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Abstract 
Because they mainly do not involve chemical changes, membrane transporters have been rather a 

Cinderella subject in the biotechnology of small molecule production. We argue here that this has been a 

serious oversight: influx transporters contribute significantly to the flux towards product while efflux 

transporters have arguably an even more important role in ensuring the accumulation of product in 

fermentors in the much greater extracellular space. Programmes for improving biotechnological processes 

might therefore give greater consideration to transporters than may have been commonplace. Strategies 

for identifying important transporters include expression profiling, genome-wide knockout studies, stress-

based selection and the use of inhibitors. In addition, modern methods of directed evolution and synthetic 

biology, especially those effecting changes in energy coupling, offer huge opportunities for increasing the 

flux towards extracellular product formation via transporter engineering. 
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Introduction 
In any complex biochemical network, all steps contribute to the control of the flux through a particular 

pathway or even that catalysed by a specific enzyme (Heinrich and Rapoport, 1974, Kacser and Burns, 

1973), but some steps exert a greater degree of control on the fluxes of interest than do others. While all 

steps do contribute to flux control, strategies for deciding how best to increase such fluxes (Kell and 

Westerhoff, 1986a, Kell and Westerhoff, 1986b) are therefore necessarily wise to pay special attention to 

these particular steps. In many cases of interest to the fermentation, biocatalysis and biotransformation 

communities, and especially for those systems involving xenobiotics, these steps include the cellular 

transporters that catalyse the influx of substrates and the efflux of products (and of any other potentially 

cytotoxic compounds). In other words, these steps are typically significantly rate-controlling. A quantitative 

measure of the extent of this rate or flux control is encapsulated in the flux-control coefficient (Box 1). With 

a relative density barely greater than 1, even at 100 g.L-1 wet cell concentration (so that less than 10% of 

the total volume is intracellular), most of the volume of a fermentor is extracellular; thus to maximise 

volumetric productivity it will be desirable to ensure that cells excrete the products of interest (Krämer, 

1994, Van Dyk, 2008). 

But doesn’t stuff just diffuse into and out of cells unaided? 
There is a surprisingly widespread view in the pharmaceutical industry, starting with the relevant textbooks 

(e.g. (Gabrielsson and Hjorth, 2012, Rowland and Tozer, 2011)) and promulgated by some influential 

reviews (e.g. (Seeman, 1972)), that the main means by which most xenobiotics of interest (i.e. drugs) enter 

(and presumably exit from) biological cells is simply by diffusing passively across the lipid bilayer portion of 

cell membranes down their concentration gradients and according to their lipophilicity (log P or log D – see 

Glossary). If this were the case, we should have little to say in this review, but it is not (Dobson et al., 2009a, 

Dobson and Kell, 2008, Dobson et al., 2009b, Kell, 2013, Kell, 2015, Kell and Dobson, 2009, Kell et al., 2013, 

Kell et al., 2011, Kell and Goodacre, 2014, Kell and Oliver, 2014, Lanthaler et al., 2011); the main means by 

which small molecules cross biological cell membranes is via genetically encoded, proteinaceous 

transporter molecules, and this gives the cells, and the biotechnologist, important means by which to 

control and influence the process. The first thing to know, then, is qualitative (Kell, 2006, Kell and Knowles, 

2006): which small molecules use which transporters? While we shall mainly consider microbes and 

fermentations, the principles we enunciate are general, and we recognise their role in the metabolic 

engineering of plants (Schroeder et al., 2013), where especially vacuolar (Martinoia et al., 2012), 

peroxisomal (Linka and Theodoulou, 2013), chloroplast (Rolland et al., 2012) and root (Zelazny and Vert, 

2014) transporters can exert significant flux control. Fig 1 summarises this review in the form of a mind 

map (Buzan, 2002). 

Classical strategies for detecting the roles of particular cell membrane 

transporters 
Originally, the determination of which transporters accounted for the uptake of particular nutrients (or 

other compounds) used classical genetic techniques, often obtaining mutants in transporter genes by 

selecting for resistance to cytotoxic structural analogues of those nutrients. Thus canavanine (Fig 2) is a 

structural analogue of arginine that can be taken up by cells, including those of baker’s yeast (Lanthaler et 

al., 2011) and humans (Swaffar et al., 1994), and is incorporated into proteins where it disrupts their 

function, thus proving cytotoxic (Grenson et al., 1966). Such cytotoxic molecules, that bear structural 

similarities to intermediary metabolites, are known as antimetabolites (Rhoads, 1955), and antimetabolite 

molecules such as analogues of folate, nucleobases and nucleosides (Fig 2) continue to play a major role in 
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cancer chemotherapy (e.g. (Parker, 2009, Tiwari, 2012)). In yeast the overwhelming bulk of canavanine 

uptake, and in mutants their resistance to it, is effected by the arginine transporter Can1p encoded by the 

gene can1 (Whelan et al., 1979). Strains lacking this gene function are (depending upon the precise metric) 

more than 100-fold more resistant to the antimetabolite than is the wild type (Lanthaler et al., 2011), and 

of course the gene encoding the arginine transporter is explicitly named after (its ability to encode 

resistance to) this antimetabolite. 

