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There are an increasing number of instrumental methods for obtaining data from bio-
chemical processes, many of which now provide information on many (indeed many
hundreds) of variables simultaneously. The wealth of data that these methods provide, how-
ever, is useless without the means to extract the required information. As instruments
advance, and the quantity of data produced increases, the fields of bioinformatics and
chemometrics have consequently grown greatly in importance.

The chemometric methods nowadays available are both powerful and dangerous, and there
are many issues to be considered when using statistical analyses on data for which there are
numerous measurements (which often exceed the number of samples). It is not difficult to
carry out statistical analysis on multivariate data in such a way that the results appear much
more impressive than they really are.

The authors present some of the methods that we have developed and exploited in
Aberystwyth for gathering highly multivariate data from bioprocesses, and some techniques
of sound multivariate statistical analyses (and of related methods based on neural and
evolutionary computing) which can ensure that the results will stand up to the most rigorous
scrutiny.
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1
General Introduction – Multivariate Analyses in the Post-Genomic Era

“But one thing is certain: to understand the whole you must look at the whole” – Kacser H
(1986). On parts and wholes in metabolism. In: Welch GR, Clegg JS (eds) The organisation of
cell metabolism, Plenum Press, New York, p 327

As we enter the post-genomic era [1, 2], there is a growing realisation that the
search for gene function in complex organisms is likely to require analyses not
just of one or two genes or other variables in which an experimenter happens
to have an interest but of everything that is going on inside a cell and its sur-
roundings. Such analyses are now occurring at the level of the transcriptome
(e.g. [3, 4]), the proteome (e.g. [5–7]) and the metabolome [2], to define,
respectively the expressed performance of the genome at the level of transcrip-
tion, translation and small molecule transactions. However, the present level of
analysis of such data is comparatively rudimentary [8].

The bioprocess analyst has long realised that the more (useful) measure-
ments we can make the more likely are we to understand our bioprocesses, and
we ourselves have long sought to increase the number of non-invasive, on-line
probes available [9, 10]. Classical methods, monitoring factors such as pH, dis-
solved oxygen tension, and so on, however, are in essence univariate methods,
and only give information on individual determinands.
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The strategy that we have therefore sought to follow is to exploit multivariate
methods which can measure many variables simultaneously. The resulting data
floods necessitate the use of robust, multivariate chemometric methods. These
too are now available in many flavours, with different strengths and weaknesses.

The purpose of the present review, then, as requested by the Editor, is to re-
view some of the types of method we have developed and exploited in
Aberystwyth for the rapid, precise, quantitative, and – where possible – non-in-
vasive measurement of bioprocesses. Our website http://gepasi.dbs.aber.ac.uk
may also be consulted. We start with mass spectrometry.

2
Mass Spectrometric Measurements on Bioprocesses

Whilst on-line desorption chemical ionisation mass spectrometry (MS) has
been used to analyse fermentation biosuspensions for flavones [11], the major-
ity of MS applications during fermentations have been for the analysis of gases
and volatiles produced over the reactor [12–15], or by employing a membrane
inlet probe for volatile compounds dissolved in the biosuspensions [16–22]. It
is obvious that more worthwhile information would be gained by measuring the
non-volatile components of fermentation biosuspensions, particularly when
the product itself is non-volatile, which is usually the case.

The introduction of non-volatile components into an MS has typically been
via the pyrolysis of whole fermentation liquors. Pyrolysis is the thermal degra-
dation of a material in an inert atmosphere or a vacuum. It causes molecules to
cleave at their weakest points to produce smaller, volatile fragments called
pyrolysate [23]. An MS can then be used to separate the components of the
pyrolysate on the basis of their mass-to-charge ratio (m/z) to produce a pyroly-
sis mass spectrum, which can then be used as a “chemical profile” or fingerprint
of the complex material analysed [24].

Figure 1 gives typical pyrolysis mass spectra of Penicillium chrysogenum and
of penicillin G, indicating the rich structural and process information that is
available from highly multivariate methods of this type.

Pyrolysis MS (PyMS) has been applied to the characterisation and identifi-
cation of a variety of microbial systems over a number of years (for reviews see:
[25–27]) and, because of its high discriminatory ability [28–30], presents a
powerful fingerprinting technique applicable to any organic material. Whilst
the pyrolysis mass spectra of complex organic mixtures may be expressed in the
simplest terms as sub-patterns of spectra describing the pure components of
the mixtures and their relative concentrations [24], this may not always be true
because during pyrolysis intermolecular reactions can take place in the pyroly-
sate [31–33]. This leads to a lack of superposition of the spectral components
and to a possible dependence of the mass spectrum on sample size [31].
However, suitable numerical methods (or chemometrics) can still be employed
to measure the concentrations of biochemical components from pyrolysis mass
spectra of complex mixtures.

Heinzle et al. [34] were able to characterise the states of fermentations using
off-line PyMS, and this technique was extended to on-line analysis [35].
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However, they were not very satisfied with their system because there was no
suitable data processing for the PyMS spectra. Although Heinzle and colleagues
continued to use mass spectrometry for the analysis of volatiles produced
during fermentation [13, 36], the analysis of non-volatiles by PyMS has not been
investigated further by these authors.

