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Abstract 

There is strong evidence that consumption of olive oil, especially extra virgin olive oil, reduces the risk of circulatory 
system diseases. Such oil is generally more expensive than other edible oils, Italian - and in particular Tuscan - oils being 
particularly favoured by connoisseurs, and commanding an even higher price. There is therefore a great temptation to 
adulterate olive oil with a cheaper oil, or falsify its origin or grade. An easy and reliable method to identify different types of 
olive oil is required. Our work has focused on discriminating extra virgin olive oils by their region and variety. We have 
applied Principal Components Analysis (PCA), Principal Components Regression (PCR) and Partial Least Squares (PLS) to 
discriminate olive oils on the basis of their 13C NMR spectra. Variable Selection was used in order to reduce the number of 
variables in the data. Two main methods of variable selection have been used; these are the Fisher Ratio, and the ratio of Inner 

Variance to Outer Variance or Characteristicity [W. Eshuis, PG. Kistemaker and H.L.C. Meuzelaar, in C.E.R. Jones and C.A. 
Cramers (Eds.), Analytical Pyrolysis, Elsevier, Amsterdam, 1977, pp. 151-156.1. Both these methods proved successful in 
improving the PCA clustering, and the prediction results of PCR and PLS, although the optimal number of variables varied 
between datasets. PCR2 and PLS2 models, in which a single model is used to predict each variety or each region 
simultaneously, achieved a successful prediction rate of some 70%. However, multiple PLSl models routinely achieved 
successful predictions of over 90% and in many cases 100% of the data in test sets. Indeed the variety of all but 1 of 66 
samples was correctly predicted. It is clear that multiple, specialised models perform much better than “global” ones, and that 
the inclusion of certain variables can be highly detrimental to the multivariate calibration process. 
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around 300 million dollars. 9.4 milliontonnes of olive 

fruit is produced per annum, from 805 million olive 

trees worldwide, occupying some 24 million acres of 

land. 98% of these trees are in the Mediterranean area. 

Of the 60 million tonnes of seed oil consumed world- 
wide every year, 2 million are olive oil [2]. 

Almost 25% of the farming income in the Medi- 
terranean basin as a whole comes from olive products, 

Spain and Italy being far and away the largest pro- 

ducers, with Greece (with around half the production 

of the main two) coming third. In 1987, Italy con- 
tributed about 65% of world olive oil [3]. 

Virgin olive oil is the oil extracted by purely 
mechanical means from sound, ripe fruits of the olive 
tree (Ofea europaea L). Extra virgin olive oil is 

absolutely perfect in flavour and odour, and has a 

maximum free fatty acid content in terms of oleic acid 

of 1 g/100 g [1,4]. 
Compared to other edible oils, olive oil contains a 

low percentage of saturated fatty acids (that is, fatty 
acids with no double bonds in the carbon chain) at 
around 16% (mainly 16 : 0). It contains a high per- 
centage of monounsaturated fatty acids, around 70% 
(mainly 18 : 1) and around 15% polyunsaturated fatty 

acids (18 : 2) - where 18 : 2 indicates a chain of 18 

carbon atoms, with two unsaturated (C=C) bonds, etc. 
Olive oil has a fine aroma and a pleasant taste, 

which is generally agreed to be at its best in extra 
virgin olive oils, and is considered to have many 

nutritional and health benefits [l]. 
There are many varied claims and suggested rea- 

sons as to the health benefits. There is very strong 
evidence that olive oil consumption reduces the risk of 

death due to circulatory system diseases [ 1,5]. Visioli 
[6] and Galli [7] suggest that this is due at least 
partially to the natural antioxidants (including the 

bitter-tasting glycosidic compound Oleuropein) and 
micronutrients preventing low density lipoprotein 
from oxidation and so retarding the formation of 

atherosclerotic lesion. 
Martin-Moreno et al. [8] also note that olive oils 

contain a “generous amount of antioxidants” and 
speculate that “diets high in monounsaturated fats 
presumably yield tissue structures that are less sus- 
ceptible to antioxidative damage than would be the 
case in high polyunsaturated diets”. They identify an 
inverse correlation between breast cancer and olive oil 
intake, as do Trichopoulou et al. [93. The latter also 

claim that margarine consumption increases this risk. 

Trichopoulou et al. [lo] suggest that olive oil con- 

sumption is one of the factors in the traditional Greek 
diet that aids the longevity of those elderly people in a 

study group who followed that diet. 