‘Influx’ and ‘efflux’ transporters 
 

More generally, assessing the contributions of membrane proteins to the tolerance of stresses induced by 

fermentation or incubation conditions is also one important experimental approach to detecting ‘efflux’ 

transporters (e.g. (Kieboom et al., 1998a) and see later), a comment that leads us to note that 

thermodynamic principles mean that any transporter is theoretically reversible in its direction of operation 

(although for kinetic reasons connected with the Haldane relationship it may not appear to be). Thus 

‘influx’ and ‘efflux’ transporters refer to their normal direction of operation in vivo, and this is determined 

both by the thermodynamics and the mechanistic details of any energy coupling involved (Fig 3). We might 

also comment that while our chief interest here is in identifying cases where transporters exert significant 

flux control, an increasing number of 3D protein structures for transporters are becoming available (e.g. 

(Booth et al., 2007, Forrest et al., 2011, Johnson et al., 2012)), and this is beginning to allow calculation of 

their molecular mechanisms from first principles, based on molecular dynamics (e.g. (Furuta et al., 2014, 

Heinzelmann and Kuyucak, 2014, Khalili-Araghi et al., 2009, Koldsø et al., 2013, Wang et al., 2010)). It will 

also, in time, assist in their rational redesign. 

Genomics approaches to transporter identification 
The more modern approach to detecting transporters, especially for systems biology-based strain 

improvement (Fig 4) is, of course, through genome sequencing (as in baker’s yeast (Goffeau et al., 1996, 

Oliver et al., 1992)), where particular sequence motifs can more or less reliably identify transporters, even 

if not always their substrates (Oliver, 1996). The next step is to incorporate such transporters into genome-

scale metabolic network reconstructions (e.g. (Feist et al., 2009, Lee et al., 2011, Palsson, 2006, Park et al., 

2008, Sahoo et al., 2014, Thiele and Palsson, 2010a)). While this is most effectively done by domain experts 

(Thiele and Palsson, 2010b), recent advances in methods such as text mining for systems biology  

(Ananiadou et al., 2006, Ananiadou et al., 2010, Ananiadou et al., 2014), and other strategies (Büchel et al., 

2013, Swainston et al., 2011), mean that it is becoming increasingly amenable to automation. (A list of 

‘predictive genome-scale metabolic network reconstructions’ is maintained at 

http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms.) Significantly, almost all free-living 

organisms so analysed are known to have genes encoding hundreds of transporters (Kell et al., 2011). 

Indeed, approximately one third of the reactions in the heavily curated yeast (Herrgård et al., 2008) and 

human (Swainston et al., 2013, Thiele et al., 2013) metabolic networks are represented by transporter 

reactions. Some useful online databases focussing on transporters are given in Table 1.   

’Unexpected’ transporters for the uptake of uncharged (nonelectrolyte) 

nutrients and other small molecules 

Based on the pioneering studies of Overton (Overton, 1899) (for a more recent version see (Lieb and Stein, 

1969)), who showed a close correlation between the logarithm of the rate of cellular uptake of non-

electrolytes and their log P values, it had been widely assumed that small, uncharged molecules could 

permeate freely across the bilayer portion of biological membranes (even though it is well known that 

http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms
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glucose and other sugars do not (Madhavan et al., 2012)). However, it is now recognised that this is not at 

all the case, with transporters having been found (and required) for the uptake of many small, uncharged 

substances such as alkanes (Grant et al., 2014), ammonia (NH3) (Lamoureux et al., 2010, Nakhoul et al., 

2010, Wagner et al., 2011, Wang et al., 2013, Wang et al., 2010, Weiner and Hamm, 2007, Weiner and 

Verlander, 2011), carbon dioxide (CO2) (Boron, 2010, Boron et al., 2011, Endeward et al., 2006, Kai and 

Kaldenhoff, 2014, Kaldenhoff et al., 2014, Maurel et al., 2008), ethanolamine (Penrod et al., 2004, 

Stojiljkovic et al., 1995), fatty acids (van den Berg, 2005, van den Berg et al., 2004), glycerol (Boury-Jamot et 

al., 2006, Fujimoto et al., 2006, Hara-Chikuma and Verkman, 2005, Ishibashi et al., 2011, Ishii et al., 2011, 

Morishita et al., 2004, Ohgusu et al., 2008), hydrogen peroxide (H2O2) (Bienert and Chaumont, 2014), 

hydroxyurea (Walker et al., 2011), urea (Bagnasco, 2005, Beckers et al., 2004, Fröhlich et al., 2004, Levin et 

al., 2009, Shayakul et al., 2013, Stewart, 2011, Strugatsky et al., 2013), and even water (Agre et al., 2002, 

Benga, 2012b, Day et al., 2013, Ishibashi et al., 2011, Öberg and Hedfalk, 2013). The last was a finding for 

which Peter Agre received the 2003 Nobel Prize (see (Agre, 2004) and (Benga, 2012a)). Given the catholic 

nature of aquaporin channels, it is not unreasonable to propose that they will also be found to transport 

NO and dioxygen too, which latter would potentially be of considerable biotechnological interest. 

It has long been known that acetate enters cells mainly in its uncharged form (i.e. as acetic acid). This may 

be determined by osmotic swelling experiments (Kell et al., 1981), but these kinds of experiments do not 

say anything about the mechanism by which it enters (bilayer diffusion or transporter). However, it is now 

known in the important amino acid producer C. glutamicum that even the uptake of electroneutral acetic 

acid involves the use of a specific carrier (Jolkver et al., 2009). 

