figure 2), such as hierarchical cluster analysis in which a
‘tree-like’ dendrogram (as commonly seen in taxonomic

Box 2. Types of database for metabolomics

† Databases storing detailed metabolite profiles, including raw data

and detailed metadata (i.e. data about the data) [73].

† Single species-based databases that will store ‘relatively’ simple

metabolite profiles [73].

† Databases storing complex metabolite profile data from many

species in many different physiological states [73].

† Databases listing all known metabolites for each biological

species. With suitable metadata, these databases could be extended

to contain temporal and spatial information.

† Databases such as KEGG [74], compiling established biochemical

facts.

† Databases that integrate genome and metabolome data with an

ability to model metabolic fluxes [75,76].
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and phylogenetics) is produced. Clustering methods are
used to assess, in a multivariate manner, how similar a set
of samples are to one another on the basis of their
metabolite profiles, although many of the methods used in
transcriptomics are poorly reproducible, mathematically
unjustified and lack quality metrics for how ‘good’ the
clusters are. Nevertheless, the inclusion of suitable
profiles of known provenance (e.g. the profile of the
‘knockout’ of a gene of known function) means that one
can classify unknown samples by their closeness to the
known knockouts, a process referred to as ‘guilt by
association’ [49]. However, when several hundred different
provenances are analysed, or when disjoint relationship in
gene classes arise, this approach is imperfect and
alternative strategies must be adopted [50].

Supervised machine learning algorithms [48] are very
powerful methods that seek to transform the multivariate
data from metabolite profiles into something of biological
interest under the guidance of a ‘teacher’ (Figure 2). The
basic idea behind supervised learning is that there are
some patterns (e.g. metabolic fingerprints) that have
desired responses that are known (e.g. whether an animal
has been given a drug or placebo, or has a disease or a

susceptibility to it). These two types of data (the
representation of the objects and their responses in the
system) form pairs that are conventionally called inputs
(or x data or explanatory variables) and targets (or y data).
The goal of supervised learning is to find a ‘model’ or
‘mapping’ that will correctly associate the inputs with the
targets.

Many different algorithms perform supervised learning
(see Table 1 for details). One of the most popular types of
supervised learning method is based on artificial neural
networks (ANNs), which can learn nonlinear as well as
linear mappings [51]. But although they are very powerful,
the mathematical transformation from metabolite data to
the target trait of interest is often largely inaccessible in
ANNs [52], and these methods are often perceived as ‘black
box’ approaches to modelling spectra.

It is known from the statistical literature that better
(i.e. more robust) predictions can often be obtained when
only the most relevant input variables are considered [53];
in other words, ‘parsimonious’ models tend to generalize
better. Thus, the best machine learning techniques not
only should give the correct answers, but also should
identify a subset of the variables with the maximal
explanatory power, thereby providing an interpretable
description of what, in biological terms, is the basis for that
answer. Such explanatory modelling methods do exist and
their salient features are described in Table 1.

The pregenomic era of molecular biology was largely
reductionist and qualitative [54], and it relied excessively
on a hypothesis-centric view of the world. But not all
scientific advances are hypothesis-driven (or hypothesis-
dependent) [17]. The iterative process between data
gathering and the generation and evaluation of ideas is
sometimes referred to as the ‘cycle of knowledge’ [55]
(Figure 3). In the traditional cycle, we have some
preconceived notions about the problem domain; exper-
iments are designed to test our hypotheses; and the
observations from these experiments are recorded and, by
‘deductive’ reasoning, considered to be consistent or
inconsistent with the hypotheses [56] (Figure 3a). In
fact, although this part is normally only implicit, by a
process of ‘induction’ or abduction [57] these observations
are synthesized or generalized to refine our accepted
wisdom. The cycle then repeats itself until we are happy
with the solution to a given problem.

In the early stages of functional genomic programmes,
however, we have a situation in which our knowledge is
minute: that is, we have no ideas about the role of an
orphan open reading frame and there are few if any
hypotheses to test [58]. We can, however, design exper-
iments that are based on gene knockouts and controlled
overexpression, for example, and observe the effects on the
phenotype of the organism. We are then in a position of
having collected a great many observations, and the trick
is to drive the cycle round via a kind of data-driven or
inductive reasoning to generate new hypotheses
(Figure 3b).

