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Abstract Following a strategy similar to that used in

baker’s yeast (Herrgård et al. Nat Biotechnol 26:1155–1160,

2008). A consensus yeast metabolic network obtained from a

community approach to systems biology (Herrgård et al.

2008; Dobson et al. BMC Syst Biol 4:145, 2010). Further

developments towards a genome-scale metabolic model of

yeast (Dobson et al. 2010; Heavner et al. BMC Syst Biol

6:55, 2012). Yeast 5—an expanded reconstruction of the

Saccharomyces cerevisiae metabolic network (Heavner

et al. 2012) and in Salmonella typhimurium (Thiele et al.

BMC Syst Biol 5:8, 2011). A community effort towards a

knowledge-base and mathematical model of the human

pathogen Salmonella typhimurium LT2 (Thiele et al. 2011), a

recent paper (Thiele et al. Nat Biotechnol 31:419–425,

2013). A community-driven global reconstruction of human

metabolism (Thiele et al. 2013) described a much improved

‘community consensus’ reconstruction of the human

metabolic network, called Recon 2, and the authors (that

include the present ones) have made it freely available via a

database at http://humanmetabolism.org/ and in SBML

format at Biomodels (http://identifiers.org/biomodels.db/

MODEL1109130000). This short analysis summarises the

main findings, and suggests some approaches that will be

able to exploit the availability of this model to advantage.
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1 Main findings of the Recon 2 paper

A highly curated consensus reconstruction of the human

metabolic network, termed Recon 2, was recently released

(Thiele et al. 2013). The development of the network fol-

lowed a community ‘jamboree’ approach (Herrgård et al.

2008; Dobson et al. 2010; Heavner et al. 2012; Thiele and

Palsson 2010), exploiting both genomic and literature data

to expand upon existing reconstructions (Duarte et al.

2007; Ma et al. 2007; Gille et al. 2010) to produce a ‘basal’

network that contains 7,440 reactions, 5,063 metabolite

pools and 2,626 unique metabolites. The reconstruction is

extensively semantically annotated (Kell and Mendes

2008; Courtot et al. 2011), fully compliant with the

MIRIAM standard (Le Novère et al. 2005), unambiguously

identifying cellular compartments, metabolites, genes and

enzymes with publicly available, external database terms

(Krause et al. 2011). Thus, cellular compartments are

annotated with Gene Ontology (GO) terms, while metabo-

lites are annotated with terms from resources such as

Chemical Entities of Biological Interest (ChEBI) (Hastings
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et al. 2013) as well as using IUPAC International Chemical

Identifier (InChI http://www.iupac.org/home/publications/e-

resources/inchi.html) terms (Coles et al. 2005) where pos-

sible. Reactions are curator-validated and annotated with

PubMed literature references, standardized GO evidence

codes, and a confidence scoring system ranging from 0 (no

evidence) to 4 (biochemical evidence). Metabolic reactions

were checked to ensure correct stoichiometry, (ir)revers-

ibility, the correct assignment of gene association and

enzyme rules, and mass and charge balancing. Appropriate

transport reactions were also included and these followed

the same level of annotation as reactions.

In contrast to existing resources such as KEGG

(Kanehisa and Goto 2000) or the Human Metabolome

Database (HMDB) (Wishart et al. 2007), Recon 2 acts as

both a knowledgebase and a predictive model, amenable to

constraint-based analysis approaches such as flux balance

analysis (Orth et al. 2010). To demonstrate this utility, the

Recon 2 authors focused on five analyses of immediate

interest. First they defined a metabolic task as a nonzero

flux through a reaction or through a pathway leading to the

production of a metabolite B from a metabolite A; 354 such

metabolic tasks were defined and all carried out success-

fully in silico. Secondly, they established whether known

mutations producing ‘inborn errors of metabolism’ (IEMs)

did have the predicted effect on biomarkers (54 reported

biomarkers for 49 different IEMs, with an accuracy of

77 %; see also Shlomi et al. 2009). Thirdly, they showed

that Recon 2 should predict a large fraction of metabolites

that are excreted (the ‘metabolic footprint’ (Allen et al.

2003) or ‘exometabolome’ (Kell et al. 2005)). Fourthly,

based on expression profiling data from the Human Protein

Atlas (Uhlén et al. 2010), they generated 65 draft cell-type-

specific models, and fifthly they found (notwithstanding the

rather promiscuous behaviour of many drugs (Hopkins

2008, 2009; Kell et al. 2013)) that they could map 1,290

drugs to 308 enzyme and enzymatic complexes.