As a consequence of these benefits, olive oil com- 

mands a much higher price than most other edible oils. 
This in turn means that there is a great temptation to 
adulterate the oil with a cheaper oil, such as olive 

pomace oil, corn oil, sunflower oil, or even lard or 

castor oil [l l-131. In addition, many oils labelled as 
“extra virgin” have been processed in order to reduce 

the acidity level and so gain this classification. 
Italian olive oil, and in particular Tuscan olive oil, is 

traditionally the most favoured, and therefore attracts 

a premium. It is not surprising, then, that there is more 
oil labelled as Tuscan than could possibly be produced 

there. Firestone et al. [ 121 reported on a US survey in 

which 4 out of 5 virgin olive oils were correctly 
labelled, but only 3 out of 20 olive oils. In 1988, they 
followed up their 1985 report [13], noting some 

improvement. This time, although only 17 out of 31 
virgin olive oils were correctly labelled, so were 15 out 
of 26 olive oils; still over 40% incorrectly labelled. 

The necessity to be able to detect adulterations in 

oils in general was highlighted in May 1981, when 
20 000 people became ill and 350 died in Spain after 

consuming oils containing “refined” aniline dena- 
tured rape seed oil [14]. 

A number of researchers have applied themselves to 

this area. 
Grob et al. [ 151 report that extra virgin oils (known 

as cold pressed or non-refined when referring to non- 

olive oils) can be distinguished by the presence of a 
substantial quantity of volatile components (i.e. they 
have not been deodorised). If none of these volatiles 

are present, the oil has been treated. ‘Rue” oils, being 
a blend, are more difficult to distinguish. Grob et al. 
[ 161 were able to detect adulteration of olive oils down 

to 10% (even lower for most oils) using Liquid 
Chromatography-Gas Chromatography-Flame Ioni- 
sation Detection (LC-GC-FID) by direct analysis of 
these minor components. They do note however that 

strong raffination made adulteration difficult to detect. 
A variety of workers have shown that it is largely 

possible to discriminate seed oils on the basis of their 
fatty acid content as judged by GC [ 17-201, whilst we 
[4,21] were successful in detecting adulteration of 
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extra virgin olive oil using pyrolysis mass spectro- 
metry and Artificial Neural Networks (ANNs). 

Sato [22] showed that near infrared spectroscopy 
can be used with PCA to discriminate many vegetable 
oils from each other, including olive oil. Schwaiger 
and Vojir [23] had similar success with GC analysis 

and PCA, the first two principal components separat- 
ing olive oil well from the other oils. 

Zamora et al. [ 1 l] were able to distinguish between 

different grades of oil using 13C NMR, whilst Lai et 

al. [24,25] have also successfully applied the techni- 

que of FTIR for assessing the authenticity of vegetable 
oils. 

One advantage of the spectroscopic methods over 
many other methods is that it is possible to look at the 

whole spectrum and search for patterns emerging from 

the data [26]. No information is thrown away; rather 
any element in the spectrum which appears to indicate 

the presence of adulterants will be given a larger 

weighting in the model. Work done by others also 
supports this as the most suitable approach, since they 

fully utilise even subtle variations [27]. Indeed, this 
type of approach has been previously used for crude 
petrochemical oil, as described by Kvalheim et al. [28] 

and Brekke et al. [29], with very promising results. 
In the present work we show for the first time that 

the r3C NMR spectra of oils from different regions and 

of different varieties are sufficiently different to permit 
their discrimination using advanced chemometrics 
methods. 

2. Materials and methods 

2.1. NMR 

Olive fruits of varieties Coratina (7), Dritta (l), 

Grossa di Cassano (3), I-77 (8), Moraiolo (8) and 
Picholine (4) were sampled in different regions of 

Italy: Abruzzo (6), Calabria (3), Lazio (l), Lombardia 

(l), Marche (l), Molise (2), Puglia (7), Toscana (6) 
and Umbria (3), as well as a sample from four loca- 
tions in Israel of unknown variety. All these samples 

were divided into two, thus producing twice the 
number of objects; the exception being the Dritta 
sample, which was divided into 12 so that the repro- 
ducibility of the method could be ensured. The fruits 
were processed for oil extraction by a micro-oil-mill 

within two days of harvesting [4]. The oils were stored 
at a temperature of - 18°C until 13C NMR spectra 
were registered. 

2.2. High resolution 13C NMR 

13C NMR spectra were obtained using a Bruker AC 
300 spectrometer at the Istituto Sperimentale per la 
Elaiotecnica. 

The spectra of oil samples were run in CDCls 

(200 mg/0.5 ml). Free induction decays (FIDs) were 

acquired at 25°C using a spectral width of 13 000 Hz, 
with 131 k acquisition points zero filled to 256 k 

points. 
A 45” excitation pulse and a 20 s relaxation delay 

were employed to collect 256 scans. 

