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GENOMIC COMPUTING: A POTENTIAL SOLUTION TO THE DATA MINING 
AND PREDICTIVE MODELLING CHALLENGE TODAY ? 
  
Douglas Kell 

The post-genomic era is generating such torrents of data that researchers now face the 
question of how to build a working data-flood defence system. Existing software is just 
not coping and the problem is to find new ways of extracting knowledge from all these 
data. Genomic computing is a new and valuable strategy for analysing very complex 
datasets of high dimensionality by evolving simple, intelligible rules with high 
explanatory power. 
 
Currently the majority of packages require the user to write a lot of code as part of their 
operation. Few packages have a user interface good enough to enable relative novices to 
use these techniques smoothly and easily. However genomic computing’s potential for 
ploughing rapidly through vast amounts of data to evolve simple, human readable 
solutions, would appear to make it the ideal approach. The reason for its lack of wider 
recognition probably stems from the fact that the bulk of the real expertise still resides in 
the form of ‘hair shirt’ programs within university departments. Until the mainstream 
software vendors become fluent in this branch of computer science, the market is still 
open to any resourceful software development group. The Welsh software company, Aber 
Genomic Computing, has now made available a genomic computing package (gmax-bio) 
that is designed to address data mining and predictive modelling problems encountered in 
the life sciences and elsewhere. 
 
The reason data analysis is becoming ever more complex is that it has to deal with large 
numbers of data objects, each represented by tens, hundreds, or thousands of variables, as 
in DNA microarray analysis. The combinatorial explosion of solutions to be evaluated 
can thwart conventional attempts at empirical interpretation. 
 
Consider a predictive model with only 100 variables (e.g. levels of metabolite, antigen, 
gene expression etc). The simple problem of deciding whether or not (a simple ‘yes’ or 
‘no’) to use each of these 100 variables gives 2100 possibilities, which is about 1030 . 
Considering that the lifetime of the universe is ‘only’ ~ 1017 seconds, to find a solution for 
this comparatively trivial problem by random search would take more than an eternity. 
Fortunately nature has shown us a way – a process that is incredibly simple and yet 
phenomenally powerful – natural selection. Computing has an equivalent approach to 
solving these complex problems: Evolutionary Computing or the evolution of computer 
programs by methods of Darwinian selection.  
 



 

 

All datasets can be viewed as a spreadsheet or database table (Fig. 1), in which different 
samples (individuals, objects) appear in different rows, while the values or classes of 
variables (properties) associated with them appear in different columns. It is frequently 
the case that we wish to account for some properties in terms of combinations of some of 
the other variables. In data mining, the ones we want to account for are usually termed the 
dependent variables or y-variables or y-data while the ones contributing to the 
explanation are usually called the explanatory variables or x-variables or x-data. 
 
In a pharmaceutical drug discovery problem, the x-variables could be structural and/or 
physico-chemical attributes of candidate drug molecules and the y-variable the potency or 
binding efficiency of the molecule in an appropriate assay. In predictive medicine, the x-
variables could be relevant or surrogate metabolic properties, or markers, and the y-
variable the existence or severity of some disease state. In all cases, the aim of predictive 
modelling is to find those x-variables which, when combined in a stated way (to make a 
mathematical model), best account for the values or properties of the y-variables in a 
statistically robust fashion (so that the models produce correct predictions for other 
examples on which they are subsequently tested). 
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Variables……. 
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  XVar1 Xvar2 Xvar3…
. 
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(Samples) Obj2  

Going Obj3  

Down  Obj4  

In Obj5  

Different  Obj6  

Rows Obj7  
Fig 1. Structure of a database table or spreadsheet matrix. 
 

Class assignment from multivariate data 
 
This problem can be set out equivalently in the form given in Fig. 2. In this formulation, 
it can be restated as a ‘class assignment problem’, represented in general terms by: (1) a 
set of inputs, whose choice one might hope to optimise; (2) a set of output classes into 
which one might wish to assign a sample whose measured properties are to be used as the 
inputs; and (3) a set of mathematical relationships (functions) which use the differential 



 

 

data in the input patterns to establish the correct functional class assignments on the basis 
of those input patterns. Data mining is designed to optimise (1) and (3), given (2). 
 