With the advent of user-friendly chemometric software packages, PyMS can
now be used for gaining accurate and precise quantitative information about
the chemical constituents of microbial (and other) samples [37–39]. Within
biotechnology the combination of PyMS with chemometrics has the potential
for the screening and analysis of microbial cultures producing recombinant
proteins; for instance this technique has permitted the amount of mammalian
cytochrome b5 [40] or a2-interferon [41] expressed in E. coli to be predicted ac-
curately. Chemometrics, and in particular artificial neural networks (ANNs),
have also been applied to the quantitative analysis of the pyrolysis mass spectra
of whole fermentor biosuspensions [31]. Initially a model system consisting of
mixtures of the antibiotic ampicillin with either Escherichia coli or Staphy-
lococcus aureus (to represent a variable biological background) was studied. It
was especially interesting that ANNs trained to predict the amount of ampicil-
lin in E. coli (having seen only mixtures of ampicillin and E. coli) were able to
generalise so as to predict the concentration of ampicillin in an S. aureus back-
ground to approximately 5%, illustrating the very great robustness of ANNs to
rather substantial variations in the biological background. (Genetic algorithms
can also be used to simplify analyses of these data [42].) Samples from fermen-
tations of a single organism in a complex production medium were also ana-
lysed quantitatively for a drug of commercial interest, and this could be exten-
ded to a variety of mutant producing strains cultivated in the same medium,
thus effecting a rapid screening for the high-level production of desired sub-
stances [31]. In related studies Penicillium chrysogenum fermentation bio-
suspensions were analysed quantitatively for penicillins using PyMS [43] and
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Fig. 1. a Normalised pyrolysis mass spectra of Penicillium chrysogenum; this complex 
‘fingerprint’ can be used to type this organism. b Normalised pyrolysis mass spectra of 200 mg
pure Penicillin G; this somewhat simpler ‘biochemical profile’ is one of the range of penicil-
lins produced by Penicillium chrysogenum
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this approach has also been used successfully to monitor Gibberella fujikuroi
fermentations producing gibberellic acid [25, 44], to measure clavulanic acid
production by Streptomyces clavuligerus [45], and to investigate various dif-
ferentiation states in Streptomyces albidoflavus [46].

In conclusion, PyMS is undoubtedly very useful for the discrimination of
micro-organisms at the genus, species and subspecies level, and whilst it has
relatively low throughput (2 min per sample), which would make it unsuitable
for very-high-throughput screening programmes, it does present itself as a suit-
able method for the rapid, precise and accurate analysis of the biochemical
composition of bioprocesses.

3
Monitoring Bioprocesses by Vibrational Spectroscopies

3.1
Infrared Analysis

The measurement of compounds in bioprocesses, including fermentations,
using conventional laboratory techniques such as HPLC, TLC or calorimetric
assays is often tedious, invasive, requires sample handling and difficult to do in
real time. For a bioprocess where it is important to gain information about the
reactor status for feedback control, methods enabling rapid and reliable mea-
surement of components are desirable.

Infrared spectroscopy is a powerful alternative analytical technology for pro-
cess monitoring which has found wide application as an off-line method in the
chemical and food industries. The additional advantage over other methods is
that in many circumstances it is possible to quantify a number of components
simultaneously.

The Near-Infrared (NIR) region extends from 780 nm to 2526 nm (12820 to
3959 cm–1), as defined by the American Society for Testing and Materials.
Molecules that contain covalent bonds and have a dipole moment absorb IR
radiation. The majority of the bands observed in the NIR are due to overtones
or combinations of fundamental vibrations occurring in the Mid-IR (MIR)
region that extends from 2.5 to 25 mm (4000–400 cm–1) [47]. The light mass of
the hydrogen atom and consequently its anharmonic nature means that most of
the combination bands in NIR are due to hydrogen-stretching vibrations
(3600–2400 cm–1). Consequently, the greatest utility of NIR is in the determina-
tion of functional groups that contain unique hydrogen atoms [48].

3.1.1
Advantages of NIR Application to Bioprocess Monitoring

Peaks in the NIR region are not nearly as distinct as those observed in the fin-
gerprint region of the MIR. As the intensity of first overtones are generally an
order of magnitude less than the fundamentals, pathlengths are usually much
longer in the NIR. The advantages of these lower intensities include the fact that
nonlinearities due to strong absorptions are less likely [49]. NIR analysis can be
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employed as a non-destructive process requiring little or no sample preparation
and the sample may be re-introduced into the bioreactor. This is advantageous
in a process environment where time is an important factor in the analysis [50].

3.1.2
Instrumentation and Standardisation 

Modern NIR equipment is generally robust and precise and can be operated
easily by unskilled personnel [51]. Commercial instruments which have been
used for bioprocess analyses include the Nicolet 740 Fourier transform infrared
spectrometer [52, 53] and NIRSystems, Inc. Biotech System [54, 55]. Off-line
bioprocess analysis most often involves manually placing the sample in a
cuvette with optical pathlengths of 0.5 mm to 2.0 mm, although automatic
sampling and transport to the spectrometer by means of tubing pump has been
used (Yano and Harata, 1994). A number of different spectral acquisition
methods have been successfully applied, including reflectance [55], absorbance
[56], and diffuse transmittance [51].

At-line sampling may involve a flow-through cell in the NIR spectrometer; in
one process a glass-lined steel reaction vessel was used in combination with a
fibre optic probe for measurements in a full scale chemical plant reactor [57].
Fibre optic bundles can be used to transmit NIR radiation to the reaction
matrix and take signal back to the spectrometer. NIR is notoriously sensitive to
changes in temperature and methods for keeping the temperature constant
must be incorporated into the instrumentation.

3.1.3
Interpreting Spectra in Quantitative Terms

Broad superimposed bands are observed in NIR spectroscopic measurements
and in most instances the peaks are not directly proportional to sample con-
centration. Statistical approaches are therefore required for modelling the
behaviour of spectra for quantification. In the application of NIR to real world
bioprocess samples, which are highly turbid scattering matrices, quantification
of a constituent of interest can be particularly difficult. Vibrations are often ob-
served that are common both to the determinand and the medium and cells in
fermentations. Qualitative interpretation, and selection of unique spectral win-
dows for calibration is therefore not always possible. One approach in the
determination of wavelengths that can be used to quantify the constituent levels
in bioprocess samples is to collect the spectra of raw materials alone and in
combination, and then overlay spectra for isolation of unique bands. Second
derivative pre-processing of spectral data can enhance spectral features and in
addition baseline differences are often eliminated by this calculation; as cell
density increases, the effective pathlength traversing through the sample in-
creases because of light scattering by the cells, producing baseline offset [58].
Brimmer and Hall, [55] derived a Multiple Least squares Regression (MLR)
equation that compensated for scattering differences attributable to changes 
in the biomass of the fermentation process. This was accomplished by using 
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a reference wavelength at which the spectral data varies with penetration depth
in a reproducible manner. Background information such as that attributable to
water or the sample holder may be subtracted or used as a ratio [53, 59], how-
ever, in some instances this correction does not appear to affect the modelling
ability of the algorithms [56]. NIR can be applied to whole cells, supernatant
and aqueous mixtures of constituent samples, which may be also used to form
calibration models [60].