FIDs were processed before Fourier transformation 
by a Gaussian filter of 0.1 Hz with Lorentzian narrow- 

ing and 0.15 Gaussian broadening. 

The Tl relaxation times were measured by the 
inversion-recovery Tl pulse sequence. Tl experi- 

ments were run over a restricted spectral width of 
2700 Hz, including only the methyl and methylene 
envelope, with 32 k data points, zero filled to 64 k 

points to improve digital resolution up to 0.08 Hz/ 
point. 

Tl experimental spectra were resolution enhanced 

by a Gaussian transformation. 
The areas under the resonance lines were measured 

by means of integration using the spectrometer com- 
puter. 

The following precautions necessary to ensure reli- 

able integration measurements were adopted. 

In order to avoid signal saturation, smaller flip 
angles (45”) and waiting times of 20 s between pulses 
were used which fulfil the requirement of being 

5*Tl necessary to recover all magnetisation between 
pulses. The effect of differential nuclear Overhauser 
enhancements operating on carbon-13 nuclei was 
quenched by using an inverse-gated proton decoupled 
arrangement. 

The most serious difficulty to overcome in signal 
integration is the definition of the baseline level of the 

spectrum. This problem was alleviated by carefully 
limiting the frequency range of integration to the 
peaks of interest. These limits were kept constant 
throughout the spectrum integration of different oil 
samples. 
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2.3. 13C NMR spectral data and assignments 

Carbonyl region. The oils exhibited the resonances 
of carbonyl carbons Cl of acyl chains in the 13C NMR 
spectral region in the chemical shift range of 173.2- 
172.5 ppm (see Table 1). 

The signals were readily assigned by comparison 
with the chemical shifts of standard glycerides and 
further confirmed by numerous data available in the 
literature [30]. 

The Cl resonances were grouped into two well- 
resolved sets of resonances. The low field resonances 
comprised the carbonyl signals of saturated 
(S=173.11 ppm), oleyl (S=173.08 ppm) and linoleyl 
(6=173.08 ppm) chains esterified at the 1,3-positions 
of the glycerol backbone. 

The high field group of resonances showed the 
carbonyls of oleyl (S=172.69 ppm) and linoleyl 
(6=172.68 ppm) chains at 2-position of glycerol. 

Saturated acid components such as the palmitic acid 
(Ci6: o) and stearic acid (Cis : o) chains are not 
detected at 2-position of glycerol, because in vegeta- 
ble oils saturated chains are found esterified at that 
position in very low amount (less than 2%). A 
300 MHz NMR fails to detect signals for components 
present in a mixture at such low levels. 

Other results showed that 13C NMR spectra of fairly 
simple triglyceride mixtures made up of the common 
C-18 acyl chains, like those of olive oil, assures the 
separation of the different chains present and the 
discrimination of their attachment position on gly- 
cerol. 

Ole$nic Region. The signals of double bond carbons 
of oleyl and linoleyl chains at the 1,3- and 2-positions 
(130.3-127.7 ppm) of the glycerol backbone were 

Table 1 
Assignments and selection order of the carbon signals used 

detected and found to be in agreement with literature 
data and accordingly assigned [31,32]. 

The most remarkable spectroscopic feature was that 
the unsaturated carbons of oleyl and linoleyl chains 
resonate as doublets whose splittings were found 
whether they were at the 1,3- or 2-positions of gly- 
cerol. 

Aliphatic Region. The complete assignments of 
signals in the aliphatic region (35-6 ppm), with iden- 
tification of acyl chains and their position on the 
glycerol backbone, were achieved by Tl longitudinal 
relaxation times. 

The Tl values proved highly useful in determining 
carbon chemical shifts of the methylene envelope. In 
fact the polar head group slightly perturbs the electro- 
nic environment of methylene sp3 carbons, thus mak- 
ing CH2 resonances spread over a very narrow range of 
frequencies. 

Tl 13C relaxation times were found to increase 
regularly from the polar head group along the aliphatic 
fatty acid chains in CDC13 [33]. This was interpreted 
according to the increasing mobility of the chain with 
distance from the polar group because carboxyls are 
kept immobilised by a self-association mechanism. 
The Tl value patterns of saturated, oleyl and linoleyl 
chains fitted this rule perfectly. 

