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Abstract

Pyrolysis mass spectrometry was used to produce complex biochemical fingerprints of Eubacterium exiguum, E. infirmum, E.
tardum and E. timidum. To examine the relationship between these organisms the spectra were clustered by canonical variates
analysis, and four clusters, one for each species, were observed. In an earlier study we trained artificial neural networks to
identify these clinical isolates successfully ; however, the information used by the neural network was not accessible from this
so-called `black box' technique. To allow the deconvolution of such complex spectra (in terms of which masses were important
for discrimination) it was necessary to develop a system that itself produces `rules' that are readily comprehensible. We here
exploit the evolutionary computational technique of genetic programming; this rapidly and automatically produced simple
mathematical functions that were also able to classify organisms to each of the four bacterial groups correctly and
unambiguously. Since the rules used only a very limited set of masses, from a search space some 50 orders of magnitude greater
than the dimensionality actually necessary, visual discrimination of the organisms on the basis of these spectral masses alone
was also then possible. z 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V.
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1. Introduction

The oral asaccharolytic Eubacterium species are a
diverse group of organisms that are implicated in
periodontitis, endodontic infections and dentoalveo-

lar abscesses [1,2]. They are slow-growing and di¤-
cult to identify by conventional means. The number
of documented species continues to increase (for ex-
amples see [3,4]) and in a recent study [5] we used
pyrolysis mass spectroscopy (PyMS) to con¢rm the
taxonomic position of the three newly described spe-
cies E. exiguum, E. in¢rmum and E. tardum.

PyMS is a `whole cell ¢ngerprinting' method
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which can be used to produce a biochemical ¢nger-
print of the substance or organism under study.
However, the clustering of these multivariate ¢nger-
prints is not possible by simple visual inspection and
has usually been carried out by conventional `unsu-
pervised' chemometric tools such as discriminant
analysis and hierarchical cluster analysis. More re-
cently the development of arti¢cial neural networks
(ANNs) has provided an alternative, `supervised'
learning method [6] and although ANNs have been
shown to be e¡ective tools for microbial identi¢ca-
tion and discrimination from PyMS data (for exam-
ples see [5,7,8]) the information in terms of which
masses in the mass spectrum are important is not
readily available, and ANNs are often perceived as
a `black box' approach to modelling spectra.

Genetic programming (GP) is an alternative super-
vised learning technique devised by Koza [9^11].
This method attempts to provide a solution in the
form of a procedural program without the need for
explicit coding (see Fig. 1 for a £owchart for GP).
GP e¡ectively performs a directed search through the
abstract space of possible computer programs from
random starting points. The programs generated are
functions or expressions that are optimised using the
Darwinian principles of selection and reproduction
[12]. An initial population of computer programs is
generated from a set of functions, which may be
simple arithmetic functions or complex algebraic for-
mulae, and a terminal set, which contain variables or
constant values that may be used as input to the
functions. Each function must accept and return
the same data type, so that a working program is
obtained (that is to say, the functions must have
closure so that the function tree can actually be
translated into a mathematical equation). Each pro-
gram is generated in the form of a tree structure.
Each individual in the population is tested via a ¢t-
ness function, and a score obtained. These individu-
als are then selected, on the basis of their ¢tness
score, for reproduction. There are two common re-
production processes: asexual reproduction, where a
direct copy of the individual is made; and sexual
reproduction, where random parts of two individuals
are swapped to form two di¡erent o¡spring (see Fig.
2 for the crossover operation for GP). The child
population then undergoes ¢tness testing, and this
cycle is continued until an acceptable error level is

reached, producing a suitable computer program
that solves the problem to a satisfactory degree. A
GP optimises an individual by executing it using the
training data as input to the program; the error is
then calculated as the di¡erence between the pro-
gram output and the measured result. The ability
to take multiple input values into a program makes
GP an ideal candidate for multivariate analysis,
where many x variables bear a relationship to one
property (y variable). Another bene¢t of GP is that
the output of a run is a procedural program whose
instructions elucidate the variables used, and the re-
quired manipulation of those values. This allows
reference back to the original spectrum for further
analysis.