Multivariate calibration methods. These are capable of extracting meaningful
information from seemingly uninterpretable NIR spectra of bioprocess
samples; however for these methods measurements made using other tech-
niques must be available for training. It may be necessary to form a model for
different times in the bioprocess e.g. for the start-up period and for later stages
when inhibitors are accumulating and substrates are depleting in the fermenta-
tion.

Transferability of spectral data and models in NIR spectroscopy. This subject is
an issue that is pertinent to the future use of NIR for bioprocess monitoring.
Pre-processing to remove baseline shifts and noise in spectra from individual
machines or direct standardisation by data transformation with a represen-
tative subset can be used to calibrate across instruments [61].

3.1.4
Applications 

NIR spectroscopy continues to be applied to on-line fermentation and bio-
transformation monitoring, for example, of ethanol and biomass in rich
medium in a yeast fermentation [62, 63], lactic acid production [64, 65], bio-
conversion of glycerol to 1,3-dihydroxyacetone [66] and nutrient and product
concentrations in commercial antibiotic fermentations [67, 68]. Hall, Macaloney
and colleagues [51, 58] reported NIR spectroscopic monitoring of industrial
fed-batch E. coli fermentation of varying levels of acetate, ammonium, glycerol
and biomass which they had previously studied in shake flasks [54], while Yano
and colleagues [56] used NIR spectroscopy to determine with good precision
the concentrations of ethanol and acetate in rice vinegar fermentations. The
spectral signature of biomass with respect to wavelength regions was found to
be essentially identical when groups of industrially-important microorganisms
[69] were analysed. The concentration of many species may be determined from
one spectroscopic measurement, as long as their concentration is 1 mM or
greater [59].

New methods of variable selection include evolutionary methods based on
Darwinian principles including Genetic Algorithms and Genetic Programming
[70] and as such help to deconvolute whole spectral models in terms of which
variables are important in the modelling procedure. When applied to a NIR
glucose sensor, fewer than 25 variables were selected to produce errors statisti-
cally equivalent to those yielded by the full set containing 500 wavelengths and
the algorithm correctly chose the glucose absorption peak areas as the in-
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formation-carrying spectral regions [71], and these approaches, coupled to
digital filtering, appear to be the methods of choice [72, 73].

It is important that calibration models are rigorously validated and in the
first instance that all variations are accounted for in the model using diverse
samples that are expected to be observed in future bioprocess runs. Some in-
vestigators attempt to keep process conditions very reproducible but such con-
ditions are uncommon in an industrial environment. In addition, multivariate
calibration models will work well if identical media (composition) and process
conditions are used on each successive run. Simple modifications such as use of
a different media supplier can affect the spectral background. The predictive
ability of the models will then be affected as they will be challenged with sam-
ples which they have not been trained to recognise [74].

3.2
MIR Analysis

The higher level of spectral resolution in the MIR range often allows peaks to
be assigned to specific medium components or chemical entities.Although ana-
lysis of bioprocesses in the MIR range would be especially useful for monitoring
products of interest because of the feature rich spectra between 4000–200 cm–1,
application to on-line aqueous systems at an industrial level is hindered by the
broad water absorption across most of the so-called ‘fingerprint’ spectral range.
For off-line analysis this can be overcome simply by drying samples; however,
for on-line analysis success with mid-IR monitoring of bioprocesses has been
limited to use of transmission cells with extremely short pathlengths or
Attenuated Total Reflectance (ATR) spectroscopy. ATR utilises the phenomenon
of total internal reflection. ATR can be used essentially as an ‘in-line’ method,
where the sample interface is located in the process line itself, thus eliminating
the requirement for an independent sampling system. The sample to be ana-
lysed is placed in direct contact with a crystal made from zinc selenide, ger-
manium, thallium/iodide, sapphire, diamond or zirconium. Quantitative moni-
toring by FT-IR spectroscopy of the enzymatic hydrolysis of penicillin V to 
6-aminopenicillanic acid and phenoxyacetic acid using a 25 ml flow through cell
with a zinc selenide crystal demonstrated that the IR method allowed better
prediction of the process termination time than the standard method based on
monitoring the addition of sodium hydroxide [75].

On-line MIR ZnSe ATR analysis of microbial cultures has been used
primarily for non-invasive monitoring of alcoholic or lactic fermentations.
Alberti et al. [76] reported the use of a ZnSe cylindrical ATR crystal to monitor
accurately substrate and product concentrations from a fed-batch fermentation
of Saccharomyces cerevisiae. Picque et al. [77] also used a ZnSe ATR cell for
monitoring fermentations and found that whereas NIR spectra obtained from
alcoholic or lactic fermentation samples contained no peaks or zones whose
absorbance varied significantly, both transmission and ATR MIR could be used
successfully to measure products. Fayolle et al. [78] have employed MIR for on-
line analysis of substrate, major metabolites and lactic acid bacteria in a
fermentation process (using a germanium window flow-through cell), and
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studied the effects of temperature on the ability to quantify the substrates
(glucose and fructose) and metabolites (glycerol and ethanol) in an alcoholic
fermentation using a ZnSe ATR crystal. Hayakawa et al. [79] described the use
of a remote ZnSe ATR probe for determining glucose, lactic acid and pH simul-
taneously in a lactic acid fermentation process using Lactobacillus casei. The
benefits of the ATR method of analysis are generally those that would be con-
sidered advantageous for any on-line system, being non-destructive, requiring
no sample preparation or reagents and only a short analysis time, with minimal
expertise necessary in the industrial environment. Practical drawbacks for the
technique, particularly for microbial fermentations, centre on the need to purge
the flow cell or clean the ATR probe to prevent surface contamination through
biofilm formation. Some ATR crystal materials are toxic, limiting certain ap-
plications to the use of sapphire, diamond or zirconia. Sapphire crystals are
non-transmitting below 2000 cm–1 which means that the MIR fingerprint re-
gion cannot be investigated with this device [80]. Developments in optical fibre
design and coupling to spectrometers makes IR analysis a practical con-
sideration for industrial reactors, as the IR spectrometer can be kept remote
from the sampling probe, although at present chalcogenide fibres can only be
used over short distances.