Ethanol is another small nonelectrolyte of much biotechnological interest, and it is desirable to increase its 

export from producer cells (Dunlop et al., 2011). It is not yet quite certain which transporters are 

responsible for this, but the ABC transporter (Sá-Correia et al., 2009) Pdr18 (Teixeira et al., 2012) and the 

glyceroaquaporin Fps1 (Teixeira et al., 2009) possess properties that might be consistent with such a role 

(albeit other mechanisms may also be involved (Dikicioglu et al., 2014)). While we later discuss in more 

detail export (efflux) transporters of molecules not normally produced by the host, this section leads 

naturally to a discussion of those that are known to be involved in the secretion of metabolites that the 

host naturally produces. 

Some useful case histories from classical fermentations 
A notable example of the role of transporters in improving the yield of an important fermentation product 

(more than 2M tonnes p.a. (Sano, 2009)) comes from the history of the glutamate fermentation carried out 

using various coryneform bacteria, notably Corynebacterium glutamicum (Eggeling and Sahm, 2003, Sano, 

2009, Tryfona and Bustard, 2004).  Following the initial discovery of the fermentative production of 

glutamate (Kinoshita et al., 1957), various empirical findings in the 1960s and 1970s (Hirasawa et al., 2012, 

Vertès et al., 2013) showed that a variety of treatments, involving biotin limitation, or the addition of weak 

surfactants such as acetylated corn oil or Tween, or the use of certain auxotrophs, would enhance the 

efflux of glutamate in producer strains. Soon enough, however, it was recognised that this was not due to a 

general membrane-leakiness, because it was very selective for glutamate (and was even against a 

glutamate concentration gradient), but that it was due to a change in membrane tension that activated a 

mechanosensitive glutamate efflux pump encoded by a gene called NCgl1221 (a homologue of the E. coli 

yggB gene, now known as mscS, the mechanosensitive channel of small conductance) (Hashimoto et al., 

2012, Hashimoto et al., 2010, Nakamura et al., 2007, Nakayama et al., 2012, Yamashita et al., 2013, Yao et 

al., 2009). Similar efflux pumps are now known to be involved in the export of product during a variety of 

other amino acid fermentations (Eggeling and Sahm, 2003, Mitsuhashi, 2014), such as those for lysine 
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(Bellmann et al., 2001, Bröer and Krämer, 1991a, Bröer and Krämer, 1991b, Kelle et al., 1996, Vrljic et al., 

1996), isoleucine (Hermann and Krämer, 1996, Xie et al., 2012) threonine (Lee et al., 2007), methionine 

(Trötschel et al., 2005) and others  (Van Dyk, 2008).  

 

Why would a cell export its metabolites? 

One may wonder (from an evolutionary perspective) why bacteria see fit to excrete important nutrients or 

metabolites, often at fast rates. While other more specific roles may be invoked (Van Dyk et al., 2004), 

Morbach and Krämer (Morbach and Krämer, 2002) rehearse what seems like the most persuasive general 

explanation, to the effect that soil bacteria (such as corynebacteria) that have experienced drought and are 

hit by a raindrop (a common stress (Ouyang and Li, 2013)) experience truly massive osmotic stresses or 

turgour pressures, that can only realistically be dealt with by a virtually instantaneous excretion of internal 

osmolytes catalysed by a mechanically sensitive, membrane-triggered osmoregulatory process (these also 

occur in plants (Kell and Glaser, 1993)). Such a role for the glutamate exporter (and one may suppose other 

such exporters) is consistent with the similar role of its E. coli homologue (Booth and Blount, 2012, Booth et 

al., 2007, Levina et al., 1999), and indeed since their initial discovery in bacteria (Martinac et al., 1987) a 

considerable number of such mechanosensitive exporters – whose role is indeed seen as being involved in 

regulating turgour pressure within acceptable bounds (Berrier et al., 1992)  – are now known (Booth, 2014, 

Booth et al., 2007, Haswell et al., 2011), including seven (in two families) in E. coli (Pivetti et al., 2003). 

Citric acid production 

In a similar vein, the large-scale (well over 1M tonnes p.a. (Soccol et al., 2006)) fermentative production of 

citric acid by the fungus Aspergillus niger involves active export of the product from the producer strain 

using a proton symporting transporter (García and Torres, 2011, Netik et al., 1997); the same is true for 

citric acid production in yeasts (Anastassiadis and Rehm, 2005, Anastassiadis and Rehm, 2006). 

Biomass production 

In some fermentations, of course, the biomass itself is the product, and it is of interest to know what role 

transporters may play in controlling growth (rate) more generally. In one study, using a pHauxostat to 

select strains of the (already) fast-growing yeast Kluyveromyces marxianus for even faster growth, 

Westerhoff and colleagues (Groeneveld et al., 2009) evolved one that could grow up to 30% faster than the 

starting strain. This increase in growth rate, with a doubling time of 52 min (apparently the fastest reported 

for a eukaryote) was accompanied by an increase in surface area of some 40% at essentially constant 

volume, implying that membrane processes (such as substrate uptake) were most limiting to growth rate. 

