

This is a manuscript version of the article Kell, D.B. (2002) Defence against the flood (a
solution to the data mining and predictive modelling challenges of today). Bioinformatics
World (part of Scientific Computing News) Issue 1: 16-18. It differs slightly from the
published version.

GENOMIC COMPUTING: A POTENTIAL SOLUTION TO THE DATA MINING
AND PREDICTIVE MODELLING CHALLENGE TODAY ?

Douglas Kell

The post-genomic era is generating such torrents of data that researchers now face the
question of how to build a working data-flood defence system. Existing software is just
not coping and the problem is to find new ways of extracting knowledge from all these
data. Genomic computing is a new and valuable strategy for analysing very complex
datasets of high dimensionality by evolving simple, intelligible rules with high
explanatory power.

Currently the majority of packages require the user to write a lot of code as part of their
operation. Few packages have a user interface good enough to enable relative novices to
use these techniques smoothly and easily. However genomic computing’s potential for
ploughing rapidly through vast amounts of data to evolve simple, human readable
solutions, would appear to make it the ideal approach. The reason for its lack of wider
recognition probably stems from the fact that the bulk of the real expertise still resides in
the form of ‘hair shirt’ programs within university departments. Until the mainstream
software vendors become fluent in this branch of computer science, the market is still
open to any resourceful software development group. The Welsh software company, Aber
Genomic Computing, has now made available a genomic computing package (gmax-bio)
that is designed to address data mining and predictive modelling problems encountered in
the life sciences and elsewhere.

The reason data analysis is becoming ever more complex is that it has to deal with large
numbers of data objects, each represented by tens, hundreds, or thousands of variables, as
in DNA microarray analysis. The combinatorial explosion of solutions to be evaluated
can thwart conventional attempts at empirical interpretation.

Consider a predictive model with only 100 variables (e.g. levels of metabolite, antigen,
gene expression etc). The simple problem of deciding whether or not (a simple ‘yes’ or
‘no’) to use each of these 100 variables gives 2100 possibilities, which is about 1030 .
Considering that the lifetime of the universe is ‘only’ ~ 1017 seconds, to find a solution for
this comparatively trivial problem by random search would take more than an eternity.
Fortunately nature has shown us a way – a process that is incredibly simple and yet
phenomenally powerful – natural selection. Computing has an equivalent approach to
solving these complex problems: Evolutionary Computing or the evolution of computer
programs by methods of Darwinian selection.

All datasets can be viewed as a spreadsheet or database table (Fig. 1), in which different
samples (individuals, objects) appear in different rows, while the values or classes of
variables (properties) associated with them appear in different columns. It is frequently
the case that we wish to account for some properties in terms of combinations of some of
the other variables. In data mining, the ones we want to account for are usually termed the
dependent variables or y-variables or y-data while the ones contributing to the
explanation are usually called the explanatory variables or x-variables or x-data.

In a pharmaceutical drug discovery problem, the x-variables could be structural and/or
physico-chemical attributes of candidate drug molecules and the y-variable the potency or
binding efficiency of the molecule in an appropriate assay. In predictive medicine, the x-
variables could be relevant or surrogate metabolic properties, or markers, and the y-
variable the existence or severity of some disease state. In all cases, the aim of predictive
modelling is to find those x-variables which, when combined in a stated way (to make a
mathematical model), best account for the values or properties of the y-variables in a
statistically robust fashion (so that the models produce correct predictions for other
examples on which they are subsequently tested).

 Variables are arrayed in different
columns

 Explanatory (x-)
Variables…….

Dependent (y-)
Variable(s)

 XVar1 Xvar2 Xvar3…
.

Yvar1 Yvar2… Yvar3…

Objects Obj1

(Samples) Obj2

Going Obj3

Down Obj4

In Obj5

Different Obj6

Rows Obj7
Fig 1. Structure of a database table or spreadsheet matrix.

Class assignment from multivariate data

This problem can be set out equivalently in the form given in Fig. 2. In this formulation,
it can be restated as a ‘class assignment problem’, represented in general terms by: (1) a
set of inputs, whose choice one might hope to optimise; (2) a set of output classes into
which one might wish to assign a sample whose measured properties are to be used as the
inputs; and (3) a set of mathematical relationships (functions) which use the differential

data in the input patterns to establish the correct functional class assignments on the basis
of those input patterns. Data mining is designed to optimise (1) and (3), given (2).

Data mining is thus, in essence, a problem in pattern classification. Indeed, there are
many areas of science in which pattern classification methods developed in statistics and
artificial intelligence are important, and where the arrangement is exactly as shown in
Fig. 2. The goal of pattern recognition is to classify objects of interest that possess
particular attributes into a number of categories or classes. Functional genomics,
predictive medicine, and other extremely important problems are therefore to be seen, in
part, as problems of pattern recognition.