Off-line analysis of bioprocesses is clearly less desirable for a rapid response.
However, MIR analysis of fermentation samples off-line does offer certain
advantages over other techniques. A method we have introduced and called
DRASTIC (Diffuse Reflectance-Absorbance IR Spectroscopy Taking in
Chemometrics) [81] for MIR analysis of bioprocess samples has been success-
fully applied to the estimation of drug concentrations in biological samples, in-
cluding fermentations from a microbial strain development programme [82,
83]. In this technique fermentation samples (5 ml) were applied to wells in an
aluminium plate or aluminium-coated plastic 384-well microtitre plate, dried,
mounted on a motorised mapping stage and analysed by the diffuse reflectance-
absorbance method using a Bruker IFS28 FT-IR spectrometer. This allows rapid
non-destructive analysis of samples (typically 1 per second) at a high signal to
noise ratio. We were thus able to predict concentrations of ampicillin in a bio-
logical background of E. coli (see Fig. 2 for example spectra) and Staphylococcus
aureus cells, and we used spectral data obtained from analysis of fermentations
of Streptomyces citricolor to predict the concentrations of the carbocyclic
nucleosides aristeromycin and neplanocin A. PLS routine was used to create a
training set using the MIR spectral data and information provided from HPLC
analysis of samples. This method can be fully automated and allows for a par-
ticularly high sample throughput rate.

The use of multivariate spectral information is particularly advantageous
where quantification of a particular metabolite in a complex biological back-
ground is being attempted and application of the technique necessitates the use
of chemometric processing techniques for quantification of components.
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3.3
Monitoring Bioprocesses Using Raman Vibrational Spectroscopy

Recent exploitation of biotechnological processes for pharmaceutical and 
food industries has necessitated rapid screening and quantitative analysis of
the specific components. Therefore, there is continuing need for developing 
on-line methods for monitoring such biological processes [84–86]. The ideal
method [87] would be rapid, non-invasive, reagentless, precise and cheap,
although to date, with the possible exception of near-IR spectroscopy almost 
no such single method has been found. Generally these bioprocesses progress
from translucent to increasingly opaque matrices as the microbial cells multiply
and become highly light scattering and rich in molecular vibrational infor-
mation. The use of specific molecular vibrations allowing specific finger-
printing of singular or multi-components for identification and quantification
using the vibrational FT-IR and Raman spectroscopies for monitoring these
bioprocesses can provide suitable alternatives to the present day process
monitoring.

Raman spectroscopy relies on vibrational signals generated by focusing a
laser beam onto the sample to be analysed, where most of the incident photons
are either transmitted through the sample, absorbed by it, or scattered (elastic
scattering). In a very few cases, approximately 1 in 109, the vibrations and rota-
tions of the scattering molecules cause energy quanta to be transferred between
molecules and photons in the collision process (inelastic scattering). A mono-
chromator and a detector are then used to measure these inelastically scattered
photons to give a Raman spectrum.

Raman spectroscopy can be used to analyse aqueous biological and bio-
organic samples e.g., bacteria, spores, diseased tissues, neurotransmitters,
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protein structures, membrane lipids, biochemical assays, drug-nucleotide inter-
actions, constituents of oils, water for toxic analytes and bioprocesses.

During the last few years there has been a renaissance in Raman instrumen-
tation suitable for the analysis of biological systems, initially with the develop-
ment of Fourier Transform (FT)-Raman instruments in which the wavelength of
the exciting laser is in the near-infrared laser (usually a Nd:YAG (neodymium
doped yttrium-aluminium garnet) at 1064 nm) rather than in the visible region,
an arrangement which therefore avoids the background fluorescence typical of
biological samples illuminated in the visible [47, 88–104]. In addition, and at
least as importantly, exceptional Rayleigh light rejection has come from the de-
velopment of holographic notch filters [105–108], and a recent innovation is the
use of Hadamard-transform-based spectrometers [109, 110].

Although the FT approach to both infrared and Raman spectroscopy posses-
ses well-known advantages of optical throughput [47, 111], there are still
problems for FT-Raman with many aqueous biological samples as water may
absorb both the exciting laser radiation at 1064 nm and the Raman scattered
light. In addition, it is often necessary to co-add many hundreds of spectra to
produce high-quality data from biological systems, and acquisition times are
frequently 15–60 min. More recently, therefore, it has been recognised that
charge coupled device (CCD) array detectors are ideal elements for use in
dispersive (non-FT) Raman spectroscopy. However, they normally have very low
quantum efficiency at 1064 nm photons. Thus holographic notch filters and
CCD array detectors have been combined with a dispersive instrument, using
diode laser excitation at 780 nm (a wavelength which suppresses fluorescence
from most samples but which penetrates water well). The cooled CCD is a
multi-channel device which has exceptional sensitivity and very low intrinsic
noise (dark current), so that the signal:noise ratio is improved by at least 2 or-
ders of magnitude (compared with an uncooled CCD) and data acquisition is
correspondingly fast [89]. These and other major technical advances [112, 113]
now make Raman a very promising tool for the rapid, non-invasive and multi-
parameter analysis of aqueous biological systems, including the estimation of
metabolite concentrations in ocular tissue [114, 115].

In 1987, Shope and colleagues [116] used attenuated total reflectance (ATR)
Raman spectroscopy for the on-line monitoring of the fermentation by yeast of
sucrose to ethanol, using the argon ion laser line at 514.5 nm. Gomy et al. [117,
118] monitored their alcoholic fermentation using the same laser with a fiber
optic probe attached to a Raman spectrometer but analysed the ethanol levels
only at higher wavenumber (2600–3800 cm–1) . This was because the Raman
monitoring of these processes using 514.5 nm excitation gave significant
fluorescence in the lower wavenumber region, as can be observed in the spectra
shown in these papers.

Although fluorescence has been a major hindrance for the use of Raman
spectroscopy in biology, Shope and colleagues [116] clearly showed that the
narrow Raman peaks were distinct from the broad features of fluorescence and
proposed the use of full widths at half-height of the peaks for chemical quanti-
tation from Raman spectra. Shope et al. [116] used a least squares fit to analyse
the Raman spectra for quantification of the production of ethanol during the
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yeast fermentation process. Finally, Spiegelman and colleagues [119] have
recently shown that the amount of glucose in aqueous solution can be measured
using Raman spectroscopy.

