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ABSTRACT 
This paper describes the use of genetic 
programming (GP) to evolve a concise 
and explicit relationship between a 
complex and noisy set of infrared 
spectra taken from biological samples 
(Escherichia coli) and the 
concentrations of a specific antibiotic 
(ampicillin) in the samples. The work 
relates to an investigation of the use of 
diffuse reflectance absorbance infrared 
spectroscopy as a novel method of rapid 
screening for metabolite overproduction 
in the context of process improvement 
in the pharmaceutical industry. The 
results show that models generated by 
genetic programming are comparable, 
in terms of the accuracy of prediction, 
with those produced by a 'standard' 
multivariate calibration method, Partial 
Least Squares (PLS). However, the GP 
models also show tolerance to spectral 
noise and facilitate a consequent 
reduction in the need for data pre­
processing. Furthermore, the output 
expressions produced readily allow the 
identification of significant spectral 
variables, or wavenumbers, and thus 
directly aid interpretation of the 
original spectra in molecular terms. 

1. Introduction 
Genetic programming, the automated generation of 
computer programs via evolution (Koza, 1992; Back et al., 
1997), has been applied in various domains, such as robot 
planning (Handley, 1993), engineering design (McKay et 
al., 1996) and pattern recognition (Koza, 1994 ). 

One area of particular interest is the optimisation and 
empirical discovery of relationships in data, such as the 
optimisation of parameters for digital signal processing 
(Sharman et al., 1995) and chemical process control 
(McKay et al., 1996). The ability to take multiple input 
values into a program makes GP an ideal candidate for 
multivariate analysis, where many measured (x) variables 
bear a relationship to one property (y variable). Another 
benefit of GP is that the output of a run is a procedural 
program whose instructions can elucidate the variables 
used, and their manipulation. These features of the GP 
paradigm, being a supervised learning method, made it an 
ideal candidate to apply to datasets where different 
properties of samples are related to biological and 
biochemical features of interest. PLS and ANNs (Goodacre 
et al., 1996; Gemperline et al., 1991; Timmins et al., 1997) 
are current 'standard' methods that have been applied to 
such data for generating predictive models for qualitative 
and quantitative analysis. 

There is also an interest in identifying the important 
variables selected in model formation. Various algorithms 
for variable selection (Eshuis et al., 1977; George and 
McCulloch, 1993; Kubinyi, 1994a; b) have been applied 
with varying success. However, many documented methods 
rely on assumptions concerning the data, such as linearity, 
normal distribution, or absence of colinearity between 
variables. Consequently these methods are unreliable for 
some datasets (Goodacre et al., 1996). 

2. Data Acquisition 
Three datasets were acquired for analysis. For dataset A the 
bacterial samples were prepared as in (Winson et al., 1997) 
with antibiotic added in the concentration range O to 20 
mM. Each sample was represented by a spectrum 
containing 882 data points or variables. 

For datasets B and C, the bacterium used was a similar 
strain as above, grown under identical conditions. The 
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antibiotic was added over a different concentration range (0 
to 5000 µg/ml) as detailed in (Goodacre et al., 1995). 

3. Data Preprocessing 
The spectra for all datasets were exported from the Ff-IR 
spectrometer and converted to ASCII format. 

The spectra from the samples for set A were averaged, 
resulting in a 40 by 882 data matrix. Two subsets of these 
data were taken, the first containing 25 variables from the 
characteristic ampicillin peak and the second consisting of 
200 variables containing the infrared fingerprint region. 
The original dataset and both subsets were split into 
training and test sets, each of 20 data objects, using in­
house software based on the Duplex algorithm (Snee, 
1977). 

For datasets B and C, 21 samples were analysed in 
triplicate resulting in a 63 by 882 data matrix. These data 
were again split into a training set containing 11 triplicate 
spectra (33 data objects) and a test set containing 10 
triplicate samples (30 data objects) by the same Duplex 
(Snee, 1977) based software. A copy of dataset B was made 
prior to its separation. The replicate copy was subjected to 
baseline correction via a genetic algorithm (GA) package, 
written in C and run on a Pentium Pro 200 IBM compatible 
PC running NT 4.0. The variance of the variables in all 
spectra were calculated and the GA optimised 8 
parameters, such that areas with high variance were 
maximised and areas of low variance were minimised by 
adjusting vertical shift and scale parameters. 
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Figure 1: FT-m spectra of Ampicillin in E.coli. 
a. Raw averaged spectra; b: Processed spectra. 