Data mining is thus, in essence, a problem in pattern classification. Indeed, there are 
many areas of science in which pattern classification methods developed in statistics and 
artificial intelligence are important, and where the arrangement is exactly as shown in 
Fig. 2. The goal of pattern recognition is to classify objects of interest that possess 
particular attributes into a number of categories or classes. Functional genomics, 
predictive medicine, and other extremely important problems are therefore to be seen, in 
part, as problems of pattern recognition.  
 
Pattern classification methods of this type can be grouped into 2 different categories, 
called ‘unsupervised’ and ‘supervised’ learning methods. If a set of multivariate 
observations is given with the aim of establishing the existence of classes in the input 
data, with no knowledge or care for an imposed class structure (i.e. we use only the x-
data as defined above), we will be using clustering or unsupervised learning. 
Alternatively, there may be a defined class structure (based on knowledge for at least 
some samples of the y-data) and the need is then to establish rules by which new objects 
are correctly classified into one or more of the existing classes. This supervised learning 
is often referred to as ‘discrimination’ or ‘multivariate calibration’ in the statistical 
literature, as the class structure is produced on the basis of known, correctly classified 
objects and their attendant properties.  
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Figure 2.  
By recasting the spreadsheet 
formulation of the data mining 
problem, it can be transformed 
into an equivalent “class 
assignment” problem, and thus 
it becomes an issue of pattern 
recognition.  
 

 



 

 

 
 
Because the input data may have hundreds or thousands of variables, getting the correct 
classification is only part of the answer. We also require our solutions to be intelligible, 
so simple, explanatory rules are greatly favoured over complex, incomprehensible ones. 
 
Models are made with explanatory variables (and not objects) as the inputs. Historically, 
datasets might have had many objects and few variables, but now the opposite is true. 
There are many cases in which we can have a large number of variables on both large and 
small numbers of objects. The interesting fact is that the number of variables and not the 
number of objects dominates the mathematical difficulty of a modelling problem.  
 
Imagine that we have one dependent variable in a diagnostics problem (this person 
does/doesn’t have a certain disease such as cancer) but that there are N explanatory 
variables (levels of metabolites, antigens, gene expression profiles, etc). 
As discussed above, even if each variable (of the N) can take only 2 values – present or 
absent – the number of models one can make to try and solve the problem is 2N. If each 
variable could take 10 values then for 100 variables there are 10100 models. In general, 
obviously, the complexity of a system with N variables present at M levels scale as MN 
and if N >> M then MN is always likely to be enormously greater than NM. Combinatorial 
difficulty scales exponentially (or worse) with the number of explanatory variables. (Gene 
microarrays, for examply, normally have several thousand variables….) The 
combinatorial difficulty scales only linearly with the number of objects. It is the 
experimental ability to acquire huge numbers of explanatory variables that opens up the 
opportunity for serious and efficient data mining (or, equivalently, provides competitive 
advantage to those who can deal with them and competitive disadvantage to those who 
cannot). 
 
The ideal data mining system has seven key features:  
 

• Automatically identifies the key components and patterns in huge datasets 
• Gives the solution within minutes 
• The solution is simple, intelligible, robust, and maps directly into the measured 

input variables 
• Has the ability to provide several alternative solutions to a problem 
• Fully transparent, easy to follow solutions – no black box operations or answers 
• Able to incorporate prior knowledge from the database 
• Produces readily exportable solutions to be applied to new datasets 

 
Systems such as neural networks can address only part of this profile – they are flexible, 
non-linear fitting systems – but they are rather poor at explaining how they arrive at their 
answer since every input tends to contribute. Only rule-based systems can give simple, 
effective, and intelligible explanations, but traditional rule-based systems (deterministic, 
tree-based classifiers), in which each variable is selected in the order of its apparent 
individual importance, often perform poorly on complex datasets.  



 

 

 
The ideal method would evolve rules based on an optimal selection of the variables and 
an optimal selection of the form of the interactions between them, to produce a rule – 
exactly equivalent to a little computer program – in which the selected variables are 
applied at the input, the rule followed, and the correct classification arrived at the output. 
The generalised methods of data mining known as Genetic Programming or Genomic 
Computing do exactly this. 
 