2.4. Chemometrics 

The data obtained are arranged in the form of a 
Microsoft Excel spreadsheet. There was a total of 80 
objects, including 12 from the same sample for the 
purpose of verifying reproducibility. The remaining 
68 objects were duplicates, from 34 samples. The data 
were normalised, so that the total of the integrated 

Region Carbon Assigmxent Chain Chemical shift (ppm) Variety selection order Region selection order 

signal 
0 P Fisher wtdw Unw w Fisher wtdw Unw w 

Carbonyl CS_l Cl S 173.113 14 14 8 18 19 22 

CS_l.l Cl E 173.101 38 38 39 41 41 41 
cs_2 Cl 0 173.084 2 2 2 6 7 4 

cs_3 Cl L 173.075 26 27 27 34 34 33 

cs_4 Cl 0 172.688 1 1 1 12 16 1.5 
cs_s Cl L 172.679 5 6 15 16 14 17 

(continued overleaf) 
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Region Carbon Assignment Chain Chemical shift (ppm) Variety selection order Region selection order 

signal 
cx P Fisher Wtd w Unw w Fisher Wtd w Unw w 

Olefinic CS_6 Cl3 L 
CS_l Cl0 0 
CS_8 Cl0 0 
csg c9 L 
CS_lO c9 L 

cs_11 c9 0 
cs_12 c9 0 
cs_13 Cl0 L 

cs_14 Cl0 L 
cs_15 Cl2 L 
CS_16 Cl2 L 

Glycerol cs_17 GL 
CS_18 GL 

Aliphatic CS_19 c2 S 
0 
L 

Cl6 S 
0 
L 

Cl2 0 
Not known 
c7 S 
c7 L 
Cl4 0 
C6 S 
Cl5 S 
Cl5 L 
C15-Cl3 0 
c5 S 
c5 o+L 
c5 o+L 
Not known 
c4 o+L 
c4 o+L 
C8 0 
Cl1 0 
C8 L 
Cl4 L 
Cl1 L 
c3 S 

0 
L 

Cl7 S 
0 
L 

Cl8 S 
0 
L 

cs_20 

cs_21 
cs_22 
CS_23 
CS_24 
CS_26 
CS_27 
CS_28 
CS_29 
cs_30 
cs_3 1 
CS32 
cs_33 
cs34 
cs_35 
CS_36 
cs_37 

CS38 
cs39 

cs_40 

cs_4 1 

130.097 130.105 
129.945 

129.930 
129.900 

129.874 
129.640 

129.614 
128.053 

128.035 
127.874 

127.862 

68.8852 
62.0478 

33.9912 
33.9758 
33.9758 
31.9283 
3 1.9074 
31.5167 
29.7586 

29.6631 

29.5289 
29.4748 
29.3688 
29.3419 
29.3156 
29.2686 

17 11 12 21 17 12 

34 34 31 26 28 30 
29 29 29 23 26 27 
28 26 30 24 24 24 
12 16 19 20 18 18 

20 19 16 1 2 2 
21 28 26 29 30 26 
10 9 11 25 21 16 
13 13 18 14 13 10 

18 17 23 13 12 13 
16 20 20 19 20 21 

36 36 33 40 40 36 
31 30 28 28 21 31 

39 40 38 36 37 37 
34.1408 
34.1408 

19 23 25 32 32 32 

31.9074 
31.5167 
29.7586 

29.6203 
29.5289 

29.3419 
29.3156 

29.1869 
29.1656 

29.0717 

21.1417 
27.2009 
27.1657 
27.1815 
25.6084 
24.8466 
24.8239 
24.8239 
22.6841 
22.6743 
22.5656 
14.0824 
14.0769 
14.0370 

29.0324 
27.1471 
27.2009 
27.1657 
27.1815 
25.6084 

4 5 7 4 5 5 
3 4 4 3 3 3 
I 7 6 5 4 6 

22 21 9 11 15 19 
15 15 14 10 9 11 
23 22 17 17 23 23 

9 8 5 7 6 7 
11 12 13 22 22 20 
6 3 3 2 1 1 

24 24 21 33 33 29 
30 31 31 21 25 25 
25 25 22 8 11 14 
40 39 40 39 39 40 
32 33 32 31 31 34 
41 41 41 38 36 39 

8 10 10 9 8 9 

21 
35 

24.8605 
24.8605 

33 
22.6743 
22.5656 

31 
14.0769 
14.0370 

18 24 
32 34 

35 

31 

35 

36 

15 
30 

35 

31 

10 8 
29 28 

35 35 

38 38 

S=Satorated, O=Oleic, L=Linoleic, E=Eicosenoic. 
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resonances of the 41 variables for each object added 
up to 100. 

The results were obtained by using Excel 5 macros 

written specifically for the purpose, in conjunction 
with PCA, PLS, PCR and MLR programs written in- 

house. For PLS and PCR, cross-validation was per- 

formed using test set - training set validation. All 
duplicates were kept in the same set, except for the 

sample used for verifying reproducibility (which was 
split between the two). 