4
Measurement of Biomass

This laboratory long ago devised [120] the use of radio-frequency dielectric
spectroscopy [121, 122] for the on-line and real-time estimation of microbial
and other cellular biomass during laboratory and industrial fermentations. The
principle of operation is that only intact cells (see [123] for what is meant in this
context by the word ‘viable’), and nothing else likely to be in a fermentor, have
intact plasma membranes and that the measurement of the electrical properties
of these membranes allows the direct estimation of cellular biomass (Fig. 4).
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Fig. 3. Comparison of smoothed, normalised spectra from a biotransformation of glucose to
ethanol, taken at intervals through the experiment, showing the change in the spectrum over
time. Spectra are artificially displaced by 100 photon counts for clarity

Fig. 4. Fields and cell membranes. At low frequency the field cannot penetrate the cell wall
and is dropped almost entirely across the outer membrane such that the membrane amplifies
the field across itself by a factor of up to 1000 From left to right – Low frequency, Mid
frequency, High frequency



This situation is modelled as the equivalent circuit of Fig. 5, where all the
components are assumed linear.

The probe has been long and successfully commercialised (see
http://www.aber-instruments.co.uk) and since we have reviewed this approach
on a number of occasions (e.g. Kell et al. 1990, Davey 1993a, b, Davey et al.
1993a, b) we will not do so here, save to point out (in the spirit of this review)
the trend to the exploitation of multi-frequency excitation for acquiring more
(and more robust) information on the underlying spectra. [124, 125]. Most
recently, we have also devised a number of novel routines for correcting for the
electrode polarisation that can occur under certain circumstances [126, 127],
and have turned our attention to the nonlinear dielectric spectra of biological
systems.

4.1
Dielectrics of Biological Samples – Linear or Nonlinear?

The dielectric response of biological tissue has long been assumed linear. Thus
an enzyme is treated as a hard sphere which relaxes linearly in an a.c. field at all
but high field strengths [128]. In a suspension of cells, the electric field cannot
penetrate to the interior of the cell at the low frequencies currently of interest
in nonlinear dielectric spectroscopy [129], and is dropped almost entirely
across the outer membrane of the cell which is predominantly capacitive at
these frequencies, as was shown in Fig. 4.

However, an enzyme which has different dipole moments in different con-
formations during its operation (Fig. 6) may affect and be affected by electro-
magnetic fields [130]. Change between states is unlikely to be smoothly or
linearly related to the field due to the constraints imposed on the enzyme by its
environment in the membrane, so the dielectric response of the material is non-
linear even at low applied fields [131].
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Fig. 5. Standard linear equivalent circuit of an assumed linear dielectric cell membrane can
be modelled with simple standard components. This assumption breaks down if the field is
amplified across the membrane as in Fig. 1 to a degree sufficient to produce nonlinearity



The equivalent circuit of Fig. 5 is no longer very useful since its individual
components are no longer linear. This behaviour shows up as the generation by
the tissue of harmonics of the applied frequency [129].

A nonlinear dielectric spectrometer has been designed around a standard
IBM PC; and realised almost completely in software, with a minimum of extra-
neous hardware [129].

4.1.1
The Nonlinear Dielectric Spectrometer

A sinusoidal (or otherwise) signal is generated by the PC and applied to the
outer terminals of a 4-terminal electrode system. The resulting signal across the
inner electrodes is fed back differentially to the PC. This signal is then trans-
formed into its power spectrum and the harmonics studied (Fig. 7).

Of course things are never quite this simple. At the low frequencies (a few Hz
to a few kHz) studied so far, there is a strong polarisation layer around the
driver electrodes. The i/V relation of this layer is both strongly nonlinear and
highly variable with time, and its effects must be removed from the (weak)
harmonics generated by the biology, if direct visualisation of the harmonic
spectra is needed.

A reference spectrum (dB power spectrum) is taken using the supernatant of
the suspension under test. This is the polarisation signature. This is then sub-
tracted from the equivalent spectrum from the whole suspension. This pro-
cedure deconvolves the polarisation harmonics from those produced by the
tissue nonlinearity (Fig. 8).
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Fig. 6. Enzyme transporting ion across membrane via conformational change. If the different
conformations have different dipole moments, the enzyme will be sensitive to electric fields
and will be detectable by its effect on these fields



Fig. 7. Dielectric spectrometer schematic: Two standard four-terminal electrode chambers
are connected to A/D converters and on into a PC. Fourier analysis is done by the PC to pro-
duce the nonlinear dielectric spectra

Fig. 8. Reference, suspension, and difference spectra of resting yeast. Predominently odd har-
monics only are produced in this metabolic state signifying a symmetric system in equilibrium



4.1.2
Nonlinear Dielectrics of Yeast Suspensions

In a suspension of Saccharomyces cerevisiae, an inhibitor study along with use of
mutant strains showed that the predominant source of the nonlinear signature
in this organism is the membrane-located H+ ATPase. The harmonics are highly
voltage- and frequency-windowed, with the peak of the frequency window for
the resting enzyme coinciding neatly with its kcat value. In a resting state, at equi-
librium, the suspension generates almost entirely odd-numbered harmonics, as
in Fig. 8, suggesting symmetry about the equilibrium of the ATPase. If glucose is
addded to the suspension to fuel proton transport by the ATPase, then the shift
away from equilibrium breaks the symmetry and even-numbered harmonics ap-
pear, giving a measure of the activity or inactivity of this enzyme and the con-
sequent metabolic state of the yeast cells as shown in Fig. 9.

Analysing the behaviour of the harmonics over a range of frequencies/volta-
ges allows the rapid collection of a very large amount of metabolism-dependent
information.

4.1.3
Multivariate Analysis

Recently, work has focused on the use of multivariate methods to form models
capable of predicting the factors causing responses. Much of this work has cen-
tred on the prediction of glucose levels in yeast fermentations from the cellular
responses. A major practical advantage of multivariate methods is that there is
no requirement for a reference sample to be taken.

Initial experiments used principal component analysis (PCA) to investigate
the multivariate response. PCA is a non-parametric method which outputs
linear combinations of the input values (the “principal components”), such that
the majority of variation is concentrated in the first few components.