Genomic computing is a new development within the more general field known as 
evolutionary computation, and as such shares its underlying principles (Fig 3).  

 
 
Fig 3. The basic strategy of evolutionary computing 
 
 
Its operation is based on the Darwinian ideas of ‘survival of the fittest’ and natural 
selection.  In evolutionary computing, we have a population of individual computer 
programs or algorithms whose output is a potential solution to a problem (typically a 
combinatorial optimisation problem). The process begins with a fitness function and a set 
of user-selectable mathematical and logical operators. A first generation of as many as a 
thousand models is randomly generated using the operators available, usually in the form 
of a tree; the ‘fitness’ of each model is evaluated using a training data set.  These outputs 
are ranked according to their ‘fitness’, and the better performing individuals retained. 



 

 

Some of these individuals are then modified, by mutation (‘asexually’) or by recombining 
parts of them from more than one parent (‘sexually’), and the process of generating an 
output, evaluating their fitness and mutating and selecting at each generation is continued 
until an individual evolves with the ability to solve the problem or reaches a stopping 
criterion.  
 

Although there can be specific operations that are not known to occur in the natural 
world, there is an equivalence or mapping between biological evolution and evolutionary 
computing (Fig 4). 

 

Property Biological Evolution Evolutionary computation 

Major unit of selection Individual organism Individual string, tree, 
algorithm or computer program 

 

Fitness Likelihood of surviving long 
enough to produce offspring 

Relative closeness to desired 
property and hence propensity 
to be chosen for next generation 

 

Mutation Change of the nucleotide at a 
certain position 

Change of an individual string, 
tree, algorithm or computer 
program by changing the 
encoding at a certain location 

 

Recombination Mating between organisms 
leading to exchange of alleles 
via recombination 

Change of an individual string, 
tree, algorithm or computer 
program at a certain location by 
taking segments of encoding 
from (usually) 2 or more 
‘parents’ and recombining them 
to create a new string, tree, 
algorithm or program 

Fig 4.  Some relationships between biological evolution and evolutionary computing. 

 

Although there are many approaches and algorithms within the evolutionary computing 
field, most (such as genetic algorithms, evolutionary strategies, evolutionary 
programming) assume knowledge of the basic equation and variables to be used, and 
simply seek to parameterise them optimally. However, an important alternative approach, 
popularised by John Koza as Genetic Programming, seeks not only to extract the most 
important subset of the variables but also to derive the functional form of the relationship 



 

 

between them that best accounts for the problem at hand. This strategy can automatically 
and inductively derive new knowledge in the form of simple, explanatory rules, and is 
implemented in Genomic Computing. Importantly, it is particularly good at selecting only 
a small subset of the available variables; this both makes the searching a lot easier and 
ensures that the rules which are generated are simple and intelligible. 
 
All output functions can be discussed in terms of classification or quantification. 
However, although there are technical reasons why one might treat them differently, 
quantification is really just a special form of classification (‘this sample is in the class 
whose values lie in the range x to (x+δx)’). Problems that have exploited these rule-
generating methods of evolutionary computing include Spectroscopy, Searching 
biological sequences for important motifs, DNA microarray analysis for functional 
genomics and metabolic profiling.  
 

The gmax-bio� genomic computing package, now available from Aber Genomic 
Computing, addresses data mining and predictive modelling in the life sciences, other 
natural sciences and elsewhere. Fig 5 shows a simple rule which the software has evolved 
to solve a bacterial biomarker identification problem. Gmax-bio� has identified a simple 
rule, which uses just 3 variables out of 150 and which correctly classifies all examples in 
a dataset from bacterial physiology. 

 
Professor Douglas B. Kell is at the Institute of Biological Sciences, University of Wales, 
Aberystwyth, SY23 3DD. dbk@aber.ac.uk   http://qbab.aber.ac.uk/ 
 
For further information on genomic computing, organizations, and services mentioned in 
this article, please visit http://enquiries.scientific-computing.com 

 



 

 

 
 

Fig 5. A screenshot showing how gmax-bio identified a simple rule using just 2 variables 
(out of 150) to correctly classify all entries in a dataset from bacterial physiology. The 
rule is read ‘up’ the tree from right to left and is (output = V105*1/V114). 
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