2 Some known shortcomings of Recon 2

While Recon 2 represents the ‘state of the art’ of public

human metabolic network reconstructions, it should be

acknowledged that it does have some known shortcomings,

including the fact that a number of known metabolites and

reactions (including those involving unliganded iron

(Hower et al. 2009; Kell 2009, 2010; Chifman et al. 2012;

Funke et al. 2013)) have still to be included, and there are

increasing numbers of ‘unexpected’ metabolite-protein

reactions that are being discovered (Li et al. 2010; Li and

Snyder 2011; Kell 2011; Kell et al. 2013). These are thus

mainly ‘false negatives’ (Broadhurst and Kell 2006), and

dealing with them is clearly one of the goals that will

remain in any continuing curation process. It is recognised

that the network reconstruction process is iterative (Reed

and Palsson 2003), and the metabolomics and systems

biology communities are encouraged to contribute to this

ongoing effort. Following an approach that has been

applied successfully in the generation of subsequent itera-

tions of the yeast consensus model (Herrgård et al. 2008;

Dobson et al. 2010; Heavner et al. 2012), suggested updates

and amendments can be e-mailed to network.reconstruction

@manchester.ac.uk.

3 What the Recon 2 network will allow us

to do or to do better

3.1 General benefits of network models

As discussed previously (Kell 2006a; b), the availability of

a systems biology model of a metabolic network allows

one to effect a variety of analyses, some of which are

illustrated in Fig. 1. We here mention just a few that are

likely to be of most interest to the metabolomics

community.

3.2 Improved predictions of metabolic fluxes,

including in biotechnology

Given the topology of a network, and the stoichiometric

and thermodynamic constraints under which metabolic

networks must operate (Palsson 2006; Kell 2006a; b), it is

possible to use generalised kinetics to predict metabolic

fluxes (Liebermeister and Klipp 2006; Smallbone et al.

2007; Smallbone and Simeonidis 2008; Smallbone et al.

2010). The accuracy of these predictions can of course be

enhanced by the use of known kinetic rate equations (Li

et al. 2010), and even by expression profiles alone (Lee

et al. 2012). Such an approach has been applied, exploiting

both transcriptomics and fluxomics data, to constrain

models derived from a precursor of Recon 2 in order to

elucidate and validate new drug targets in renal-cell cancer

(Frezza et al. 2011).

The use of network biology in predicting fluxes (and

how to change them), as well as in parameter optimisation

(Mendes and Kell 1998; Moles et al. 2003; Adams et al.

2013), has enjoyed particular success in biotechnology

where it is usually the fluxes to external products that are of

interest (Park et al. 2007; Lee et al. 2012; Park et al. 2010;

Becker et al. 2011). In this area, the ongoing development

of a systems biology toolkit for Chinese Hamster Ovary

(CHO) cells, which will be increasingly utilised for bio-

technological production of pharmaceutical proteins (Kil-

degaard et al. 2013), will be aided by the development of

Recon 2, which can act as a template for development of a

758 N. Swainston et al.

123

http://www.iupac.org/home/publications/e-resources/inchi.html
http://www.iupac.org/home/publications/e-resources/inchi.html


detailed metabolic reconstruction of CHO. Additionally,

one may anticipate the importance of predictions of met-

abolic fluxes in understanding nutrition and regulation in

health and disease.

3.3 Understanding and incorporating knowledge

of drugs that use known transporters

As part of the need to incorporate ‘new’ proteins and their

interactions with small molecules, one particular feature

that has become increasingly apparent in recent years is

that pharmaceutical drugs do not normally cross mem-

branes ‘passively’ through any phospholipid bilayer por-

tions that they may contain, but hitchhike on the carriers

that participate in the transmembrane transport of

intermediary metabolites (Al-Awqati 1999; Dobson and

Kell 2008; Dobson et al. 2009; Dobson et al. 2009; Kell

and Dobson 2009; Giacomini et al. 2010; Burckhardt and

Burckhardt 2011; Kell et al. 2011; Lanthaler et al. 2011;

DeGorter et al. 2012; Kell and Goodacre 2013). It is likely

that these kinds of issues contribute significantly to the

dreadful attrition rates still seen in drug development (van

der Greef and McBurney 2005; Kola and Landis 2004;