Pattern classification methods of this type can be grouped into 2 different categories,
called ‘unsupervised’ and ‘supervised’ learning methods. If a set of multivariate
observations is given with the aim of establishing the existence of classes in the input
data, with no knowledge or care for an imposed class structure (i.e. we use only the x-
data as defined above), we will be using clustering or unsupervised learning.
Alternatively, there may be a defined class structure (based on knowledge for at least
some samples of the y-data) and the need is then to establish rules by which new objects
are correctly classified into one or more of the existing classes. This supervised learning
is often referred to as ‘discrimination’ or ‘multivariate calibration’ in the statistical
literature, as the class structure is produced on the basis of known, correctly classified
objects and their attendant properties.

INPUT DATA
VECTORS

OUTPUT

CLASS(ES)
OF
INTEREST

MATHEMATICAL

TRANSFORMATION(S)

Figure 2.
By recasting the spreadsheet
formulation of the data mining
problem, it can be transformed
into an equivalent “class
assignment” problem, and thus
it becomes an issue of pattern
recognition.

Because the input data may have hundreds or thousands of variables, getting the correct
classification is only part of the answer. We also require our solutions to be intelligible,
so simple, explanatory rules are greatly favoured over complex, incomprehensible ones.

Models are made with explanatory variables (and not objects) as the inputs. Historically,
datasets might have had many objects and few variables, but now the opposite is true.
There are many cases in which we can have a large number of variables on both large and
small numbers of objects. The interesting fact is that the number of variables and not the
number of objects dominates the mathematical difficulty of a modelling problem.

Imagine that we have one dependent variable in a diagnostics problem (this person
does/doesn’t have a certain disease such as cancer) but that there are N explanatory
variables (levels of metabolites, antigens, gene expression profiles, etc).
As discussed above, even if each variable (of the N) can take only 2 values – present or
absent – the number of models one can make to try and solve the problem is 2N. If each
variable could take 10 values then for 100 variables there are 10100 models. In general,
obviously, the complexity of a system with N variables present at M levels scale as MN
and if N >> M then MN is always likely to be enormously greater than NM. Combinatorial
difficulty scales exponentially (or worse) with the number of explanatory variables. (Gene
microarrays, for examply, normally have several thousand variables….) The
combinatorial difficulty scales only linearly with the number of objects. It is the
experimental ability to acquire huge numbers of explanatory variables that opens up the
opportunity for serious and efficient data mining (or, equivalently, provides competitive
advantage to those who can deal with them and competitive disadvantage to those who
cannot).

The ideal data mining system has seven key features:

• Automatically identifies the key components and patterns in huge datasets
• Gives the solution within minutes
• The solution is simple, intelligible, robust, and maps directly into the measured

input variables
• Has the ability to provide several alternative solutions to a problem
• Fully transparent, easy to follow solutions – no black box operations or answers
• Able to incorporate prior knowledge from the database
• Produces readily exportable solutions to be applied to new datasets

Systems such as neural networks can address only part of this profile – they are flexible,
non-linear fitting systems – but they are rather poor at explaining how they arrive at their
answer since every input tends to contribute. Only rule-based systems can give simple,
effective, and intelligible explanations, but traditional rule-based systems (deterministic,
tree-based classifiers), in which each variable is selected in the order of its apparent
individual importance, often perform poorly on complex datasets.

The ideal method would evolve rules based on an optimal selection of the variables and
an optimal selection of the form of the interactions between them, to produce a rule –
exactly equivalent to a little computer program – in which the selected variables are
applied at the input, the rule followed, and the correct classification arrived at the output.
The generalised methods of data mining known as Genetic Programming or Genomic
Computing do exactly this.

Genomic computing is a new development within the more general field known as
evolutionary computation, and as such shares its underlying principles (Fig 3).

Fig 3. The basic strategy of evolutionary computing

Its operation is based on the Darwinian ideas of ‘survival of the fittest’ and natural
selection. In evolutionary computing, we have a population of individual computer
programs or algorithms whose output is a potential solution to a problem (typically a
combinatorial optimisation problem). The process begins with a fitness function and a set
of user-selectable mathematical and logical operators. A first generation of as many as a
thousand models is randomly generated using the operators available, usually in the form
of a tree; the ‘fitness’ of each model is evaluated using a training data set. These outputs
are ranked according to their ‘fitness’, and the better performing individuals retained.

Some of these individuals are then modified, by mutation (‘asexually’) or by recombining
parts of them from more than one parent (‘sexually’), and the process of generating an
output, evaluating their fitness and mutating and selecting at each generation is continued
until an individual evolves with the ability to solve the problem or reaches a stopping
criterion.