Indeed 80% of the growth rate increase was ascribed to membrane processes (Groeneveld et al., 2009). 

Continuous selection is also an excellent strategy for selecting strains resistance to toxins such as solvents 

(Brown and Oliver, 1982, Lane et al., 1999), especially in turbidostats (Markx et al., 1991) in which growth 

rate can be measured online (Davey et al., 1996). 

In this context, is noteworthy that Pir et al. (Pir et al., 2012), in a high-throughput screen of heterozygous 

deletants of diploid Saccharomyces cerevisiae, identified 145 transporter-encoding genes that exerted 

significant control over growth rate (so-called high-flux-control or HFC genes) in turbidostat culture.  Ninety 

of these genes had a haploinsufficient (HI) phenotype, that is they reduced the maximum growth rate of 

yeast when present in only one copy in a diploid, while the remainder had a haploproficient (HP) 

phenotype, increasing the growth rate when in the heterozygous state. These HFC genes included those 

encoding plasma membrane transporters, but also genes specifying proteins involved in transporting ions 

and metabolites into sub-cellular organelles, especially the mitochondria and the vacuole. Amongst the HI 
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genes were those encoding plasma membrane transporters of metals (particularly iron and zinc), organic 

acids (including amino acids), ammonium, phosphate, sulphate, vitamins, sugars (including glucose) and 

sugar alcohols, and also the aquaporin gene, AQY1. This group of HI genes also includes 4 encoding drug 

efflux pumps. Given the discussion of efflux transporters, above, it would seem sensible for 

biotechnologists and synthetic biologists to pay attention not only to transporters of important nutrients 

but also those responsible for the efflux of potentially toxic products of metabolism, such as ethanol and 

other biofuels. 

Transcriptome-based strategies for determining transporter-mediated activities 
Virtually since its inception (Lockhart et al., 1996), it has been clear that genome-wide expression profiling 

at the level of the transcriptome provides one excellent strategy for identifying which gene products may 

be pertinent for particular biological processes. This applies equally to the role of transporters in 

biotechnology. Thus the availability of the Penicillium chrysogenum genome allowed van den Berg and 

colleagues (van den Berg et al., 2008) to compare the expression profiles of low- and high-producing 

strains, finding a considerable enhancement in transporter expression in the high-producers, again implying 

strongly that enhanced transporter expression could drive increased fluxes. While in general terms the 

expression of an individual gene does not necessarily correlate with the productivity of a fermentation, and 

certainly not over a wide range because of changes in the distribution of flux control (box 1), genome-wide 

trawls relating expression to activity can be highly beneficial, especially for metabolic networks. This is 

because metabolic transformations are subject to strict stoichiometric controls (no ‘alchemy’ is allowed). 

Flux balance analysis 
While the counsel of perfection in genome-scale metabolic modelling includes mechanistic details of every 

enzymatic step, that can then be turned into an ordinary differential equation (ODE) model that may be 

used to model or predict all the fluxes and concentrations of interest, we very rarely have sufficient of the 

kinetic parameters to do this (Almquist et al., 2014, Palsson, 2006, Smallbone and Mendes, 2013, 

Smallbone et al., 2013, Smallbone et al., 2010). However, the stoichiometric constraints alluded to above 

mean that the methods of flux balance analysis (Çakır et al., 2007, Curran et al., 2012, Gianchandani et al., 

2010, Lakshmanan et al., 2014, Lee et al., 2006, Orth et al., 2010, Palsson, 2011, Palsson, 2015, Raman and 

Chandra, 2009, Smallbone and Simeonidis, 2008) (Box 2) may be used to attempt to predict the fluxes of 

interest.  As part of a strategy to minimise the number of possible flux patterns that can explain the 

observable data (Smallbone and Simeonidis, 2008, Smallbone et al., 2007), we have found (Lee et al., 2012) 

that absolute transcriptomics provides a valuable surrogate for the flux through each step. 

Fig 5 shows the distribution of expression levels  for transporter and non-transporter genes determined in a 

recent study (Lee et al., 2012) of a yeast strain growing at 85% of its maximum growth rate (with the 

transporter nature of the genes as assessed by the present version of the yeast metabolic network); as 

judged by their median levels, as well as by 5000 permutations, there is a significantly lower level of 

expression (p<0.0004) of transporter genes (19.3 transcripts per cell) than of non-transporter genes (31.7). 

This is not inconsistent with the fact that as 2D structures cellular membranes possess a more limited 

amount of real estate for incorporating transporters and other membrane proteins than do the 3D 

intracellular spaces (Molenaar et al., 2009, Zhuang et al., 2011). The ‘surfaceome’, including SLCs, is also the 

most variable between different and differentiated cells (da Cunha et al., 2009). 
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Detecting relevant uptake transporter genes through genome-wide knockout 

analyses 
Although individual genes were classically and typically discovered individually (see above), it is now 

possible to extend the analysis of transporter roles to the genomic level. The sole requirements are for a 

suitable variation in the extent of expression of different enzymes in different strains, most conveniently 

via single gene knockouts, and a means of selecting the phenotype of interest (Bochner, 2009) (e.g. growth 

selection) (Fig 6). Thus in the case of yeast, we were able (Lanthaler et al., 2011) to exploit the barcoded 

yeast deletion mutant collection (Giaever et al., 2002) to identify transporters for 18 out of 26 drugs tested. 

