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Abstract

In order to gain a detailed understanding of cell signalling and regulation processes, live cell imaging is often used. Such signalling can involve

the nuclear-cytoplasmic translocation of signalling molecules, and to follow this, it is necessary to mark the cell and nuclear boundaries in an

image sequence in individual cells. For complex processes, with both rapid cell motion and nuclear translocation, it is extremely time-consuming

to mark such cell boundaries manually. The particle filter (PF) is a Monte Carlo method based on sequential importance sampling. It is robust to

clutter and the occlusion of targets in object tracking. The active contour (AC) method is based on a deformable model and is capable of capturing

minor cell shape variations, although a good initialisation is often required. Prior information from a particle filter provides a reasonable

initialisation for the active contour method and prevents it from being trapped in local minima. Combining these two methods (PF-AC) thus makes

it possible to track complex cellular processes automatically. The combined method is used to study the important NF-nB signalling pathway.

Comparable results to those obtained manually by a biologist are obtained using the hyphenated approach, but in a small fraction of the time.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The function of most genes in humans (and even in lower

organisms) remains unknown, despite the successful systematic

genome sequencing programmes [1]. This has ushered in the era

of high-throughput biology as a means to establish gene

functions. Recent developments in biology nowmake it possible

to screen thousands of gene products Fsimultaneously_ for their
role in biological processes such as cell division, signalling

pathways and gene expression; this is done with the help of

fusion proteins, e.g. those based on GFP (green fluorescent

protein) [2]. Hundreds or thousands of images may be generated

in such experiments and fast image analysis is then essential for

high-throughput functional gene analysis.
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NF-nB proteins are small groups of closely related

transcription factors, which in mammals consist of five

members: Rel (also known as c-Rel), RelA (also known as

p65 and NF-nB3), RelB, NF-nB1 (p50) and NF-nB2 (p52).

These related members are critical regulators of cell division,

apoptosis and inflammation. The NF-nB signalling pathway is

an important pathway, in which protein phosphorylation leads

to the activation of further downstream events [3–6]. Recent

studies have suggested that NF-nB signalling involves oscilla-

tions of NF-nB between the cytoplasm and nucleus of cells

and that these oscillations are required for the maintenance of

gene expression [6,7]. Fig. 1 shows a typical HeLa cell

displaying changes in both the location and concentration of

DsRed-tagged NF-nB. Its neighbouring cells will typically be

at different phases in the oscillatory signalling dynamics and

thus individual cells must therefore be studied (as averaging

between cells will obscure the oscillations). To track such cell

activities, one has to mark single cell boundaries on each frame
ry Systems 82 (2006) 276 – 282
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Fig. 1. One typical HeLa cell in NF-nB signalling control at 0, 90, 180 and 540 min. The upper row images show the cell expressing a fusion protein of EGFP to

InBa and the lower row images show the DsRed fusion protein to RelA.

Fig. 2. Observation model using the Canny edge detector (---: hypothetical

contour; —: normal lines; o: observed edge points).
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and this is then an object tracking problem from the point of

view of the computer vision community. As can be seen from

Fig. 1, the cells overlap and the shapes of boundaries vary

irregularly over time, i.e. they are non-rigid. It is extremely

tedious, time-consuming and potentially error-prone to mark

the cell boundaries manually, and it is thus essential to apply

tracking techniques to enable fast analysis. Note that we try to

track cell boundaries without using any dye to help the

tracking process, since the added dye may hinder the normal

cell cycles.

Tracking objects in an image sequence is one of the basic

tasks in computer vision [8]. Tracking algorithms often use two

sources of information: a model of the dynamical behaviour of

the object being tracked (dynamic model) and a model of its

appearance within an image (appearance model). Both can be

acquired from a representative training set. In addition to

dynamic and appearance models, an observation model is often

required to evaluate the fitness of a hypothetical object

appearance given a set of image features. However, cell

appearance and fluorescent intensity may vary wildly during

cell signalling processes such as those of present interest. It is

therefore desirable to track cell boundaries instead of the whole

cellular region. The use of an edge (contour) based algorithm

may serve for this purpose. The tracking process involves

finding an object shape model, leading to robust estimates of the

object position and shape. The classic formulation of this

approach is contour tracking via a Kalman filter [9]. Tracking

methods based on Kalman filters assume that dynamic and

measurement models are linear with Gaussian noise. However,

for cellular image sequences, there are many interfering factors,

e.g. background clutter and occluding objects, and it is hard to

produce clean edges corresponding only to cellular boundaries.