PCA does not attempt to relate cause and effect; it merely serves to highlight
the larger variations in the data. Nevertheless, the results obtained from PCA
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Fig. 9. Difference spectrum of metabolising yeast cells Even harmonics appear under these
conditions showing an activation of the ATPase signifying the disturbance of the equilibrium
of Fig. 5



proved promising, showing large variations which could be due to the cells’
activity in response to glucose.

Subsequent work has used partial least squares regression (PLS) to form
predictive models of glucose concentration during batch fermentations as
shown in Fig. 10 (where object number = sample number and gives a measure
of the progress of the fermentation). PLS produces models by projecting the
large number of response X-variables (the harmonics in the NLDS spectra) into
a smaller number of ‘Latent’ variables, while retaining as much relevant
variability as possible. The variables in this space are then used to form a
regression onto the predicted Y-variables (the actual glucose levels measured by
a reference method). This “two-way’” modeling tends to form much more ac-
curate models than other simple linear multivariate methods (e.g. principal
component regression and multiple linear regression) as it automatically
detects relevant X-variables and preferentially forms the model on these. The
precision of the prediction is assessed by the commonly used Root Mean Square
Error of Prediction (rmsep) [132]. Three independent datasets are required;
one to form the model, one to validate the model, and one which the modelling
process has not seen to test the model against ‘unknown’ data

Examination of the “residual” unmodelled variation in these experiments
indicates that there is a nonlinearity in the relationship between the X and Y
variables. This detracts from the models’ accuracy. To this end the inherently
nonlinear capabilities of ANNs have been employed with an improved predic-
tive capability resulting in the prediction of Fig. 11.
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Fig. 10. PLS based prediction of glucose levels in one yeast batch fermentation by a model
formed and validated on glucose levels in two other independent fermentations. The rmsep
is 41% of the mean value of the data



The current area of interest is in trying to reduce the electrode instabilities
which are responsible for large baseline offsets when a model based on one fer-
mentation is used to predict results from another. This can be done in either
hardware, by coating the electrode to stabilise the interface [133], or in software,
by using more powerful modelling methods such as Genetic Programming
(GP) to automatically remove the effect of these instabilities from the model
[134].

4.1.4
Electrode Polarisation and Fouling

In biological NLDS work, electrode polarisation is a serious problem at the low
frequencies (up to a few tens of Hz) where the biology typically reacts most
strongly to the electric field; and its fluctuations can be similar in size to, or big-
ger than, the small changes due to biological activity (e.g. upon glucose meta-
bolism). It is therefore vital to control electrode polarisation insofar as is pos-
sible. To obtain nonlinear electrochemical reproducibility, electrode surfaces
must be scrupulously clean, and this is very difficult to achieve. If any conta-
mination is present, the biologically relevant signal may be unstable, distorted
or concealed completely [135].

Electrode cleaning to ensure repeatable nonlinear dielectric spectra is a com-
plex and empirical task, due to the lack of knowledge of the exact form of the
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Fig. 11. Neural net prediction of glucose levels in one yeast batch fermentation by a model
formed and validated on glucose levels in two other independent fermentations. This experi-
ment uses uncoated gold electrodes. The rmsep is 19%



causative mechanisms operating in the electrode/electrolyte interface. No
repeatable and certain ways of obtaining a quiet and repeatable reference signal
from an individual electrode surface have been found but simple abrasion
works best. Once clean, electrodes may stay stable for days, or become unstable
within a few minutes. Continual control readings, performed as indicated
above, are vital during any series of experiments to be sure the electrode sur-
face behaviour has not substantially altered during the experiments, in which
case the results must be abandoned and the experiments repeated. This
Byzantine process can make the process of obtaining a lengthy series of results
with continually clean electrodes a nightmare.

4.1.5
Electrode Coating

To prevent a protein from adhering to a metal surface, the surface can be coated
with a sheet of poloxamers. These are a triblock copolymer consisting of PEO-
PPO-PEO, in which two polyethylene oxide (PEO) chains are attached to a
hydrophobic polyproylene oxide (PPO) anchor. This prevents the protein
binding by steric repulsion overpowering the attraction between the protein
and the coating layer [136]. This coating layer stabilises the electrode interface
slightly and prevents protein fouling, allowing the electrodes to be used after a
simple cleaning and coating procedure. They then stay useable for a month.

The coating allows three independent datasets leading to the prediction of
PLS prediction of Fig. 12 (to be compared with that of Fig. 10) to be obtained
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Fig. 12. PLS prediction of glucose levels in one yeast batch fermentation by a model formed
and validated on glucose levels in two other independent fermentations. This experiment
uses polymer coated electrodes. The rmsep is 35%



rapidly and conveniently, without the prohibitive electrode problems discussed
above. It is also found that the coating linearises the data and allows PLS to per-
form better in relation to nonlinear modelling methods.

4.1.6
Genetic Programming

Genetic programming [137] is an evolutionary technique which uses the con-
cepts of Darwinian selection to generate and optimise a desired computational
function or mathematical expression. It has been comprehensively studied
theoretically over the past few years, but applications to real laboratory data as
a practical modelling tool are still rather rare. Unlike many simpler modelling
methods, GP model variations that require the interaction of several measured
nonlinear variables, rather than requiring that these variables be orthogonal.

An initial population of individuals, each encoding a potential solution to the
optimisation problem, is generated randomly and their ability to reproduce the
desired output is assessed. New individuals are generated either by mutation
(the introduction of one or more random changes to a single parent individual)
or by crossover (randomly re-arranging functional components between two or
more parent individuals). The fitness of the new individuals is then assessed,
and the fitter individuals from the total population are more likely to become
the parents of the next generation. This process is repeated until either the de-
sired result is achieved or the rate of improvement in the population becomes
zero. It has been shown [137] that if the parent individuals are chosen according
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Fig. 13. Genetic Program prediction of the data of Figures 7 and 8. The rmsep is 9%



to their fitness values, the genetic method can approach the theoretical opti-
mum efficiency for a search algorithm.

This technique allows the prediction of Fig. 10 and 11 to be improved to pro-
duce Fig. 13.

Given the very heavy computational load of GP, it would not be the method of
choice for problems which yield to simpler approaches. However the above data
show that it can be very beneficial on problems that have defeated other methods.