Most had multiple transporters, and for the eight where we could not detect which transporters were used, 

it is considered likely that this is because there were simply too many and removing just one did not 

provide sufficient selectivity. 

That study (Lanthaler et al., 2011) used haploid strains (see Box 1) and a purpose-designed microarray chip, 

but nowadays it is recognised that deep sequencing is much more effective and reliable (Smith et al., 2009). 

Thus, in an exciting development, Superti-Furga and colleagues have used a near-haploid human cell line 

(KBM7) with a retroviral gene trap (Bürckstümmer et al., 2013, Carette et al., 2011) to detect that just a 

single transporter (called SLC35F2) is  responsible for the uptake of the cytotoxic anticancer drug candidate 

sepantronium bromide (also known as YM155) into these cells (Winter et al., 2014). Clearly these kinds of 

methods may be applied to any system for which cells that have or have not taken up a particular drug may 

be discriminated and separated (e.g. by cell sorting (Davey and Kell, 1996)) and then identified genetically. 

It is worth stressing that this kind of experiment would not ‘work’, i.e. return any hits, if bilayer diffusion 

were the dominant mechanism of transmembrane transport. Put another way, it would indeed seem from 

such experiments that for drug transport into cells, phospholipid bilayer diffusion is negligible (Kell, 2015, 

Kell and Oliver, 2014). 

Although in theory these kinds of knockout strategies could also be used to select strains with knockouts in 

efflux transporters (if such exist), via their greater sensitivity to a compound, positive selections (for 

resistance) are always more reliable. While it has already been noted the dilution of just one of the two 

copies of a gene is sufficient to produce a significant reduction in growth rate (Pir et al., 2012), it was also 

found that the removal of two genes, PDR10 and PDR12, encoding ABC multidrug transporters actually 

enhanced growth rate. Thus further investigation of the substrate preferences of these apparently 

promiscuous efflux pumps might pay dividends, in both biotechnology and drug design. 

Genes for efflux transporters  
As well as the genes for efflux transporters described above, there is of course considerable interest in the 

recognition that a chief cause of antibiotic resistance, a huge continuing (Andersson and Hughes, 2010, 

D'Costa et al., 2011) and present problem (Laxminarayan et al., 2013), is the ability of microbes to pump 

out such molecules using ‘multidrug resistance’) (MDR) efflux transporters (e.g. (Fluman and Bibi, 2009, 

Grkovic et al., 2002, Li and Nikaido, 2009, Mazurkiewicz et al., 2005, Nasie et al., 2012, Nies et al., 2012, 

Nikaido, 2009, Nikaido and Pagès, 2012, Poole, 2012, Prasad and Rawal, 2014)); they are often of wide 

specificity e.g. for lipophilic compounds, and an increasing number of structures are becoming known (Dos 

Santos et al., 2014, Du et al., 2014, Nakashima et al., 2013, Tanaka et al., 2013). Efflux transporters are of 

wider significance in medicine because by removing toxins they lower the intracellular concentrations. This 

can be good in the case of genuine toxicants (e.g. (Wen et al., 2014)) but less so when they encode 

phenotypic resistance, e.g. to anticancer agents (e.g. (Callaghan et al., 2014, Ecker and Chiba, 2009, Nobili 

et al., 2012, Robey et al., 2007)). However, in biotechnology it is both desirable and possible to select for 
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strains that are particularly resistant to stresses, including stresses from organic solvents (Segura et al., 

2012) and from high intra- and/or extra-cellular product titres.  

Indeed, it is precisely this kind of positive selection that can be used to our advantage in biotechnology. 

Thus by seeking tolerance to added compounds, efflux transporters have been found for alkanes (Ankarloo 

et al., 2010, Chen et al., 2013, Doshi et al., 2013, Fernandes et al., 2003, Foo and Leong, 2013, Ling et al., 

2013, Nishida et al., 2013, Torres et al., 2011, Tsukagoshi and Aono, 2000)(and see (Grant et al., 2014)), 

arenes (Fillet et al., 2012, Heipieper et al., 2007, Isken and de Bont, 1996, Kieboom et al., 1998b, Sun et al., 

2011), short-chain alcohols (Fisher et al., 2014, Foo et al., 2014), terpenoids (Foo and Leong, 2013, Jasiński 

et al., 2001, Yazaki, 2006), short-chain fatty acids (Gimenez et al., 2003, Islam et al., 2008, Moschen et al., 

2012, Sá-Pessoa et al., 2013) and long-chain fatty acids (Khnykin et al., 2011, Lin and Khnykin, 2014, Villalba 

and Alvarez, 2014, Wu et al., 2006a, Wu et al., 2006b), while those for isoprene and isoprenoids are eagerly 

sought (Lohr et al., 2012). Unusual efflux transporters produced by microbes for specific purposes include 

one for FAD in Shewanella oneidensis (Kotloski and Gralnick, 2013), while virtually all free-living aerobes 

must and do secrete siderophores to permit them to effect iron uptake (see e.g. (de Carvalho et al., 2011, 

Hider and Kong, 2010, Kell, 2009, Kell, 2010). 