Curve fitting to correct for baseline trends was also 
carried out by the optimisation of a range of values of x in 
the equation ax3 + bx2 +ex+ d . The fitness function for 
the GA was the minimisation of 10% of the spectral regions 
with the lowest variance, and maximisation of 50% of the 
regions with the highest variance. The result of this 
correction may be seen in Figure 1. 

4. Genetic Programming 
The genetic programming implementation used in this 
study is similar to that described by Gilbert et al., (1997). 
The breeding strategy implemented the following genetic 
operators: crossover of two individuals at a proportion of 
80% of the total population, reproduction of one individual 
at a proportion of 10% of total population, and random 

node mutation at a proportion of 10% of total population. 
The package was written in ANSI C following a procedure 
similar to Singleton (1994) and run on a 486DX66 PC 
under NT 4.0. The demes were implemented as follows: 
five populations were evolved in parallel, one 'main' and 
four 'satellite' populations. Every 10 generations the best 
individuals from the main population were copied into the 
satellite populations, and replaced with the worst individual 
from each of the satellites, to provide a migration effect 
which aided population diversity, thus preventing 
premature convergence to a local minimum. Each 
population comprised 500 individuals, each of which had a 
depth of 17 and 100 nodes as development limits. The 
fitness function for all populations was the raw root mean 
squared error of prediction (RMSEP) of the individual 
calculated via: 

RMSEP = ~ wherey =measured oulput, 

y = predicted output and n = number of examples. 

Termination of the GP run was at 250 generation cycles. 
The most fit individual from all populations was deemed 
the solution at this point. Two function sets were 
considered for use with the data, an arithmetic set 
consisting of {add, subtract, multiply, protected divide} and 
a functional set consisting of the arithmetic set and 
additionally of {sin, cos, tan, log}. 

5. PLS 
Partial least squares regression is a supervised latent· 
variable multivariate regression technique (Hoskuldsson, 
1988; Martens and Nres 1989). PLS was implemented 
using in house calibration software (Jones et al., 1998). 

6. Results and Discussion 
Initial experiments were conducted to determine the 
potential benefits of reducing each dataset so as to contain 
only the 25 variables that form the spectral peak around 
l 767cm·1 that is a characteristic of ampicillin, or the 200 
variables that hold the majority of ampicillin related 
information. The GP described previously (Gilbert et al. , 
1997) was used to analyse dataset A and its two subsets. 
This experiment was also used to determine the required 
components of the GP function set. Two function sets were 
used, one with simple arithmetic operators, and the other 
containing these plus log, tan, cos, sin. The results show 
the test RMS error for the smaller dataset was significantly 
higher (see table 1), suggesting insufficient information to 
model the relationship accurately. There was no significant 
difference between using the 200 variable subset and the 
full dataset, and as the time taken to generate a model was 
comparable (data not shown) the full dataset was used in 
subsequent experiments. As can be seen in table 1, the data 
are adequately modelled using the arithmetic operators. 
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The raw RMS error for the GP solutions using the 
functional operators sometimes show a larger error, 
suggesting that the increase in complexity can inhibit 
prediction ability. 
Table 1: Raw RMS errors (mM) for 3 runs each of the 
25 and 200 variable subsets and the full spectrum GP 

I · I each case the most fit individual is shown ana1ys1s. n . 
no. Arithmetic 

Variables Set 
1 2 3 

25 9.4 9.4 9.6 
200 0.5 0.7 1.6 
882 0.9 0.5 0.5 

Function Set 
1 2 3 

25 10.1 10 10 
200 0.7 0.6 0.8 
882 2.6 1.2 2.1 

The following experunents therefore used the full 
spectrum as input to the GP, with the arithmetic function 
set. Each output expression was converted from Polish 
notation to standard form via an in-house Perl program 
(run on a 500MHz DEC Alpha Workstation under Digital 
Unix 4.0), then simplified using Maple (Waterloo Maple 
Inc., 450 Phillip Street, Waterloo, Ontario Canada N2L 
512) run on a DEC Alpha 3000/700 workstation. 