4.1.7
Other Microbial Systems

NLDS has also been successfully applied in this laboratory to measurements of
photosynthesis in Rhodobacter capsulatus [138]; of glucose levels in erythro-
cytes, both invasively and non-invasively [135]. It has also been used success-
fully to detect the subtle interaction of weak low-frequency magnetic fields with
membrane proteins of aggregating amoebal cells of Dictyostelium discoideum.
Using PCA, a significant distinction was shown between cells previously ex-
posed to pulsed magnetic fields (PMF) of 0.4 mT and 6 mT and their respective
controls. Significant distinction was also shown between cells exposed to 50 Hz
sinusoidal magnetic fields of 9 mT and 90 mT and their respective controls.
NLDS was able to demonstrate a dose response with respect to both duration of
exposure and field strength. In all cases significant changes in intracellular bio-
chemistry had also been shown. There is some evidence to support a hypothesis
that voltage gated calcium channels are involved in the response of Dictyoste-
lium to PMFs [139, 140].

5
Flow Cytometry

Flow cytometry [141, 142] is a technique that allows the measurement of
multiple parameters on individual cells. Cells are introduced in a fluid stream
to the measuring point in the apparatus. Here, the cell stream intersects a beam
of light (usually from a laser). Light scattered from the beam and/or cell-as-
sociated fluorescence are collected for each cell that is analysed. Unlike the
majority of spectroscopic or bulk biochemical methods it thus allows quantifi-
cation of the heterogeneity of the cell sample being studied. This approach of-
fers tremendous advantages for the study of cells in industrial processes, since
it not only enables the visualisation of the distribution of a property within the
population, but also can be used to determine the relationship between
properties. As an example, flow cytometry has been used to determine the size,
DNA content, and number of bud scars of individual cells in batch and con-
tinuous cultures of yeast [143, 144]. This approach can thus provide informa-
tion on the effect of the cell cycle on observed differences between cells that
cannot be readily obtained by any other technique.

Flow cytometry has been applied to the study of the formation of the bio-
polymer poly-b-hydroxybutyrate (PHB). While the formation of the polymer
can be detected by changes in the light scattering behaviour of cells [145], its ac-
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cumulation has also been analysed using the hydrophobic fluorescent dye Nile
Red [146]. PHB is produced commercially for use in the manufacture of bio-
degradable plastic materials and this approach has enabled researchers to
determine the effect of changes in nutrient limitation conditions on the pro-
duction and storage of PHB in individual cells [147].

While these examples illustrate the role of flow cytometry in bioprocess
monitoring, the analyses have been conducted off-line thus making their use in
bioprocess control impractical. Recently, a portable flow cytometer – the
Microcyte – [148] has been described, which due to its small size and lower cost
(compared to conventional machines) allows flow cytometry to be used as an
at-line technique [149]. Rønning showed that this instrument had a role to play
in the determination of viability of starter cultures and during fermentation.
The physiological status of each individual cell is likely to be an important
factor in the overall productivity of the culture and is therefore a key parameter
in optimising production conditions.

The problems of converting flow cytometry into an on-line technique are
discussed by Degelau and colleagues [150], however, more recently a flow in-
jection flow cytometer for on-line monitoring of bioreactors has been developed
by Zhao and colleagues [151]. In the system described a sample is removed from
the fermentor under computer control. The sample is degassed prior to passing
into a microchamber where it is automatically diluted if necessary prior to the
addition of stains or other reagents. Following an appropriate incubation in the
microchamber the sample is delivered to the flow cytometer for analysis. This in-
strument has been used successfully to monitor both the production of green
fluorescent protein (Gfp) in E. coli and to determine the distribution of DNA
content of a S. cerevisiae population without the necessity for operator input.
With continuing decrease in costs and increase in automation flow cytometry is
likely to play an increased role in bioprocess monitoring and control.

6
Data Analysis

Whilst modern instruments may provide much more accurate data than those
of years ago, new types of instrument are being developed which provide data
of somewhat lesser accuracy, but which have other advantages (e.g. speed,
throughput, on-line). Advances in computing methods help in the extraction of
meaningful information from such data, which in the past would have been im-
possible, and so bioinformatics has become an essential part of the experimen-
tal procedure.

6.1
Data Pre-processing

Before carrying out any statistical analysis on multivariate data, it is important
to ensure that the data are valid, and in a suitable format. This means:

– Ensuring that there are no errors in the data
– Normalising, when necessary
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Errors may be caused by data input error (where this is done by hand), or by an
incorrectly analysed sample. In the former case, this is typically a wrong num-
ber, or a decimal point missed or wrongly placed. Such errors may usually be
found by testing the maximum and minimum values of a variable. If one value
is found to be significantly different to the others, it is suspect, and should either
be corrected (e.g. by referring back to the original experimental results, where
available, or moving a decimal point), or the whole object affected deleted. If the
measurements for one sample are consistently found to be suspect, normalisa-
tion may solve this problem. If it is suspected that the sample was incorrectly
analysed, and cannot easily be reanalysed, it should be deleted from the data set.

Many spectroscopic methods will produce results whose magnitude depends
upon the amount of sample present during the analysis or prevailing ex-
perimental conditions (e.g. Pyrolysis Mass Spectrometry, Raman spectro-
scopy). In such cases, the samples should be normalised, either to an internal
standard or variable of consistent value, or, where the totals are expected to be
about the same for each object (PyMS), to the total.

For example, to normalise the total of all objects to 1000, each variable xib be-
fore normalisation in object x with n variables becomes after normalisation
(xib ):

1000         
xin = 9 ¥ xi bn

Â xi
j = 1

Where the result does not depend on such factors, or a normalisation to an
internal standard is carried out by the spectrometer or accompanying software
automatically (e.g. in Nuclear Magnetic Resonance – NMR), further normalisa-
tion should not be carried out.

If after normalisation to the total, a variable is found to be suspect and
deleted, normalisation must be carried out again. It is possible, when norma-
lising to the total, that such re-normalisation may adversely affect the re-
maining data. If this is judged to be the case, the whole experiment will need to
be repeated.