This often causes the collapse of Kalman filter tracking
strategies [10]. A very robust algorithm is therefore required to

obtain reliable results.

The particle filter is a robust approach that has recently

enjoyed considerable success [10,11]. The particle filter does

not require the assumption of a Gaussian distribution and the

dynamic and measurement models may also be nonlinear. It is

based on creating an approximation to the full probability

distribution of the object’s configuration over all possible

locations using random sampling. This enables them to retain

multimodal probability distributions, making them robust to

temporarily ambiguous image support and hence able to

maintain tracking even in the presence of clutter and occlusions.

They also have the advantage of being simple to implement

[12]. However, cells are not rigid objects with simple shapes. A

more accurate result is expected to accommodate some non-

rigid variations.

The active contour (AC), first introduced by Kass et al. [13],

considers curves defined within an image domain that can



Fig. 3. Binary image edges as obtained by the Canny edge detector for the images in the upper row of Fig. 1.
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move under the influence of internal forces within the curve

itself and external forces derived from the image data. The

active contour has found many applications, including edge

detection [14] and motion tracking [15]. No shape model is

imposed in the active contour method. It is therefore suitable

for irregular non-rigid objects. However, the initial contour

must, in general, be close to the true boundary or else it will

likely converge to the wrong result. Thus, a prior result from

the particle filter may be expected to provide a good
Fig. 4. Cell boundary tracking. Initial boundaries on key frames (upper row),

—: cytoplasmic boundary; . . .: nuclear boundary.
initialisation. The active contour then acts as a post processing

in this application.

Computer vision techniques, e.g. active contour, have

enjoyed a number of applications in biomedical science, but

they are mainly in the field of static image segmentation [16].

In motion analysis, cells are often simplified as a point or

circular object or stained with cytoplasmic or nuclear dyes,

which may hinder their normal cell cycles. In this application,

no cytoplasmic or nuclear dyes were added to assist cell re-
obtained by the PF (middle) and the one obtained by PF-AC (lower row).
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Fig. 5. Fluorescent profiles for the cytoplasmic and nuclear amounts of RelA

and InBa obtained by a biologist (a), by PF (b) and by PF-AC (c).

Table 1

Pearson correlation coefficient of profiles obtained manually and those by PF

and PF-AC

Cyto InBa Cyto RelA Nuc InBa Nuc RelA

PF 0.988 0.923 0.985 0.985

PF-AC 0.987 0.904 0.987 0.988
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cognition. To the authors’ knowledge, this is the first

application of either particle filter or active contour methods

in single cell signalling pathway tracking.

2. Theory

In contour-based particle filter tracking, one has to define a

shape model, a dynamic model and an observation model. A

cell boundary may consist of tens of points, since it is

impractical to track all the points individually. Tracking is

often limited to just a few parameters by building a shape

model. The fitness of a boundary is evaluated using an

observation model.

2.1. Shape model

In many tracking applications, object shape is modelled

using 2D planar affine transform [12] with only one shape

template. In most cases, the nuclear boundaries undergo limited

changes, which may be also modelled using the conventional
approach. The variation of cytoplasm boundaries is, however,

non-rigid, a model using only one shape template is usually

insufficient. We notice that the shape change is usually steady

over the time course. The cellular boundary may be approx-

imated by a linear combination of those on the key frames;

thus, one uses a couple of representative boundaries as

templates. Any allowed shape vector Q between key frames

1 and 2 can be written as

Q ¼ Ws ð1Þ

W ¼ 1 0 Qx
1 Qx

2

0 1 Q
y
1 Q

y
2

��
: ð2Þ

Here s is a vector for estimating Q within the shape space

defined by W. 1 and 0 in Eq. (2) are vectors with 1s and 0s,

respectively. Qx and Qy are the x, y coordinates of shape

template on the key frames. The first two columns ofW govern

horizontal and vertical translations, respectively. The third and

fourth columns, made up from the templates, cover shape

variations in the x and y directions. Qx and Qy are chosen to

have their centroids at the origin so that the third and fourth

columns are associated with shape changes only. The weight

matrix W will be updated once a new key frame appears. In

doing so, the weight matrix covers only changes between

neighbouring key frames.