The aim of this study was to exploit GPs to de-
convolute the pyrolysis mass spectra of strains pre-
viously identi¢ed by phylogenetic analyses as one of
four Eubacterium species. To be con¢dent in the
GP's solution an independent test set of each of
the four species was used along with ¢ve hospital
isolates which had been recently identi¢ed as E. ex-
iguum [5].

2. Materials and methods

2.1. Organisms and cultivation

Details and origins of the organisms are given in
Table 1. Strains were cultured on Fastidious Anae-
robe agar (Lab M, Bury, UK) plus 5% sheep blood
and incubated anaerobically in an atmosphere of N2

80%, CO2 10%, H2 10% for 72 h. The bacteria were
harvested with a nichrome wire loop and suspended
in phosphate bu¡ered saline to 20 mg ml31.

2.2. Pyrolysis mass spectrometry

Bacterial samples (5 Wl) were evenly applied on to
iron-nickel foils to give a thin uniform surface coat-
ing. Prior to pyrolysis the samples were oven-dried at
50³C for 30 min. Each sample was analysed in trip-
licate. For full operational procedures see [7,13,14].
The sample tube carrying the foil was heated, prior
to pyrolysis, at 100³C for 5 s. Curie-point pyrolysis
was at 530³C for 3 s, with a temperature rise time of
0.5 s. These conditions were used for all experiments.
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The data from PyMS were collected over the m/z
range 51^200 and may be displayed as quantitative
pyrolysis mass spectra (e.g. as in Fig. 3; here nor-
malised to total ion count). The abscissa represents
the m/z ratio whilst the ordinate contains informa-
tion on the ion count for any particular m/z value
ranging from 51 to 200.

2.3. Data pre-processing

The 150 normalised masses in each spectrum were
reduced in number using their characteristicity val-
ues. Characteristicity is closely related to the Fisher
(F) ratio [15], where:

F � Between-group variance

Within-group variance

and has been used to select relevant masses in PyMS
spectra for multivariate analysis [16].

Characteristicity was calculated as described by
Eshuis et al. [17]. The mass intensities are then
ranked in order of their characteristicities; large val-
ues are more important, smaller ones less so. The 20
most characteristic masses were selected to form the
set on which the GP was performed.

2.4. Discriminant function analysis

It is important that the 20 most characteristic
masses contain as much information to separate
the four Eubacterium species as do all 150 masses;
therefore discriminant function analysis (DFA) was
performed as described by Manly [15]. Ordination
plots based on the ¢rst few DFs can be viewed and
used to ascertain if the 24 Eubacterium strains, rep-
resentative of the four bacterial groups, were clus-
tered in a similar manner.

2.5. Genetic programming

A commercial GP package, e version 1.0 (System
Dynamics International Inc., 512 Rudder Road,
Fenton, MO 63026), was used in these experiments.
The software performs genetic programming on one
or more sets of randomly generated computer pro-
gram functions. The components that comprise each
program are selected from a set of operators pro-
vided by the package (Table 2). Each set of individ-

uals is known as an ecosystem. Each ecosystem is
generated, and evolved in isolation, enabling di¡er-
ent conditions for evolution to be set if desired. In a
multi-ecosystem experiment individuals may transfer
between isolated ecosystems using a process termed
migration (the probability value for migration was
set to 0.1; the probability values for all the genetic
operations were on a scale of 0.0^1.0). If this process
is enabled, an individual from one ecosystem is se-
lected according to ¢tness and is copied into another
ecosystem, replacing the individual with the worst
¢tness score. For the purposes of this experiment
four ecosystems were created randomly, each with
a di¡erent training set, but with other parameters
set to be identical. Each ecosystem was set to contain
a maximum of 15 di¡erent computer program
functions (individuals) as its population. Each
computer program function was constructed as a
series of instructions, in order for relatively simple
rules to be developed complex trees were penalised
by setting the maximum number of instructions
(tree length) in an individual to 15. The probability
values for mutation and sexual reproduction (cross-
over) of instructions were set to 0.03 and 0.8 respec-
tively.