Most statistical packages will carry out normalisation of the variables, typi-
1

cally to 82 for each variable. The purpose of this is to negate the effect of
StDev

large variables on the model formed [152]. If the package being used does not
provide this facility, or if for some other reason it is believed that a better result
will be obtained by using a different normalisation of the variables, this should
be carried out at this stage. Such normalisation should always be carried out
after any normalisation of the objects has been performed.

6.2
Model Simplification

When performing multivariate statistical analysis on a set of data for classifica-
tion or quantification, it is common practice to use all the variables available.
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The belief is that the statistical method used (such as PLS, PCR, MLR, PCA,
ANNs) will extract from the data those variables which are most important, and
discard irrelevant information. Statistical theory shows that this is incorrect. In
particular, the principle of parsimony states that a simple model (one with fewer
variables or parameters), if it is just as good at predicting a particular set of data
as a more complex model, will tend to be better at predicting a new, previously
unseen data set [153–155]. Our work has shown that this principle holds.

There have been a number of methods of data reduction proposed, some of
which are briefly described here.

One method is to use a variable ranking system, in which the best n variables
(where n ranges from 1 to the total number of variables), are tested. The
variables used for the value of n at which the best model is formed will then be
taken to be the optimal. This method has proved very successful, particularly
for relatively low noise NMR data from olive oils [156–158], the results clearly
showing that the use of all variables in model creation does not yield an optimal
result in most cases, and for Raman data [159], where the variables are peak
height, width, area and position, the peaks initially chosen being representative
of certain bonds within the substance being analysed. It has the advantage of
being relatively quick (only n models need be formed), and simple to under-
stand. It can also be a great aid to understanding the data being analysed.
However, it does not take account of collinearity in the data, nor the possibility
that two variables may be additively, but not individually, important 

Taking Fourier transforms of spectra (e.g. [160, 161]) and selecting a suitable
cut-off will eliminate most of the noise whilst retaining most of the infor-
mation. The precise point of the cut-off is not easy to determine, as there is a
trade-off between eliminating noise and losing data. It is also likely that many
of the remaining variables will be collinear (essentially saying the same thing),
and therefore make the model unnecessarily complicated.

Using the first n principal components (where n is determined by some
metric which attempts to remove components containing only noise) also suf-
fers from the problem of this trade-off, but does have the advantage that no
variables remaining will be collinear (therefore they all contribute different in-
formation to the model).

Genetic programming, described earlier, picks only certain variables from the
model. The rules, which may be in the form of a computer language such as
Lisp, or easily interpretable equations, produce a formula from which a result
can be calculated (e.g. if (measurement_1> 2.37 and measurement_2 < 0.53) or
measurement_3 > 4.28 then sample is adulterated else sample is clean) [162–
165]. Rather than being a pre-processing step before statistical analysis, this
method combines the variable selection and model formation stages into one.

6.3
Data Partitioning

It is, at this point, important to understand the difference between unsupervised
methods and supervised methods. With the former, there is no indication given
to the model creation program (e.g. PCA, self-organising maps) of where any of
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the data should lie, or its class or value. With such a technique, therefore, one set
of data is sufficient. However, if variable selection is being used to produce the
optimum variables for the model, it is better to use two data sets, using one for
establishing the best number of variables, and the second for producing the
results.

The remainder of this section deals with supervised methods.

6.3.1
Training and Testing

In order to create a prediction, the data must be divided up into a training set
(on which the model is formed) and a query or test set (using which the model
is tested, and the best number of factors or epochs established).

Since most supervised methods of forming a model will use the query set in
order to establish the optimal number of factors (or epochs, in the case of an
artificial neural network), a completely independent validation set is required,
to ensure that the model is valid. This data set will not have been seen by the
model in any form at any time. The only reason for not using a third data set is
where there are insufficient objects to form a meaningful model if the data are
divided into three. In such cases, it must be remembered that the results may
appear better than they really are, and this fact should be noted in any results.
Other methods of forming a model are able to establish the optimal factors or
epochs from the training set alone, for example by dividing the training set into
two and alternately training the model on one section and testing on the other.
In such cases, two data sets are probably sufficient.

Replicates should always be kept in the same data set; not to do so would
definitely classify as ‘cheating’. If one of two replicates were in the training set,
it would be expected that its partner in the validation set would be predicted
with accuracy.

6.3.2
The Extrapolation Problem

Statistical models are not in general able to extrapolate; that is to say, if for a
given variable, the training set data are in the range 3 to 4, there is no way a
meaningful prediction can be made if the validation data contains a 5. This
means that the training set should encompass the whole of the query and
validation sets.

For quantification (e.g. prediction of concentration in a solution), the solu-
tion is easy: objects should be placed alternately in the training, query and
(where there are sufficient objects) validation sets, ensuring that the objects
with the lowest and highest value in the target being predicted are in the
training set.

For classification (e.g. identification of country of origin or variety of a
sample, or the bacterial strain), it is not quite so straightforward, as it is difficult
to know within a class (country of origin, etc.) which data lie at the edge of the
spectrum. This may, however, be achieved, by examining the data for each
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object within a group, and determining how the variables lie with respect to
those of other objects in the same class. With n variables, this means looking in
n dimensional space; clearly not a task that is possible for the mere human. To
facilitate this, a program called MultiPlex has been written by Dr. Alun Jones of
UWA (an extension of the duplex algorithm described in [166]). Using this pro-
gram will ensure that the objects are divided between training, query and, if
desired, validation, sets appropriately. Provided that any replicates in the
samples are correctly identified, it will also ensure that replicates are placed in
the same set.

7
Concluding Remarks

“Organisms are not billiard balls, struck in deterministic fashion by the cue of natural
selection and rolling to optimal positions on life’s table. They influence their own destiny in
interesting, complex and comprehensible ways.” – S.J. Gould (1993) Evolution of organisms.
In: Boyd CAR, Noble D (eds) The logic of life. Oxford University Press, p 5

Biological systems are indeed complex (and this differs from ‘complicated’ –
[167]), but many of their most important features that are of interest to us for
specific purposes are in fact of low dimensionality. The key to understanding
them then lies in acquiring large amounts of the right kind of data which can
act as the inputs to intelligent and sophisticated data processing and machine
learning algorithms. These approaches alone – especially those based on in-
duction – will help us unravel their workings [168].
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