Kola 2008; Empfield and Leeson 2010; Leeson and Emp-

field 2010; Kwong et al. 2011). The availability of Recon 2

and its tissue-specific versions will now make it much

easier to correlate drug disposition with transporter

expression, and thereby determine (with suitable machine

learning analyses (Kell et al. 2001)) the roles of the dif-

ferent transporters in effecting the cellular uptake and
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Fig. 1 A summary of some of the intellectual areas in which we can create and exploit the contents of systems biology models as encoded in

SBML
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efflux of particular drugs. Incorporating this kind of

knowledge into subsequent iterations of Recon 2 is an

urgent priority.

3.4 Other approaches to mining the metabolic network

An important recognition (Herrgård et al. 2008), continued

in Recon 2, was that of the utility of the methods of chem-

informatics (Gasteiger 2003) in providing chemically accu-

rate and database-independent descriptions of the structures

of metabolites that allowed models (such as those encoded in

SBML (Hucka et al. 2003; Hucka et al. 2004)) to be inter-

rogated computationally. In a similar vein, there is an

increasing trend towards automated reasoning about the

content of scientific papers from a systems biology point of

view (Hakenberg et al. 2004; King et al. 2005; Ananiadou

et al. 2006; Kell and Mendes 2008; Ananiadou et al. 2010;

Ray et al. 2010; Miwa et al. 2012, 2013), including about

their metabolomes (Knox et al. 2007; Attwood et al. 2009;

Attwood et al. 2010; Nobata et al. 2011; Zhou et al. 2012;

Hastings et al. 2013). The availability of Recon 2 will allow

one to ask questions such as, ‘‘how many metabolites with a

given substructure are present in the network?’’ or ‘‘which

metabolites are common (or different) between these two

networks?’’ or to plot out the distributions of various kinds of

properties that may be of interest (Dobson et al. 2009); one

such plot, simply showing the distribution of molecular

masses, is given in Fig. 2.

3.5 Comparison with the experimental metabolome

Analysis of the metabolome as encoded in biochemical

networks also leads one to recognise the importance of

comparing systems biology models with the experimental

metabolome (i.e. the concentrations of small molecules)

measured in different circumstances (‘comparative meta-

bolomics’, Raamsdonk et al. 2001; Levandi et al. 2008).

As with Recon 2, the experimental metabolome of, for

example, human serum consists of several thousands of

reproducibly detectable metabolites (O’Hagan et al. 2005;

2007; Begley et al. 2009; Zelena et al. 2009). While some

of these experimentally observed metabolites will certainly

originate from nutrients or the gut microbiome (Goodacre

2007; Li et al. 2008; Wikoff et al. 2009; Zhao and Shen

2010; Wang et al. 2011; Bennett et al. 2013; Collino et al.

2013; Heinken et al. 2013), Recon 2 allows one to set down

those that are at least encoded in the human genome

sequence, and compare these with the contents of the

various metabolome databases (Brown et al. 2009; Kamp

et al. 2012; van Ravenzwaay et al. 2012; Sawada et al.

2012; Steinbeck et al. 2012; Tautenhahn et al. 2012;

Wishart 2012; Zhou et al. 2012; Guo et al. 2013; Hastings

et al. 2013; Haug et al. 2013; Li et al. 2013; Salek et al.

2013; Sakurai et al. 2013; Wishart et al. 2013). Data

standards such as SBRML (Dada et al. 2010) allow a

straightforward comparison of network models with

experimental data encoded in a compatible format.

3.6 The importance of semantic annotation

Many of the application areas described above are depen-

dent upon the semantic awareness of Recon 2, and the

incorporation of thousands of unique, persistent, unam-

biguous semantic annotations that allow for software-dri-

ven analyses of the knowledgebase and derived models. By

representing both the network and its semantic information

using community-driven standards such as SBML (Hucka

Fig. 2 An assessment of the

distribution of molecular masses

of the metabolites in Recon 2
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et al. 2003, 2004) and MIRIAM (Le Novère et al. 2005),

software producers are able to develop against a given

standard, decoupling the network model from the tech-

niques used in its various more specialized analyses.