The generated ecosystems were each evolved to
recognise a speci¢c Eubacterium species, using the
parameters and operators detailed in Table 2. Eco-
system 0 was trained to identify E. timidum, ecosys-
tem 1 to identify E. in¢rmum, ecosystem 2 to identify
E. exiguum, and ecosystem 3 trained to identify E.
tardum. The training set for the GPs contained only
45 spectra (15 samples in triplicate) described by 150
m/z intensities, and it is well known that if the num-
ber of parameters in calibration models such as
ANNs and GPs are signi¢cantly higher than the
number of exemplars in the training set then these
methods have a tendency to over¢t [18,19]. Therefore
to obey the parsimony principle as described by
Seasholtz and Kowalski [18] the number of inputs
to the GP was reduced by ranking the masses ac-
cording to their characteristicity values (see above
for details). Twenty masses were chosen because (as
detailed above) they adequately described the
discrimination of these organisms in discriminant
analysis space. The input data for each of the eco-
systems were the ¢rst 20 most characteristic masses
(61, 94, 91, 99, 136, 103, 62, 92, 69, 85, 150, 122, 68,
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84, 162, 65, 88, 58, 107 and 102) and these were
scaled so that the sum of all 20 masses was unity.

From each of the four `known' species, one of the
samples (in triplicate) was reserved to form a test set
(details are given in Table 1). The remaining samples
were used as training data for the GPs. The single
output of each of the ecosystems was encoded so
that 1 was taken as the bacterium under study be-
longing to that Eubacterium species and 0 was taken

as a negative recognition for that Eubacterium class.
Training was over a number of `generations' where a
single generation was one full reproduction cycle of
the ecosystem, and training was stopped when the
raw error of prediction on the training set reached
0.1. This error was calculated by the proportion of
incorrect `hits' by the program in recognising a spe-
cies. After training the GPs both the training and
test sets were used to challenge the GPs.

FEMSLE 8048 3-3-98

Fig. 1. Flowchart showing the overall scheme for genetic programming (adapted from The Genetic Programming Tutorial Notebook,
URL: http://www.geneticprogramming.com/Tutorial/index.html).
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3. Results and discussion

Typical pyrolysis mass spectra are shown in Fig. 3.
These and the pyrograms from all 24 bacteria show
very little qualitative di¡erence between the spectra,
although some complex quantitative di¡erences be-
tween them were observed; for example mass 58 in
the E. exiguum spectrum has a much higher ion in-
tensity than that in any of the other Eubacterium
species, and a large mass 91 appears to be character-
istic for E. timidum.

After collection of the data the ¢rst stage was to
observe the relatedness between all these strains us-
ing DFA. It was evident in the DFA plots (data not
shown) that four clusters, one for each Eubacterium
species, were seen. The next stage was to perform
DFA on the ¢rst 20 most characteristic masses,
and it was also evident that these ordination plots
(data not shown) allowed su¤cient separation be-
tween the four di¡erent Eubacterium species.

Since there was no degradation in clustering by
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Table 1
Eubacterium species studied

Identi¢er Species/group Strain numbera Origin/reference Training or test set

Ta E. timidum ATCC 33093T [21] Training
Tb W557 Training
Tc W690 Training
Td W693 Training
Te W2847 Test
1a E. in¢rmum NCTC 12940T [3] Training
1b W687 Training
1c W1475 Training
1d W1470 Test
2a E. exiguum SC142 [22] Training
2b SC108 Training
2c W1365 Training
2d W733 Training
2e W2848 Test
Na E. tardum SC68 [3] Training
Nb SC88P Training
Nc SC41B Training
Nd SC37 Training
Ne NCTC 12941T Test
Ha Hospital isolates SBH463 All bacteria from Test
Hb SBH481 oral abscess at Test
Hc SBH462 St. Bartholomew's Test
Hd SBH403 Hospital, London Test
He SBH477 Test

aStrains have been deposited in the ATCC (American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852-1776, USA) or
NCTC (National Collection of Type Cultures, Central Public Health Laboratory, 61, Colindale Avenue, London NW9 5HT, UK).

