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Abstract
The development of aptamers on custom synthesized DNA microarrays, which has been
demonstrated in recent publications, can facilitate detailed analyses of sequence and fitness
relationships. Here we use the technique to observe the paths taken through sequence-fitness
space by three different evolutionary regimes: asexual reproduction, recombination and
model-based evolution. The different evolutionary runs are made on the same array chip in
triplicate, each one starting from a small population initialized independently at random.
When evolving to a common target protein, glucose-6-phosphate dehydrogenase (G6PD),
these nine distinct evolutionary runs are observed to develop aptamers with high affinity and to
converge on the same motif not present in any of the starting populations. Regime specific
differences in the evolutions, such as speed of convergence, could also be observed.

S Online supplementary data available from stacks.iop.org/PhysBio/7/036007/mmedia

1. Introduction

Directed evolution has revolutionized the field of protein
engineering exploiting the process of Darwinian selection
on a laboratory scale [48]. The technique works towards
optimization on the vast landscape of possible sequence
permutations by iteratively screening, modifying and selecting
from a library of variants based on phenotypic improvement.
The successes have been manifold, endowing proteins with
improved stability [15], varied specificity and robustness to
novel environments [1, 22, 40, 50]. In addition directed
6 Author to whom any correspondence should be addressed.
7 These authors contributed equally to this work.

evolution has been applied to nucleic acids, for example during
the ab initio development of nucleic acid ribozymes [23]. For
those more accustomed to rational design it is often difficult
to perceive that an essentially stochastic process can prove
so effective, independent of any knowledge of structure and
function. A rarely exploited by-product in the development of
novel biological macromolecules through directed evolution
is the ability to monitor evolutionary processes as they happen
[39]. This has provided insight at the molecular level that is
simply unavailable at the level of whole organisms.

The central features of directed evolution (screening,
selection and modification) bear close resemblance to
evolutionary computation methods used in computer science
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and engineering [4, 16, 19]. Yet, despite this similarity there
is little transfer of methods and processes between the two
disciplines, possibly because of the simple isolation of the two
fields. A further reason may be that many of the systems
studied in the field of evolutionary computation are in silico,
and such experiments are cheap in comparison with their ‘in
vitro’ counterparts. Consequently computational optimization
is performed over numerous generations to provide an optimal
(or near optimal) solution, whereas the aim of directed
evolution is to develop a variant suitable for a particular
purpose as quickly as possible. In real terms this means that
the directed evolution practitioner often resorts to a method
known as ‘declaring wild type’ [23]. This is an extreme form
of selection whereby the best individual from those currently
generated is selected to be the parent for future generation
of variants until another variant surpasses this individual’s
fitness. Whilst high selection pressures can reduce the number
of generations required in directed evolution experiments, it
can also lead to convergence on a highly suboptimal solution
[49]. Lower selection pressures are commonly used in
genetic algorithms and have been shown to produce superior
performance [10, 34].

One area where directed evolution has borrowed
from evolutionary computation is the incorporation of
recombination (crossover). The rationale behind the process
known as ‘DNA-shuffling’ is the belief that low levels of
mutation in combination with crossover are sufficient for a
genetic algorithm to evolve complex solutions [44]. It is
known within the evolutionary computing literature that this is
a simplistic representation of optimization as the incorporation
of crossover is not guaranteed to be the most efficient method
in all instances. Like high selection pressures, crossover may,
in some cases, in fact diminish algorithm performance. This
is described by the No Free Lunch Theory of optimization
that states ‘the average performance of any pair of algorithms
across all possible problems is identical’. A ‘one size fits all’
algorithm cannot, therefore, be selected that will be superior
on all optimization problems [51]. As a result, any prior
knowledge of an algorithm’s performance on a given problem
is invaluable; however, for biomolecules this knowledge is
currently sparse at best.