Transporter-mediated osmotic stress engineering 
If cells are to accumulate soluble products to high titres, there will always be the danger of significant 

osmotic stresses (as well as lowered water activities (Bhaganna et al., 2010, Nicolaou et al., 2010)). While 

these osmotic stresses can be relieved by the synthesis of so-called compatible solutes (e.g. (Brown, 1978, 

Hohmann et al., 2007)) such as betaine, another strategy includes their intracellular accumulation via 

uptake transporters (e.g. (Csonka, 1989, Farwick et al., 1995, Kempf and Bremer, 1998)). Corynebacterium 

glutamicum provides an excellent example (Ochrombel et al., 2011, Weinand et al., 2007).  Note too that 

inducing the synthesis of such compatible solutes can also be of value in the production of soluble and 

functional recombinant proteins (Fahnert, 2004, Fahnert, 2012, Prasad et al., 2011). 

Transporter engineering 
Having established which transporters are important for the problem of interest, it is possible to improve 

them, typically by the methods of directed evolution (e.g. (Currin et al., 2015, Kell, 2012, Turner, 2009)). 

These involve varying the primary sequence of the protein, and selecting those with improved properties, 

in an iterative manner. The variation in primary sequence is done by various forms of mutation and 

recombination, nowadays including the methods of synthetic biology in which we control rather precisely 

which sequences are made by creating them at the DNA level by chemical synthesis (e.g. (Cameron et al., 

2014, Church et al., 2014, Currin et al., 2014, Currin et al., 2015, Nielsen et al., 2014, Swainston et al., 2014, 

Way et al., 2014)). The question then arises as to what kind of objective function we might seek. This is 

most easily considered with regard to Fig 3. Thus we might wish to turn a concentrative uptake transporter 

into one that merely catalyses equilibration (i.e. efflux of product formed intracellularly). There is ample 

precedent for this loss of energy coupling, e.g. in mutants of the normally concentrative lac permease of E. 

coli (Brooker et al., 1989, Wilson et al., 1970) or of the mammalian intestinal di- and tripeptide transporter 

PepT1 (SLC15a1) (Meredith, 2009), and – for influx of substances normally pumped out – of drug uptake via 

uncoupled variants of the LmrP ‘efflux’ transporter in lactobacilli (Mazurkiewicz et al., 2004a, Mazurkiewicz 

et al., 2005, Mazurkiewicz et al., 2004b, Schaedler and van Veen, 2010). By contrast, Tirosh et al. were able 

(Tirosh et al., 2012) to change a multidrug monovalent ‘efflux’ antiporter into one that used divalent ions. 

Thus there seems little doubt that we should be as able to change the specificity (Madej et al., 2013), 

promiscuity (Khersonsky and Tawfik, 2010) or detailed molecular transport pathways (Yao et al., 2013) of 

transporters by directed evolution as easily (Daley et al., 2005) as we can do so for other proteins 
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(Chakraborty et al., 2013). Indeed, evidence for the selection of efflux transporters during the development 

of various amino acid fermentations was given above. Papers showing a gain-of-function of NCgl1221 to 

constitutive glutamate excretion (Becker et al., 2013, Nakayama et al., 2012) are of especial note, indicating 

the potential for transporter engineering. 

E. coli contains a (possibly) surprising number of efflux pumps (one sixth of all its transporters (Daley et al., 

2005)), even for sugars (Liu et al., 1999a, Liu et al., 1999b).  Indeed, in E. coli, there are as many as 37 MDR 

transporters (Nishino and Yamaguchi, 2001), most commonly from the Major Facilitator Superfamily 

(Holdsworth and Law, 2012).  Arguably, the main efflux transporters are acrB (Eicher et al., 2012, Pos, 

2009), mdfA (Sigal et al., 2006), emrE (Nakashima et al., 2011, Schuldiner, 2009) and mtdM (Holdsworth 

and Law, 2012, Paul et al., 2014). Thus, and while n-alkanes are much less cytotoxic than are many other 

organic solvents (Salter and Kell, 1995), a particularly nice example of the directed evolution of a 

membrane protein for catalysing product efflux is the study of Foo and Leong (Foo and Leong, 2013), who 

evolved AcrB to drive improved efflux of the hydrocarbons n-octane and -pinene from E. coli, using 

selection against the toxicity of n-octanol (that was also presumably excreted), while Fisher et al. did the 

same for shorter-chain alcohols (Fisher et al., 2014). Mutations in a number of other genes such as lon, 

proV, soxS and marR also act via AcrB to increase the solvent tolerance  of E. coli (e.g. (Aono, 1998, Doukyu 

et al., 2012, Watanabe and Doukyu, 2012, Watanabe and Doukyu, 2014)). Multidrug resistance 

transporters have also been used to export dipeptides (Hayashi et al., 2010, Mitsuhashi, 2014) and 

arabinose (Koita and Rao, 2012) from E. coli, while NAD transporter engineering has been exploited to 

advantage in the whole-cell biocatalytic production of dihydroxyacetone (Zhou et al., 2013). 