3. Theory: Variable selection 

When large amounts of data are passed into a 

statistics package, or processed by neural networks 
in order to create some kind of calibration model, 

some variables in the data will be found to be of 

greater value than others. Indeed, in the extreme case, 
one variable might be sufficient to discriminate all the 
different types of object being examined, whilst other 

variables contain only noise. 
It may be argued that there is never any point in 

reducing the number of variables before creating a 

multivariate calibration model, as this is unnecessarily 
reducing the amount of data that can be used to create 
the model. It is argued that if any of the variables are of 

little value (or exhibit collinearity with others), this 
will be reflected in the weighting given to them in the 

final model. This view has in recent years been dis- 

credited by a number of researchers in both spectro- 
metry [34-511 and QSAR [52-591. Thus, Brown [42] 

showed how variable reduction from near infrared 
spectral data greatly improved the PLS prediction 
of the amount of sucrose, fructose and glucose in 

aqueous solution, whilst Sreerama and Woody [47] 
showed that variable reduction greatly improves the 
results of PCA for the prediction of protein secondary 

structure fractions from circular dichroism spectra. 
Other workers have shown that if a model may be 
described adequately by different numbers of vari- 
ables, then that described by the fewest will be able 
better to generalise [60,61]. Indeed, the danger of 
obtaining chance correlations is well known to in- 
crease with the number of independent variables [62]. 

Chatfield [63] warns of the dangers of selecting 
variables in such a way as to enable some sort of model 
to be made from pure noise. We do not believe this an 

issue with the present data (and note that we are here 

applying non-parametric methods). This is because we 

are creating only one model for each best n variables, 
not taking the best model from many (our variable 
selection is not influenced by the model created). 

Similarly, we have analysed various datasets, and have 
found the order of selection for variety identification 

to be similar each time; the same is true for the order of 
selection for region identification. 

Three methods of variable selection have been used. 

The first is shown in Eq. (1) (for unweighted w): 

w = {Average[StDev(Variety l), 

StDev(Variety 2) . . . StDev(Variety n)]}/ 

StDev(Al1 samples). 

(1) 

In most datasets, it will be found that the number of 

samples in each variety (or whatever) is not the same. 

In this case, it may be desirable to weight the value of 
w in favour of those varieties with more samples (for 
weighted w, see Eq. (2)): 

w = [(StDev(Variety 1) x gi) 

+ (StDev(Variety2) x gz) + . . 

+ (StDev(Variety n) x g,)]/StDev(All samples) 

x gtota1, (2) 

where g, is the number of samples in group n. 
Now if w has a value greater than 1, then the inner 

variance is greater than the outer variance [64], and as 

a result this variable is a hindrance to correct dis- 

crimination, and so it should definitely be discarded. 
The other method used for variable selection is the 

Fisher Ratio, whereby a value is calculated for each 
variable according to the following formula: 

Calculation of the between-group variation: 

SSB(a) = 2 ni(yi - y)*. 
i=l 

Calculation of the within-group variation: 

SSW(u) = 2 -&y, - yi)*. 
i=l j=l 

Calculation of the Fisher coefficient F: 

F = (l/b - l)PSB(a) 
(l/b - g)ww> ’ 

where g is the number of groups, ni the number of 
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elements in i group, yi the mean of group i, jj the total 
mean, and yij is the value of object j in group i. 

A value for w is then calculated by taking the inverse 
of the Fisher ratio, so that the same selection methods 
can be applied (i.e. the lower the value of w, the better 
the variable). 

The three selection methods are henceforth referred 
to as Weighted w, Unweighted w and Fisher. The best 
variables, as judged by these methods, may be found 
in Table 1. 

It may often be found that factors other than that 
searched for (e.g. olive oil variety) may be having 
some influence on the data (for example, time of 
harvesting or region of origin). Although variables 
containing data so affected may have a value for w less 
than 1, they may still be having a great influence on the 
model by causing oils of, say, a similar harvesting 
date, to cluster together, or at least to be pulled away 
from their hoped-for varietal clustering, in a PCA 
scores plot. In order to eliminate this effect, we would 
wish to discard many variables with a value of w less 
than 1. As we cannot easily know which variables are 
affected most in this way, one solution is to start from a 
minimum number of variables (two or three), selected 
with a low threshold value of w, and work upwards 
towards w=l, to see at what point the best model is 
reached. 

It could be expected, when trying to identify vari- 
eties, that the optimum model will be achieved at or 
near a value for w which selects variables that con- 
tribute to the discrimination of varieties, but does not 
select any that also contribute a large amount to the 
discrimination of other factors (such as region or 
harvesting date). In practice it is found that the ideal 
threshold ranges from that which selects only the best 
three or four variables right up to 1, depending on the 
data and the desired factor (whether variety, region, 
etc.). 