Fig. 2. An example of the crossover operation for genetic pro-
gramming. The following tree represents the crossover of parents
y = 2(x3)3x1+MAX(x5,x6) and y = (x1)2+2(LOG(x2)) at the point
indicted by a `slash', leading to the production of progeny with
equations y = (x1)23x1+MAX(x5,x6) and y = 2(x3)+2(LOG(x2)).
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using only 20 masses the four GP ecosystems were
trained using GPs with these data to a raw error of
0.1. This process was fast, and took only 1 min and
12 s on a 486 DX66 IBM compatible running under

Microsoft NT 4.01. After calibration the following
mathematical expressions were produced by each
ecosystem:

FEMSLE 8048 3-3-98

J. Taylor et al. / FEMS Microbiology Letters 160 (1998) 237^246242



FEMSLE 8048 3-3-98

Fig. 3. Deconvolution and interpretation of the pyrolysis mass spectra of E. timidum ATCC 33093T, E. in¢rmum NCTC 12940T, E. exi-
guum SC142 and E. tardum SC68. * indicates the peaks chosen by the GPs.
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b Ecosystem 0 was trained to identify E. timi-
dum, calibration took 1032 generations and the for-
mula that evolved used only mass 91 and was:
b IF (m913AVG(x,20))6= 0.0, THEN iden-
tity = 0, ELSE identity = 1.
b The AVG function calculates the average
scaled mass intensity of a single spectrum (x).
b Ecosystem 1 was trained to identify E. in¢r-
mum, calibration took 66 generations and the for-
mula that evolved used masses 84, 85 and 162 and
was:
b IF (m853m1623m84)6= 0.0, THEN iden-
tity = 0, ELSE identity = 1.
b Ecosystem 2 was trained to identify E. exi-
guum, calibration took 165 generations and the for-
mula that evolved used only mass 58 and was:
b IF (m5830.23835)6= 0.0, THEN identity = 0,
ELSE identity = 1.
b Ecosystem 3 was trained to identify E. tar-
dum, calibration took 171 generations and the for-
mula that evolved used masses 61 and 94 and was:
b IF (m6132*(m94))6= 0.0, THEN identity = 0,
ELSE identity = 1.

After training, each calibrated ecosystem was chal-
lenged with the training and test sets. As expected
the GP identi¢ed all 15 bacteria in the training set;
more importantly however is that all nine isolates in
the unknown (unseen) test set were also correctly
identi¢ed; there was 100% correct recognition of
the nine species by each ecosystem (scored as a 1),
and 0% recognition of species which were not in that
ecosystem (scored as a 0). Ecosystem 2 also placed
each of the ¢ve unseen hospital isolates into the cat-
egory of E. exiguum, a result which has previously
been achieved with ANNs [5].

The above result was very encouraging because
although both ANNs and GP can be used success-
fully to identify these Eubacterium isolates, the GP
has also provided an insight into the analysis of the
original spectrum, which by contrast is not accessible
to the user from ANN analyses. Seven of the 20
most characteristic masses were used and these
were 58, 61, 84, 85, 91, 94 and 162 and were ranked
according to their characteristicity index as 18th, 1st,
14th, 10th, 3rd, 2nd and 15th most important respec-
tively. These masses are highlighted by asterisks on
the PyMS spectra in Fig. 3.

That the GPs all produced di¡erent expressions,
and that they were rather simplistic mathematical
formula, has permitted the deconvolution of the
PyMS in terms of which masses were important.
The next stage was therefore to interpret these rules
from the mass spectra. Two of the ecosystems used
only a single mass intensity and so are consequently
very easy to interpret; ecosystem 0 was trained to
identify E. timidum and the formula produced was
IF (m913AVG(x,20))6= 0.0, THEN identity = 0,
ELSE identity=1. When the spectra are inspected
one can see that mass 91 is highest in spectra from
E. timidum (as noted above); indeed the average
magnitude of this scaled mass for all the E. timidum
strains was 0.099, whilst the same mass in all the
other eubacteria was only 6 0.024. The other single
mass expression was from ecosystem 2 which was
trained to identify E. exiguum and the formula pro-
duced was IF (m5830.23835)6= 0.0, THEN iden-
tity = 0, ELSE identity = 1. When the spectra are in-
spected (Fig. 3) one can see that mass 58 is highest in
spectra from E. exiguum, the average for this mass
for all the E. exiguum strains was 0.39, whilst the
same mass in all the other eubacteria was 6 0.16;
moreover the intensity of mass 58 for the hospital
isolates was also high and was typically 0.36. For the
identi¢cation of E. tardum the expression produced
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Table 2
Parameters and operators used in the GP