S. cerevisiae contains 28 members of the Major Facilitator Superfamily of multidrug efflux pumps and at 

least six members of the ATP-binding cassette (ABC) multidrug transporter family (Balakrishnan et al., 2012, 

Cherry et al., 2012, Goffeau et al., 1997). All of these efflux pumps reside in the plasma membrane, while 

Vmr1p is a vacuolar membrane protein. While the importance of the plasma membrane pumps in drug 

resistance (notably to azoles) in pathogenic yeasts is well recognised (Noël, 2012),  any possible role in the 

efflux of diesel fuels from engineered yeast seems not to have been considered (Westfall and Gardner, 

2011) or, at least, not published 

Concluding remarks 
In this short review, we have sought to summarise some of the evidence that membrane transporters 

represent rather underutilised yet excellent targets for the purposes of strain improvement in 

biotechnology. Some of the evidence comes from more classical fermentations where such changes 

‘emerged’ from undirected (mutation and selection) strain improvement programmes, while more recently 

there are examples of more deterministic strategies based on metabolic engineering. We anticipate many 

major improvements in the future as the powerful techniques of directed evolution are brought to bear on 

selected membrane transporters, especially those catalysing concentrative efflux of the desired product. 

Much as with pharmaceutical drug transporters (Kell and Oliver, 2014), what we need now are good, 

predictive, quantitative structure-activity relationship (QSAR) models that will help determine the activity 

of any transporter (sequence) for any drug. Such models will bring us truly closer to the era of ‘designer 

transporters for biotechnology’. 
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Legends to Figures 
 

Fig 1. A mind map setting out the contents of this review in an easy-to-read form. 

Fig 2. Some antimetabolites that bear structural similarities to natural metabolites with which they 

compete for uptake transport (and intracellular activity). 

Fig 3. An illustration of four kinds of transporters. V and W are transported in exchange for each other; if 

there is a concentration gradient of one it will drive the transport (antiport) of the other. X is transported 

out of the cell, potentially against its concentration gradient, by a transporter that couples its transport 

activity to ATP hydrolysis. Y enters and exits the cell by facilitated diffusion (it is a uniporter), while Z is 

taken up concentratively in symport with a sodium ion (that descends its own concentration gradient). The 

terms ‘active’ (concentrative) and ‘passive’ (equilibrative) are best used solely to describe the 

thermodynamics, with no mechanism being implied unless stated (Kell and Oliver, 2014). The membrane is 

drawn approximately to scale, with a typical in vivo ratio of protein:lipid (3:1 by mass). We do not show 

explicitly transporters (or pores) that are sensitive to osmotic pressure or turgour, but they are potentially 

very important in biotechnology, and we discuss them in the text. Note too that there can be a highly 

intimate interaction between specific lipids and transporter function (e.g. (Laganowsky et al., 2014, 

Naismith and Booth, 2012) such that changing the former may affect the latter. 

Fig 4. A modern strategy for transporter engineering in biotechnology requires first that we construct 

suitable metabolic networks from genomic and other data, then that we use variations in expression 

profiles and desirable phenotypic properties to identify qualitatively those transporters whose properties 

most need improving, and finally that we use the methods of intelligent directed evolution tom modify 

their properties and expression levels appropriately. 

Fig 5. Expression profiles of 151 transporter and 6373 non-transporter transcripts in baker’s yeast. Data are 

from (Lee et al., 2012). Note that fewer transport reactions in the model (327/1079, 30.3%) have associated 

genes (hence transcripts) than do all other metabolic reactions (1983/2255, 87.9%).  

Fig 6. The principle of genome-wide identification of transporters for a toxic drug by evaluating the 

enrichment of survivors when the gene encoding the transporter for the cytotoxic drug is knocked out.  

 

(NB The legend to the figure to be included in Box 1 is given in Box 1.) 
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Tables.  
Table 1. Some databases with a focus on membrane transporters 

Name Focus/ 
organism(s) 

URL References 

    

Bioparadigms SLC 
tables 

Humans http://www.bioparadigms.org/slc/intro.htm  (Hediger et al., 
2013) 

    

Caenorhabditis 
elegans Solute 
Transporter 
database 

C. elegans http://www.wormslc.org/  (Jäckel et al., 
2010) 

    

Drugbank Humans/ drugs http://drugbank.ca  (Law et al., 2014) 

    

Human-intestinal 
transporter 
database 

Humans/drugs Not apparently directly online; data are 
downloadable from the paper’s 
Supplementary Information. 

(Sedykh et al., 
2013) 

    

Human transporter 
database 

Humans http://htd.cbi.pku.edu.cn  (Ye et al., 2014) 

    

Transportal Human/ drug 
transport 

http://bts.ucsf.edu/fdatransportal/  (Morrissey et al., 
2012) 

    

TransportDB Comparative 
genomics of 
transporters 

http://membranetransport.org/  (Ren et al., 2007, 
Ren et al., 2004) 

    

Transporter 
Classification 
Database TCDB 

IUBMB-
approved 
transporter 
classifications 

http://www.tcdb.org/  (Saier et al., 2014, 
Saier et al., 2006)  

    

Transporter 
database TP-search 

Humans/ drug 
uptake 

http://www.tp-search.jp  (Ozawa et al., 
2004) 

    

TransportTP Transporter 
prediction 

http://bioinfo3.noble.org/transporter/  (Li et al., 2009) 

    

Yeast metabolome 
database 

S. cerevisiae http://www.ymdb.ca/  (Jewison et al., 
2012) 

    