The Excel 5 macros perform tasks such as calculat- 
ing the value of w for each variable, writing the best n 
(n is the user’s choice) out to another sheet, running 
PLS, PCR and PCA on the data and graphing the 
results. The graphs reproduced here have been gen- 
erated using these macros. 

Note that the scores and loadings charts produced 
by these macros indicate the value for w, calculated 
using weighted w, for the factors graphed. In addition, 
the scores charts give a value called w clustering, 

which is the product of the value of w for each of the 
two factors graphed. This gives an easy way of 
comparing the clustering of different charts. 

4. Results and discussion 

4.1. Using PCA scores to discriminate variety 

With weighted w, and Fisher selection, PCA was 
carried out on all the variables, and on the best n for a 
range of n (see Table 1). Scores and loadings plots 
were produced. It was found that the first two principal 
components were usually the only two containing any 
useful information for variety discrimination. Exam- 
ining the loadings plot of all the variables (Fig. l(a)) 
shows that the best six variables, as judged by 
weighted w and Fisher, i.e. CS_4, CS_2 and CS_30, 
CS21, CS_22 and CS_5, are given a large weighting. 
The worst variables, CS_17, CS_41, CS_1.1, CS_19, 
CS_34 and CS_36 tend to lie around the centre, as 
would be hoped. 

The scores plot for all variables is shown in 
Fig. l(b). This shows that the Dritta oils, used to 
verify reproducibility, cluster very tightly. From this, 
it would appear that the data are reliable. It is also clear 
from this chart that the varieties are not completely 
separated. However, by the removal of only two 
varieties, Coratina (14 objects) and Picholine (8 
objects), all the varieties may be separated. Repeating 
PCA on the five remaining varieties yields the chart 

It must be remembered that PCA is an unsupervised 
method, so (unlike PLS) does not know to which 

shown in Fig. 2, in which the varieties are clearly 

variety a sample belongs. It is therefore particularly 
encouraging that this method has weighted the best 

separated from each other. 

variables most favourably. 

4.2. Using PL.3 to discriminate variety 

PLS2 [26] was carried out on the data, with 42 
objects in the training set, and 38 in the test set. The 
training set was chosen to be as representative as 
possible of the regions of origin for each variety, 
within the constraints of the size of the dataset. The 
identity of the oils was encoded as a binary vector with 
a 1 representing the relevant variety [4,65]. Thus the 
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PCA loadings of varieties. All 41 variables 
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4 (X-27 
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l cs_2 
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CS_32q 

ct34.' 
0 

&_, ,* cc41 

l c&35. 

l a-37 l s-20 

l cs_33 

I 
I 
0 

; 

Factor 1, variance explained 39.1% w 0.539 
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Fig. 1. (a) PCA loadings plot of all variables. (b) PCA scores plot of all 41 variables, factors 1 and 2. 
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PCA scores of varieties. All 41 variables 
w clustering 0.225 

365 

Factor 1, variance explained 42% w 0.48 

Fig. 2. PCA scores plot of I-77, Grossa di Cassano, Dritta, Moraiolo and Israel oils only, factors 1 and 2. 

predicted variety was taken to be that which was given 
the highest prediction value (i.e. the closest to 1). The 
optimum number of factors for prediction was chosen 
by the PLS program as the point at which the RMS 
error of prediction reaches its first minimum. Com- 
parison of the PLS scores plot (data not shown here) 
with the PCA scores plot (Fig. l(b)) shows similar 
results. 

An examination of the loading weights plot (Fig. 3) 
of the model created using all 41 variables shows very 
clearly that the best variables according to Fisher and 
w (Table 1) are given the greatest weighting for this 
model in the first two factors. 

In order to try to improve the clustering, PLS2 
predictions were run on the best n variables for all 
values of n from 4 1 down to 1, using the Excel macros, 
with both Fisher and weighted w selection. The best 
number of variables for prediction were found to be 
the best 35 and the best 39 for Fisher, and the best 26 
and the best 35 for weighted w, both of which correctly 
identified 68.4% of the samples (Fig. 4(a)). The RMS 

error of prediction reached a minimum at the best 35 
variables for both Fisher and weighted w (Fig. 4(b)). 
The worst six variables were the same for Fisher and 
weighted w, so the best 35 models are identical. 

PCA and PLS2 scores plots were examined at 
the points where the best predictions were obtained, 
and it was found that PCA clusters better than PLS2 
scores for many models based on just the best IZ 
variables. It was therefore of interest that PCR could 
actually predict slightly better than PLS (Fig. 5(a)), 
with unweighted w correctly predicting 73.7% of the 
oils, and Fisher achieving 71%, both better than the 
maximum 68.4% achieved by Fisher and weighted w 
using PLS2 (Fig. 4). The RMSEP (Fig. 5(b)) again 
shows a low point well before all 41 variables are 
reached. 