Evolutionary computing methods [59], classification
and regression trees (CART) [60] and inductive logic
programming [61] can be considered as ‘inductive-reason-
ing-based’ algorithms that are completely data driven and

Figure 2. The chemometric zoo. High-dimensional metabolome data can be ana-

lysed in many ways, which can be categorized as unsupervised and supervised

learning. When learning is ‘unsupervised’, the system is shown a set of inputs and

then left to cluster the metabolite data into groups. For multivariate analysis this

optimization procedure is usually ‘simplification’ or dimensionality reduction; this

means that a large body of metabolite data are summarized by a few parameters

with minimal loss of information. After clustering, the ordination plots or dendro-

grams are then interpreted. When learning is ‘supervised’, the desired responses

(Y data or ‘traits’ or ‘classes’) associated with each of the inputs (X data, or ‘meta-

bolome data’) are known. The goal is to find a mathematical transformation

(model) that will correctly associate all or some of the inputs with the target traits

(e.g. whether an animal has been challenged with a drug, the environment that a

plant has been grown in or the presence of or susceptibility to disease). In its con-

ventional form, this goal is achieved by minimizing the error between the known

target and the model’s response (output). In addition, there exist special types of

supervised learning that effect explanatory analyses; in other words, the math-

ematical transformation from input to output data is transparent. Such inductive

methods allow one to discover which metabolites (inputs) are key for the separ-

ation of the traits to be predicted.
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are thus especially appropriate for problems that are data
rich, but hypothesis and/or information poor. All of these
methods can be used to generate rules and thus hypoth-
eses from suitable examples, and evolutionary computing
methods in particular have been used to advantage in
metabolomics (e.g. see [62]). Of course, as with any purely
inductive method, there are no axioms and so the rules
that evolve cannot be proved correct; however, they greatly
narrow the search space of possibilities, and by testing
them new knowledge will be generated that will lead to an
increased understanding of the function of the orphan
gene.

From metabolomics to systems biology

“When a thing was new, people said, ‘It is not true’.
Later, when the truth became obvious, people said,
‘Anyway, it is not important.’ And when its importance
could not be denied, people said, ‘Anyway, it is not
new.” William James (1842–1920).

‘Systems biology’ describes a range of techniques,
including the ‘omics and mathematical modelling, for
understanding systems ‘as a whole’ [63,64], and it is widely
recognized that metabolomics will have a major part to
play in its development [65]. Emerging trends include the
development of suitable mark-up languages for exchan-
ging the models (e.g. see [66]) and a recognition of the close
relationship between metabolic engineering [67] and
systems biology [68]. To quote Henrik Kacser, one of the
architects of metabolic control analysis, “But one thing is
clear: to understand the whole, one must study the whole”
[69]. The goal of systems biology and metabolomics is to do
just that.

Table 1. Features of some common supervised learning algorithms

Method Significant features Categorical or

quantitative [77]a
Interpretability Refs

Discriminant analysis Cluster analysis method; involves

projection of test data into cluster space

Categorical Loadings matrices can give an

indication of important inputs

[78]

Partial least squares Linear regression method Quantitative Loadings matrices can give an

indication of important inputs

[79]

Discriminant partial

least squares

Linear regression method Categorical Loadings matrices can give an

indication of important inputs

[79]

ANNs Very popular machine learning methods;

can learn nonlinear as well as linear

mappings; the main mappings used are

multilayer perceptrons and radial basis

functions

Both Mapping from input to output

largely opaque; can be improved

by pruning or growing ANNs

[80,81]

Rule induction Based on the growth of a decision tree with

predictive segregation of the data; the

leaves contain as few different classes as

possible; includes CART and fuzzy rule-

building expert system

Categorical Produces uni- or multivariate

decision boundaries

[60,82,83]

Inductive logic

programming

Uses a specific logic-based language More categorical

than quantitative

Constructs general rules by

inductive inference

[61]

Evolutionary

computation

Based on concepts of Darwinian selection

to generate and to optimize a desired

mapping between input and output

variables; includes genetic algorithms,

genetic programming and genomic

computing

Both Often produces interpretable

rules, genetic code and parse

trees

[59,84–86]

aThe output can be either categorical or quantitative. In the former, for example, the metabolome data might have been collected from sera of patients with or without a

disease; by contrast, in the latter the output might be considered quantitative such as the level or severity of the disease.

Figure 3. The cycle of knowledge and holism. (a) The traditional cycle of knowl-

edge, in which background knowledge is used to construct a hypothesis to be

tested experimentally The experiment produces data that are consistent or other-

wise with the hypothesis. In other words, the hypothesis is the starting point.

(b) The inductive approach, where there is no real hypothesis and thus the strategy

is to generate a hypothesis from the data and not to start with one. This data-dri-

ven approach requires computer-based inductive reasoning to turn the data into

hypotheses, which can then be tested in the traditional manner. Experimental

design is important here, because this determines which experiments are used to

populate the search space of possible (useful) experiments. The strategy in which

an algorithm chooses which experiments to do is known as ‘active learning’ [87]

and is the strategy of choice. Evolutionary computing methods can be used for

active learning [88].
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Concluding remarks

The field of metabolomics is gaining increasing interest
across all disciplines, including functional genomics,
integrative and systems biology, pharmacogenomics, and
(surrogate) biomarker discovery for drug discovery and
therapy monitoring. As more researchers get ‘tooled up’ for
metabolomics, the realization that it is easy to generate
floods (or, more accurately, torrents!) of data will become
apparent. Thus, in the new postgenomic era of biology, we
shall need well-curated databases, very good data with
which to populate them, and even better algorithms with
which to turn these metabolome data into knowledge.
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