Yeast Transport 
Protein database 
YTPdb 

S. cerevisiae http://ytpdb.biopark-it.be/ytpdb/  (Brohée et al., 
2010, Van Belle 
and André, 2001 
10873) 

    

Yeti: Yeast transport S. cerevisiae http://genolevures.org/yeti.html  (De Hertogh et al., 

http://www.bioparadigms.org/slc/intro.htm
http://www.wormslc.org/
http://drugbank.ca/
http://htd.cbi.pku.edu.cn/
http://bts.ucsf.edu/fdatransportal/
http://membranetransport.org/
http://www.tcdb.org/
http://www.tp-search.jp/
http://bioinfo3.noble.org/transporter/
http://www.ymdb.ca/
http://ytpdb.biopark-it.be/ytpdb/
http://genolevures.org/yeti.html
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Box 1. Flux control in Metabolic Control Analysis 
 

Imagine a metabolic network or pathway in which we vary the concentration of an enzyme E by an amount 

E, with a concomitant change in the flux of interest J. (In the limit of small changes this becomes dJ/dE.) 

By normalising these changes to the flux and enzyme concentration at the operating point (J,E) we can 

obtain a dimensionless quantity CJ
E, the flux-control coefficient (of enzyme E on the flux of interest J), that 

describes in quantitative terms the extent to which that enzyme controls the flux. CJ
E is equivalent to a local 

sensitivity coefficient. If CJ
E is 0 then the enzyme exerts no flux control, while if it is 1 then it is then 

completely flux-controlling. Intermediate values are possible, and the flux-control summation theorem 

(Fell, 1996, Heinrich and Rapoport, 1974, Heinrich and Schuster, 1996, Kacser and Burns, 1973) proves that 

the sum of the flux-control  coefficients for all enzymes on a particular flux is 1. This means that most 

enzymes have small flux-control coefficients (and, as in the figure, even a 50% knockdown typically has a 

limited effect on flux (Kacser and Burns, 1981), so to have major effects one should seek to use haploid 

organisms). Thus, in C. pasteurianum glycolysis the flux-control coefficient of the glucose transporter was 

under 0.2 (Walter et al., 1987); however, because of the involvement of branched pathways, that in S. 

cerevisiae exceeded 1 (Smallbone et al., 2013). A related concentration-control summation theorem shows 

that the sum of the concentration control coefficients = 0. Note that the flux-control coefficient is not 

constant – at a different operating point it would be higher or lower as flux control shifts among different 

parts of the network (Kell et al., 1989). For other pertinent reviews of metabolic control analysis, see 

(Cornish-Bowden and Cárdenas, 2000a, Cornish-Bowden and Cárdenas, 2000b, Fell, 1996, Fell, 1998, 

Heinrich and Schuster, 1996) The thesis in this review is that where the flux-control coefficients of 

transporters are determined, they will often be found to be larger than those of other enzymes, providing 

suitable suggestions for transporter engineering. 

 

Box 2. Flux balance analysis 
Flux balance analysis describes a series of techniques for estimating relative metabolic fluxes without the 

requirement to know any of the kinetics of the participating enzymes. All it requires is a knowledge of the 

stoichiometries of the participating reactions, the molecular identities of the reactants and products 

themselves, and an objective function that one is trying to maximise. Linear programming techniques can 

then be used to optimise the latter. The stochiometries, including mass, charge and energy balances, 

provide a very effective series of constraints to determine the possible fluxes (Covert and Palsson, 2003, 

Palsson, 2006, Price et al., 2004, Schellenberger et al., 2011); however, the objective function is more 

problematic. Typically biomass is used (i.e. the rate of biomass formation) (García Sánchez et al., 2012, 

Palsson, 2006, Schuetz et al., 2007), with biomass encoded as a ‘molecule’ with a non-integer empirical 

formula. This means that the problem is highly underdetermined, with a very great many possible flux 

distributions giving an equally good fit, and such an objective function hardly makes sense for non-growing 

cells producing a biotechnological product that is of interest. Thus if possible it is desirable to add further 

constraints, e.g. by confining specific fluxes to restricted ranges (Schuetz et al., 2012, Wilkinson et al., 2008) 

or finding flux distributions that best correlate with expression profiles (Lee et al., 2012, Shlomi et al., 

2007). 
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Glossary 
 

Term Meaning 

  

log D The logarithm of the Distribution Coefficient, D. D is 
the ratio of the sum of the concentrations of all 
forms of a compound (ionised plus non-ionised) in 
each of two phases, typically 1-octanol and an 
equilibrated aqueous buffer, whose pH must be 
specified.  

  

log P The logarithm of the Partition Coefficient, P. P is a 
measure of the hydrophobicity of a molecule; log P 
is the logarithm (base 10) of the ratio of the 
concentration of a solute molecule in an organic 
solvent, usually 1-octanol (Young, 2014), to that of 
the non-ionised form of the same molecule in water 
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Highlights 

 Transporters are a relatively undervalued set of proteins contributing to the control of  

biotechnological fluxes 

 We highlight the evidence for this 

 This is true for both ‘influx’ and ‘efflux’ transporters 

 Transporter engineering offers many opportunities to overcome flux control 

 The methods of Synthetic Biology offer particular promise for transporter engineering 
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