By comparison, MLR performs less well than the 
other methods (data not shown), achieving a best 
prediction of 65.8%, although it performs at its best 
with fewer variables. Variable selection appears to be 
much more crucial for MLR prediction. MLR was 
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Fig. 3. PLS2 Loading weights plot of varieties, all 41 variables. 
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) 

always found to be worse than both PLS and PCR and 
is not further considered here. 

4.3. Prediction of specific varieties 

Predicting all the varieties from the 80 oil samples 
is clearly not easy, with at best around 70% of the 
samples being correctly identified. However, within 
the data there are four varieties with sufficient repre- 
sentation to attempt to predict them alone. These are 
Coratina (14 objects), I-77 (16), Moraiolo (16) and 
Dritta (Repro, 12). In addition to these four, it would 
be hoped that the Israel oil (8), whose variety is 
unknown, would also be predictable, since it is the 
only non-Italian oil in the dataset. 

The test set and training sets must be carefully 
chosen in order to obtain the optimum calibration 
model and hence prediction; this was done by exam- 
ining the scores plots and selecting for the training set 
those oils near the edge of the clusters. Half of the 80 
oils, including half of the oils in the variety being 
predicted were reserved for the test set in each case, 

and the duplicates were kept together. The exception 
was the Coratina oils, for which three of the seven 
duplicates (6 from 14 samples) were used in the test 
set. The success of these predictions is almost com- 
plete, and shows much more clearly the advantages of 
variable selection. 

With the predictions from PLSl and PCRl, a 

threshold value is set. Values above this threshold 
are taken to be predictions of the variety in question; 
those below are taken to be predictions of another 
variety. This threshold is set to an optimum for the 
test set for each complete set of results (best 1 to 
all 41 variables). The charts shown in Fig. 6(a)-(e) 
are a combination of three sets of results, i.e. 
Fisher, weighted w and unweighted w selected. 
Since the optimum threshold is not necessarily the 
same for each selection method, predictions using all 
41 variables do not necessarily correspond in the 
graphs. 

The graphs show very clearly the advantage of 
variable selection; only the Israel oil achieved its best 
result using all variables. 
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PLSP prediction of varieties. Test set only (38/80) 
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Fig. 4. (a) Percentage of variety samples correctly identified using all the oils, PLS2 and variable selection. (b) RMSEP of PLS2 variety 

prediction using weighted w, unweighted w and Fisher selection methods. 

The Dritta (repro) oils (Fig. 6(a)) predicted easily, 
despite having only six objects in the training set and 
six in the test set; this was expected, since all 12 were 
from the same original sample. 

Only the Moraiolo variety (Fig. 6(d)) failed to 
predict with 100% accuracy in the test set, and then 
only one sample, a Moraiolo, was incorrectly pre- 
dicted. 

With so few samples from the varieties Grossa di 
Cassano and Picholine, it was not expected that these 
would be predictable, as at most four samples could be 
included in the training set; this was indeed found to 
be the case (data not shown). 

Using this method of prediction, then, only one 
sample (1.5%) from the 66 Dritta, I-77, Coratina, 
Moraiolo and Israel samples was not predicted cor- 
rectly. The optimum number of variables varies from 
the best six for I-77 (Fig. 6(c)) to all variables for 
Israel (Fig. 6(e)). This variation in the optimum num- 
ber of variables is clearly one reason why PLS2 could 
not perform so well as PLS 1. 

4.4. Prediction of region 

With this set of data, there is sufficient representa- 
tion from four regions to attempt to make a prediction 
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PCR prediction of varieties, test set only (33430) 
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Fig. 5. (a) Percentage of variety samples co~~ectiy identified using all the oils, PCFt and variable selection. (b) FNSEP of PCR2 variety 
prediction using weighted w, unweighted w and Fisher selection methods. 

of the region of origin of the oil. These regions are: 
Toscana (Tuscany) (12), Abruzzo (12), Puglia (14) and 
Israel (8). In addition, the 12 reproducibility (Dritta) 
oils may be included. Oils from the remaining regions 
were eliminated from the data, as they contained too 
few samples to hope to make a prediction. 

It is to be expected that region identification would 
prove much more difficult than variety identification, 
since a variety is a very definite q~ti~ and a 
region is no more than an arbitrary line drawn on a 
map. (Indeed the variance in pyrolysis mass spectra 
of olive oils seems to be dominated by the variance 

due to the different varieties, even when conside~ng 
oils that have been adulterated with other seed 
oils [4].) Nonetheless, region prediction is probably 
more important than variety prediction from an eco- 
nomic point of view, as indicated in the induction, 
because of the common practice of mislabelling oils to 
make them appear to be from a more prestigious 
region. 