Although there can be specific operations that are not known to occur in the natural
world, there is an equivalence or mapping between biological evolution and evolutionary
computing (Fig 4).

Property Biological Evolution Evolutionary computation

Major unit of selection Individual organism Individual string, tree,
algorithm or computer program

Fitness Likelihood of surviving long
enough to produce offspring

Relative closeness to desired
property and hence propensity
to be chosen for next generation

Mutation Change of the nucleotide at a
certain position

Change of an individual string,
tree, algorithm or computer
program by changing the
encoding at a certain location

Recombination Mating between organisms
leading to exchange of alleles
via recombination

Change of an individual string,
tree, algorithm or computer
program at a certain location by
taking segments of encoding
from (usually) 2 or more
‘parents’ and recombining them
to create a new string, tree,
algorithm or program

Fig 4. Some relationships between biological evolution and evolutionary computing.

Although there are many approaches and algorithms within the evolutionary computing
field, most (such as genetic algorithms, evolutionary strategies, evolutionary
programming) assume knowledge of the basic equation and variables to be used, and
simply seek to parameterise them optimally. However, an important alternative approach,
popularised by John Koza as Genetic Programming, seeks not only to extract the most
important subset of the variables but also to derive the functional form of the relationship

between them that best accounts for the problem at hand. This strategy can automatically
and inductively derive new knowledge in the form of simple, explanatory rules, and is
implemented in Genomic Computing. Importantly, it is particularly good at selecting only
a small subset of the available variables; this both makes the searching a lot easier and
ensures that the rules which are generated are simple and intelligible.

All output functions can be discussed in terms of classification or quantification.
However, although there are technical reasons why one might treat them differently,
quantification is really just a special form of classification (‘this sample is in the class
whose values lie in the range x to (x+δx)’). Problems that have exploited these rule-
generating methods of evolutionary computing include Spectroscopy, Searching
biological sequences for important motifs, DNA microarray analysis for functional
genomics and metabolic profiling.

The gmax-bio� genomic computing package, now available from Aber Genomic
Computing, addresses data mining and predictive modelling in the life sciences, other
natural sciences and elsewhere. Fig 5 shows a simple rule which the software has evolved
to solve a bacterial biomarker identification problem. Gmax-bio� has identified a simple
rule, which uses just 3 variables out of 150 and which correctly classifies all examples in
a dataset from bacterial physiology.

Professor Douglas B. Kell is at the Institute of Biological Sciences, University of Wales,
Aberystwyth, SY23 3DD. dbk@aber.ac.uk http://qbab.aber.ac.uk/

For further information on genomic computing, organizations, and services mentioned in
this article, please visit http://enquiries.scientific-computing.com

Fig 5. A screenshot showing how gmax-bio identified a simple rule using just 2 variables
(out of 150) to correctly classify all entries in a dataset from bacterial physiology. The
rule is read ‘up’ the tree from right to left and is (output = V105*1/V114).

Further Reading

BÄCK, T., FOGEL, D. B. & MICHALEWICZ, Z. (1997) (eds). Handbook of evolutionary
computation. IOPPublishing/Oxford University Press, Oxford.
BANZHAF, W., NORDIN, P., KELLER, R. E. & FRANCONE, F. D. (1998). Genetic programming:
an introduction. Morgan Kaufmann, San Francisco.
DUDA, R. O., HART, P. E. & STORK, D. E. (2001). Pattern classification, 2nd ed. John
Wiley, London.
GOODACRE, R., SHANN, B., GILBERT, R. J., TIMMINS, E. M., MCGOVERN, A. C., ALSBERG, B.
K., KELL, D. B. & LOGAN, N. A. (2000). Detection of the dipicolinic acid biomarker in
Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform
infrared spectroscopy. Anal. Chem. 72, 119-127.

HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. (2001). The elements of statistical learning: data
mining, inference and prediction. Springer-Verlag, Berlin.
KELL, D. B., DARBY, R. M. & DRAPER, J. (2001). Genomic computing: explanatory analysis
of plant expression profiling data using machine learning. Plant Physiol. 126, 943-951.

KELL, D. B. & KING, R. D. (2000). On the optimization of classes for the assignment of
unidentified reading frames in functional genomics programmes: the need for machine
learning. Trends Biotechnol. 18, 93-98.

KOZA, J. R. (1992). Genetic programming: on the programming of computers by means
of natural selection. MIT Press, Cambridge, Mass.
LANGDON, W. B. (1998). Genetic programming and data structures: genetic programming
+ data structures = automatic programming! Kluwer, Boston.
MICHALEWICZ, Z. & FOGEL, D. B. (2000). How to solve it: modern heuristics. Springer-
Verlag, Heidelberg.

	Class assignment from multivariate data
	Further Reading