Parameter Setting

Number of ecosystems 4
Population size 15
Migration Enabled

Operators Meaning

+ add
3 subtract
* multiply
/ divide
MAX(x,y) larger of x, y
MIN(x,y) smaller of x, y
NOT(x) 13x
AVG(x[],num) average value of an array x (all mass in-

tensities for a given organism) where
num is the number of elements (or
masses) in that array

Also included is an IFTTHENTELSE statement.
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by ecosystem 3 was IF (m6132*(m94))6= 0.0,
THEN identity = 0, ELSE identity = 1. Mass 61 was
highest in E. tardum and the average for this species
was 0.11, compared with 6 0.05 for the other Eubac-
terium spp. There was no obvious trend in mass 94
and the scaled intensities for these masses ranged
between 0.03 and 0.06 and the intensity for E. tar-
dum was 0.04. However, as was evident from the
expression, the weight ratio of these two masses
was important. Finally, the most complex expression
was IF (m853m1623m84)6= 0.0, THEN iden-
tity = 0, ELSE identity = 1, and was produced from
ecosystem 1 which was trained to identify E. in¢r-
mum. As one might expect from this formula mass
85 was highest in E. in¢rmum and was 0.16 whilst for
the other eubacteria this mass intensity was 6 0.097,
although there was no obvious relationship between
masses 84 and 162 other than the ratio between these
masses being important.

Finally the signi¢cance of the GPs choosing
masses 58, 61, 85 and 91 as the most important in-
puts can be seen when three of these (61, 85 and 91)
are plotted against one another (Fig. 4); each of the
four Eubacterium spp. are recovered in separate clus-
ters, and the hospital isolates unequivocally group
with the ¢ve E. exiguum strains. An exhaustive
search of all 2150 (1045) possible permutations (where
a mass is either used or not) would be computation-

ally prohibitive, and to e¡ect visible inspection of all
possible three dimensional plots would necessitate
graphing 5.5U105 plots since the number of combi-
nations needed to pick 3 masses out of 150 = 150!/
[(150!33!)3!].

It is very signi¢cant that the GP has highlighted
which masses are predominantly important in sepa-
rating these four Eubacterium species because it will
now allow the deconvolution in terms of what (bio)-
chemical information is di¡erent in each of the bac-
teria and thereby could allow speci¢c characteristic
biochemical markers to be developed for each of the
eubacteria. Due to the complex nature of the pyrol-
ysis process this will be di¤cult, since on pyrolysis
the weakest bonds between all molecules in and on
the cell are broken. In addition, it is likely that each
mass is not of unique origin and so a more detailed
analysis of the peaks highlighted by the GP might
have been e¡ected using pyrolysis GC-MS or pyrol-
ysis tandem MS-MS, but this facility was not avail-
able to us. However, the following information is
available (Prof. Jaap J. Boon, personal communica-
tion); mass 58 is likely to be a radical recombination
product of methyl radical and CH3CO and so a spe-
ci¢c pyrolysis fragment polysaccharide, mass 61 is
the most basepeak of glycerol from lipids, mass 85
is often the largest peak in pentose anhydrosugar
products, and mass 91 is the base peak of toluene,
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Fig. 4. Pseudo-3-D plot of the scaled mass intensities 85 vs 91 vs 61. Data points are the averages for the replicate samples and their
identi¢ers are given in Table 1.
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a pyrolysis products of phenylalanine found in pro-
teins [20].

In conclusion, this is the ¢rst study that has shown
that the genetic programming approach can be ap-
plied successfully to the accurate identi¢cation of
bacteria by analysis of their PyMS spectra. This ap-
proach provided identities which were as good as
those from other supervised learning methods such
as ANNs, but with the enormous additional bene¢t
of enabling the deconvolution of the pyrograms in
terms of which masses were characteristic for each of
the bacterial species studied.
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