Each dataset was also analysed using PLS regression 
noting the optimum number of factors to form a predictive 
model. The use of neural networks to analyse these data has 
been documented in (Winson et al., 1997); results are 
comparable with PLS regression methods and therefore 
only the PLS results are presented here. 

The results in table 2 show the test set RMS errors of 
prediction for the GP and for PLS, one of the current 
'standard' methods of spectroscopic analysis (Baroni and 
Clementi, 1992; Fuller et al. 1988). 
Table 2: Comparison of PLS and Genetic Programming 
(best individual at 250 generation cycles). Raw RMS 
errors (A - mM, B and C -u~ 'ml) shown. 

Method Dataset 
A B c 

PLS 0.79 149.8 135.6 
GP 0.52 148.6 117.9 

As seen, using a GP shows an improvement m the 
accuracy of the models of all datasets compared with PLS. 
Test predictions for each method are shown in Figure 3. 
Detailed examination of the simplified output expressions 
from each GP model clearly identifies the variables used in 
model formation (a variable is designated as Px, where xis 
the bin number in the dataset). The bin number is directly 
related to a wavenumber in the original spectrum via 4000 -
(3 .85 * x) cm-1 where xis the bin number. 4000 cm-1 i~ one 
extremity of the spectral range, and there are 3.85 cm per 
bin. A variable listed in bold typeface is located in the 

characteristic peak due to the P-lactam of ampicillin 
(centred at 1767 cm-1

): 

Dataset A: 

( 
P519) 

5.8-5.8Pll7 - 3.8+21.8 P598 P519 (p5796P844P310Pl6) 
2.9 P598 + 100916.J P598Pl9 

Variables selected: 16, 19, 117, 310, 579, 598, 844 
Wavenumbers(cm-1

): 3938.4, 3926.9, 3549.6, 2806.5, 
1770.9, 1697.7, 750.6. 

Dataset B: 

(
(P617 + U .7"577)P70 +• .i)(- ts.7 l'577P6S4 +9.2) 

P564P418 PS24 

[

- Sl + PSIS { 7.8 - (4.2 / S77) - P831) (19.3 - (9.3 / PS77) + (P201 - S19PS11)P10J] 
- · --+ P367 - 0 - 4.3- P6S4P418 
PS24 + nss !'511 2P831 - P68S 

"524 
•Pl03 -

P6S4 

Variables selected: 70, 103, 355, 367, 418, 524, 577, 617, 
654,685,815,831 
Wavenumbers(cm-1): 3730.5, 3603.5, 2633.25, 2587.1, 
2390.7, 1982.6, 1778.6, 1624.6, 1482.1, 1362.8, 862.3, 
800.7 
Dataset C: 

4
8.

3 
(1.7 I P8-53)(P815-4.8)P58 + l6.

7
P

282 
P817P158 

[

(P579- P104)P163 + 75.8 p5g32 - 3.96 P123P741P1582 - 0.571 
P5192 P2602 P457 (P519- 4.8)P58 

(P579-P104)(- 8.7 PSS
3 

-8.7P6t4) 
P260P457 + P583 I P260 

P86 

Variables selected: 8, 58, 86, 104, 123, 158, 163, 187, 
260, 282, 457,579, 583, 614, 741 , 815 
Wavenumbers(cm-1

) : 3969.2, 3776.7, 3668.9, 3599.6, 
3526.5, 3391.7, 3372.5, 3280.1, 2999.0, 2914.3, 2240.6, 
1770.9, 1755.5, 1636.1, 1147.2, 862.3 

Although these expressions are quite complex, it can be 
seen that the variables are taken from differing regions of 
the spectra, confirming that there is information in more 
regions than just the characteristic peak. From an initial 
input dataset of 882 variables, GP has reduced the 
dimensionality of each dataset to a number of variables 
comparable with the optimal number of PLS factors (7 - 16) 
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Figure 3: Example test set prediction plots for GP and 
PLS models for dataset C. 
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7. Conclusions 
Genetic Programming gave results comparable with those 
from PLS regression in the analysis of biological spectra. 
By identifying significant variables it also gives insight into 
the relationship between a spectrum and the analyte of 
interest. This study has led to further work aimed at 
constraining the output expression so as to define more 
clearly the predictive relationship. 
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