2.2. Dynamic model

We assume that the cell boundaries vary steadily over time.

The shape changes between frames, Ds, may be calculated

beforehand. Note that here the position information is excluded

since templates have their centroid at the origin. We have to set

a large noise level to the position elements of (k at the time k,

in order to cover the possible motion range. A small random

amount of shape variation is added as well because the shape

change is not necessarily evenly distributed between the key

frames.

sk ¼ sk�1 þ Dsþ ek ð3Þ

2.3. Observation model

The image feature used in this paper is the set of edges

obtained from the Canny edge detector [17]. Given an image,

the Canny edge detector produces a binary image with the

detected object edges as the foreground. Observation is done

along the normals at certain contour points. For the sake of

convenience, these points are evenly spaced in this application.
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Given edges detected along a normal of the contour, its

probability of being a true contour point is determined as

follows [12].

p”1þ 1ffiffiffiffiffiffi
2p
p

rk
~
M

m¼1
e
�f dm ;lð Þ

2r2 where f dm; lð Þ¼min d2m; l
2

� �
: ð4Þ

The parameter r, similar to the standard deviation in a

normal distribution, is set according to the accuracy of the
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shape model. The more accurate a shape model, the smaller r
is. k is related to the prior probability of the contour point not

being detected by edge detection. dm is the distance between

the contour and the edge along its mth normal. l is the

maximum distance between the contour and edge points under

consideration. The probability of a hypothetical contour

aligning with the true contour is estimated by multiplying the

probabilities of edges along all the normal lines. Fig. 2
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illustrates the observation model using the 3-min image in

Fig. 1. If there is no edge detected, as we can see from

Eq. (4), f(dm,l)=l2.

2.4. Particle filter tracking

Object tracking can be characterised as the problem of

estimating the state of a system given a set of observations. The

state refers to the positions and shape parameters of contours in

this application. The observation is represented by the image

edges of each frame. We define s the state vector consisting of

a contour’s position and orientation and z measurement vector

with image edge locations. Notation p(z|s) is the probability of

measuring z given state s. The aim of tracking is to estimate

recursively in time the posterior probability density p(sk|z1:k)

when k =1,2,. . ., and the associated expectation of some

integral function gk(sk), which is computed as

E gk skð Þð Þ ¼ Xgk skð Þp sk jz1:kð Þdsk : ð5Þ

In most cases involving non-Gaussianity and nonlinearity,

analytical solutions to Eq. (5) are impossible. In the particle

filter, a proposed density p(sk|z1:k) is used where N random

states are simulated. Eq. (5) is formulated as

E g sð Þð Þ 1
N
~N

n¼1g s nð Þ
� � p s nð Þ� �

p ðs nð ÞÞ|fflfflffl{zfflfflffl}
weight

ð6Þ

The tracking procedure can be implemented as follows [10]:

1. Generate N state vectors based on the target cell boundary

using the dynamic model.

2. Compute the weight (probability) of each contour using Eq.

(4) and normalise the weight over the state population.

3. Estimate the state vector sexpectation using Eq. (6) where

g(s)= s. Use the recent state estimation to initialise the

tracking of the next frame. Go to step 1 until the tracking

finishes.