The regions used here come from g~~aphic~ly 
widely separated areas: from Italy, Toscana in the 
north, Abruzzo in the centre and Puglia in the far 
south, and the far away Israel. 
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PLSl prediction of Dritta from all oils, test set only (4W6lk Drltta 602) 
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Fig. 6. (a) Dritta PLSl prediction; all oils cortectly predicted with Fisher, weighted w and unweighted w selection, using the best 25 variables. 
(b) Coratina PLSl prediction; all oils correctly predicted with Fisher and weighted w selection, using the best 18 variables. (c) I-77 PLSl 
prediction; all oils correctly pmlicted with Fisher and weighted w selection, using the best 6 to 7 variables. (d) Moraiolo PLSl pmliction; all 
but one oils correctly ptedicted with Fisher and weighted w selection, using the best 29 variables. (e) Israel PLSl prediction; all oils correctly 
predicted with Fisher, weighted w and unweighted w selection, using the best 34 to all 41 variables. 

(Continued on next page) 
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Fig. 6. (continued) 

The order of selection of variables for regions is 
shown in Table 1. Interestingly they are quite different 
from those of importance in determining variety; for 
instance CS_11 is of first or second rank for region 
discrimination, but between the 16th and 20th in 
importance for variety discrimination. 

The successes of the PLS2 (Fig. 7(a)) and PCR2 
(Fig. 7(b)) predictions using all the samples from 
these five regions are comparable with those obtained 
witb the varieties earlier. 

The best number of variables is clearly around 18- 
22, weighted w selected. From the PCA plots of the 
best 19 variables, weighted w calculated on the factors 
suggested that factor 1 is the best for ~sc~~nation, 
but factor 4 is the second best (Fig. 8), and factor 2 
(not shown) only third. Using all the variables (graph 
not shown), the first and second factors were found to 

be best, and the clustering was weaker (w clustering 
0.394, compared to 0.378 for the best 19). 

Having achieved comparable results with regions as 
with varieties using PLS2 and PCR2, it may be 
expected that PLSl and PCRl will achieve similar 
success. The chart in Fig. 9 shows that PLSl was 
indeed able to predict 27 from 28 of the samples 
correctly based upon whether or not the oil was from 
Tuscany; the only oil incorrectly identified was a 
Toscana oil. 

With only six Toscana oils in the training set, it is 
perhaps not surprising that it should be a Toscana oil 
that was incorrect. A larger Toscana sample size 
would enable more Toscana oils to be put in the 
training set, and hopefully result in better prediction. 

Comparable data (not shown) were obtained from 
the other regions; 92.9% (all but 2) being the best 
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Fig. 7. (a) Percentage of region samples correctly identified using the five largest regions and PLS. (b) Percentage of region samples correctly 

identified using the five largest regions and PCR. 

prediction for region Puglia, 89.7% (all but 3) from 

Abruzzo, and 100% for Dritta (repro) and Israel. 

l 

l 

5. Concluding remarks 

From the present results, three main conclusions 
may be drawn: 

Variable selection greatly improves the predictions 
of standard statistical techniques on multivariate 
data. 

Multiple PLS 1 models perform far better than does 
a single PLS2 model (much as is the case with 
comparable types of artificial neural network 

166-691). 

Using these two techniques together, we have been 
0 13C NMR is a valuable tool for the discrimination able to predict the variety of all but one test set sample 

and classification of olive oils, in terms of both the from those where there were sufficient samples for this 
variety of olive used and the region of cultivation. to be sensible, using only the linear multivariate 
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PCA scores of regions. Best 19 variables, 
weighted w selected. w clustering 0.378 

Factor 1, varlanoe explained 59.396 w 0.471 
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Fig. 8. PCA scores of factors 1 and 4, best 19 variables of largest five regions. Weighted w selected. 
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Fig. 9. PLSl prediction of Toscana region from the five largest regions. Best prediction 96.4%. 

method of PLS regression. Finally, we recognise that 
nonlinear methods such as artificial neural networks 
(e.g. [7&74]) might have been more successful 

[4,65,75] (although computational demands with the 
many models studied meant that they could not be 
applied here), and that other statistical, neural, sym- 
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bolic ‘expert’ and related methods (e.g. [76-831) 
remain to be tried. Although the prediction of regions 
was not quite so successful, we consider that the 
appropriate way forward is a hierarchical approach 
in which a model is used to predict the cultivar and 
based on this submodels are used (given the cultivar) 
to predict the region. For this, of course, it will be 
necessary to have larger datasets. 
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