There is increasing community interest in the develop-

ment of tissue- and condition-specific models, and this task

is dependent upon the integration of large-scale ‘omics

data. Methods to perform such integration are many-fold

and are in constant development (Mo et al. 2009; Jerby

et al. 2010; Wang et al. 2012), but all are reliant on auto-

mated approaches, given that the size of the datasets

involved renders manual integration impossible. Recon 2 is

annotated with third-party identifiers across numerous

scales, from genomics through to transcriptomics, proteo-

mics and metabolomics, all of which can be mapped to

appropriate web services, allowing for their automated

interpretation (Swainston and Mendes 2009) and integra-

tion of multi-omics data (Li et al. 2008, 2008; Hyduke et al.

2013). Additionally, the definition of metabolites in struc-

tural terms permits the exploitation of cheminformatics

tools such as the Chemistry Development Toolkit

(Steinbeck et al. 2003) and Open Babel that allow one to

translate the various encodings or mappings of chemical

structures (O’Boyle et al. 2011).

Furthermore, the specification of metabolites, enzymes

and reactions in unambiguous terms facilitates the devel-

opment of knowledgebases and models of related organ-

isms, through automated or semi-automated means (Henry

et al. 2010; Swainston et al. 2011; Agren et al. 2013).

Recon 2 can therefore act as a template for the develop-

ment of metabolic reconstructions of related model

organisms, facilitating comparative studies and simulation

of metabolism between human and other model systems

(Sigurdsson et al. 2010).

4 Concluding remarks

The availability of Recon 2 allows a great many compu-

tational analyses to be performed. We have purposely

rehearsed these at a rather general level, since particular

analyses, that might be relevant to particular diseases, for

instance, are simply implementations of the more general

approaches. One new approach that will depend on the

existence of such a network as a necessary resource is

personalised medicine (Hood and Flores 2012). There one

will develop models of metabolism calibrated for each

specific individual, in large part using metabolomics

methods, to be used as bases for diagnostics and decisions

on course of treatment. Recon 2 is a very significant step

towards such a map, where such measurements have to be

anchored for various types of modelling that will underpin

personalised treatment decisions.

The development of tissue- and condition-specific

models has been demonstrated with Recon 2 and its pre-

decessors (Jerby et al. 2010; Frezza et al. 2011; Wang et al.

2012). As subsequent iterations of Recon 2 develop, it is

hoped that the scope of the knowledgebase, and the pre-

dictive power of derived models, will increase to keep pace

with advancements in the community knowledge of human

metabolism, many of which will be driven by the discipline

of metabolomics.
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Gille, C., Bölling, C., Hoppe, A., et al. (2010). HepatoNet1: a

comprehensive metabolic reconstruction of the human hepato-

cyte for the analysis of liver physiology. Molecular Systems

Biology, 6, 411.

Goodacre, R. (2007). Metabolomics of a superorganism. Journal of

Nutrition, 137, 259S–266S.

Guo, A. C., Jewison, T., Wilson, M., et al. (2013). ECMDB: the

E. coli Metabolome Database. Nucleic Acids Research, 41,

D625–D630.

Hakenberg, J., Schmeier, S., Kowald, A., Klipp, E., & Leser, U.

(2004). Finding kinetic parameters using text mining. OMICS: A

Journal of Integrative Biology, 8, 131–152.

Hastings, J., de Matos, P., Dekker, A., et al. (2013). The ChEBI

reference database and ontology for biologically relevant

chemistry: enhancements for 2013. Nucleic Acids Research,

41, D456–D463.

Haug, K., Salek, R. M., Conesa, P., et al. (2013). MetaboLights-an

open-access general-purpose repository for metabolomics stud-

ies and associated meta-data. Nucleic Acids Research, 41, D781–

D786.

Heavner, B. D., Smallbone, K., Barker, B., Mendes, P., & Walker, L.

P. (2012). Yeast 5—an expanded reconstruction of the Saccha-

romyces cerevisiae metabolic network. BMC Systems Biology, 6,

55.

Heinken, A., Sahoo, S., Fleming, R. M., & Thiele, I. (2013). Systems-

level characterization of a host-microbe metabolic symbiosis in

the mammalian gut. Gut Microbes, 4, 28–40.

Henry, C. S., DeJongh, M., Best, A. A., Frybarger, P. M., Linsay, B.,

& Stevens, R. L. (2010). High-throughput generation, optimiza-

tion and analysis of genome-scale metabolic models. Nature

Biotechnology, 28, 977–982.
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