2.5. GVF active contour

The active contour [13] is a curve v(r)= [x(r), y(r)] that

moves within an image to minimize the energy function

E ¼ X

1

0
ajvV rð Þj2 þ bjv� rð Þj2 þ Eext v rð Þð Þ
� �

dr ð7Þ

where a, b specify the elasticity and stiffness of the active

contour. The external energy function Eext is derived from the

image so that it takes on its smaller values at the features of

interest, such as boundaries. There are quite a few formulations

of the active contour. In the algorithm developed by Xu and

Prince [14], the external force is defined as the gradient vector

flow (GVF) field. The main advantages of GVF active contours

are: (1) a longer capture range to guide the contour towards the

desired boundary and (2) an ability to progress into boundary

concavities. The latter is very useful since cell boundaries may
have sharp corners, a feature that has not been covered by the

shape model in particle filter tracking.

3. Data and software

The experimental details of how the NF-nB time series

images were acquired are given in [6]. The quantitative

information of the location and amount of tagged InBa and

RelA (p65) are obtained using enhanced green fluorescent

protein (EGFP) and DsRed, respectively. All the programmes

are implemented in Tracker, a Matlab (The MathWorks, Inc.)

package developed by the first author using Matlabi 7.0 with

its image processing toolbox.

4. Results and discussion

The active contour method is an approach to generate curves

that move within images to find object boundaries. It is a non-

rigid method suitable for refining complex object boundaries

provided it is given a good initialisation. Fig. 3 shows the edges

of those images in Fig. 1 as obtained using the Canny edge

detector. In the ideal case, edges detected by this method will

correspond to object boundaries. However, due to clutter and

inhomogeneous distributions of image intensity within cellular

compartments, it is very difficult to obtain clean edges

associated with cell boundaries alone.

Fig. 4 shows the marked boundaries on the key frames at 3,

297, 597 and 897 min (upper row). The middle and lower row

subplots are the tracking results of the typical frames in Fig. 1.

For the key frame at 3 min, the result of the particle filter is the

same as the initial boundaries. The boundaries at the frames at

90 and 180 min are a linear combination of key frames at 3 and

297 min. The former are very similar to those on the frame at 3

min. The latter bears more features of the boundaries at 297

min. After the active contour processing, the boundaries align

themselves with the local edges. The algorithm is complemen-

tary to the simple shape model in the particle filter. The result

of particle filter in Fig. 5 shows the EGFP and DsRed

fluorescent profiles obtained by a biologist (one of the authors),

by PF and by PF-AC, respectively. They are quite similar, and

the correlation coefficients between the latter two methods and

the profiles obtained manually are shown in Table 1. It is

obvious that the results from PF and PF-AC are comparable to

those marked up manually by the human scientist. However,

for the fluorescent profiles of cytoplamic RelA, the PF and PF-

AC result is somewhat smoother compared to that obtained by

the biologist. Fig. 6 shows the sampled oscillations observed in

the averaged nuclear/cytoplasmic ratio of RelA. The plots

clearly indicate that cell signalling in this study is periodic with

a decaying response. Fig. 7 shows the results from another cell.

The cytoplasmic and nuclear profiles are different from those in

Fig. 6, because these two cells are at different signalling

phases, reinforcing the importance of measuring single cells.

In NF-nB (here RelA) signalling processes [6,18], NF-nB is

held inactive in the cytoplasm of non-stimulated cell by

various InB isoforms. During cell stimulation, the IKK

(inhibitor kappa B kinase) complex is activated, leading to
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phosphorylation and ubiquitination of the InB proteins. Free

NF-nB translocates to the nucleus, activating genes including

InBa, which contains nuclear localization and export

sequences. This enables InBa nuclear-cytoplasmic shuttling.

Newly synthesised InBa binds to nuclear NF-nB, leading to

the export of the complex to the cytoplasm. This complex

becomes the target for InBa phosphorylation. In this applica-

tion, NF-nB responds to TNFa (tumour necrosis factor alpha)

simulation, giving rise to oscillations in fluorescent profiles of

RelA [19], and it is the oscillations rather than the instanta-

neous concentrations that, as with p53 [20], may represent the

signal that is detected downstream [21].

5. Conclusion

A hyphenated approach (PF-AC) has been applied to track

cell signalling processes. It combines the robustness of the

particle filter with the flexibility of active contour. The results

show that this approach can be used successfully to track cell

boundaries in complex cell signalling processes, even with

overlapping cellular boundaries.
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