Like proteins, DNA (as well as RNA) can form complex
three-dimensional structures giving them desired functions
as, for example, DNAzymes [53] and riboswitches [11].
Oligonucleotide sequences that can selectively bind target
molecules are known as aptamers. They are ideal candidates
for building sensors, rather like their antibody counterparts.
As with proteins, the combinatorial search space for nucleic
acids is vast (1018 molecules for a 30 mer). Searching these
large populations for binding candidates can be fraught with
difficulties. Conventionally aptamers are developed using a
procedure known as SELEX (systematic evolution of ligands
by exponential enrichment), in which sequences with high
affinity to a target ligand are iteratively screened, selected
and amplified over a number of iterations [13, 47]. SELEX
is not directly reliant upon modification to generate genetic
diversity to optimize to the best aptamer (the technique relies
on the diversity in the starting population), and so the technique
differs considerably from the directed evolution of proteins.

Microarrays have recently emerged as a platform for
the development of aptamers [3, 27, 38]. In previous
work it has been shown that arrays can provide information
regarding sequence-functionality relationships in the well-
studied thrombin aptamer by systematically mutating the
original aptamer sequences generated via SELEX and
monitoring the binding intensities [37]. In an experiment
which reversed the above procedure, a random population of
sequences on a high density microarray was used as the starting
population for aptamer development to the thrombin target.

Knight et al demonstrated the power of this array-based
technique, termed closed loop aptameric directed evolution
(CLADE), with the evolution of aptamers with high affinity
and specificity to the fluorescent protein allophycocyanin
[27]. In CLADE the oligonucleotides on the array are used
as a population in a genetic algorithm. Sequences were
assayed for their interaction with the target ligand via standard
hybridization techniques, and then selection and modification
were carried out in silico. Sequences for the next generation
were produced by the genetic algorithm and synthesized on a
custom array synthesiser. This process was carried out over
nine generations, after which a sequence with a high affinity to
allophycocyanin had evolved. The use of microarrays entails
a much smaller initial pool size from which to select aptamers
than during SELEX. However, the reduction in initial diversity
is compensated by an increase in knowledge, as the sequences
of all potential aptamers are known. This knowledge may be
used in the development of superior algorithms for modifying
and selecting sequences in each generation. In this work,
we report a comparison of three different algorithms which
result in aptamers with binding strengths comparable to those
obtained from SELEX using initial pool sizes of just 1500.

When developing aptamers on microarray surfaces we
have the opportunity to assess the performance of several
algorithms simultaneously on one array. The spots on
the arrays can be subdivided into individual populations,
allowing the application of a different algorithm to each sub-
population. Further, we show in this paper that the knowledge
of sequences obtained through microarray technology enables
the observation of any convergent or divergent evolution, by
comparing the aptamers generated in each sub-population.
As such we can ‘replay the evolutionary tape’ [17] and
study commonalities between different algorithms and within
replicate algorithms. While this approach may not inform
the development of aptamers through conventional solution-
based SELEX, the development of aptamers using a genetic
algorithm ‘on-chip’ requires efficient search of the fitness
landscape and so is more closely related to the optimization of
proteins in directed evolution.

Aptamer arrays offer the potential for quantification of
biological systems at both the metabolomic and proteomic
levels [42]. Quantifying metabolically important biological
variance is key to the generation of metabolic systems biology
models [26]. Glucose-6-phosphate dehydrogenase (G6PD)
is an enzyme in the pentose phosphate pathway that serves to
generate NADPH and pentose sugars, and is a key biomarker in
haemolytic anaemia. The choice of G6PD as a target was made
for practical reasons based upon the wider goals of our research
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group. As part of the Manchester Centre for Integrative
Systems Biology (MCISB) one of our interests is to quantify
flux at the transcriptomic, metabolomic and proteomic levels
(particularly in the pentose phosphate pathway). We are
therefore interested in the feasibility of aptamer arrays for
protein quantification.

The evolution of aptamers to G6PD from Saccharomyces
cerevisiae was studied through subdividing a 90K DNA array
into nine separate evolving populations, which represent
three different genetic algorithms in triplicate. Each of the
algorithms is designed to represent a standard (μ, λ) algorithm
[4] with similar parameters to those commonly employed in
protein directed evolution; however, one algorithm works
through mutation alone, the second incorporates crossover
and the third uses a statistical model to reduce the effect of
deleterious mutations. We show that despite the differences
between these algorithms, performance is comparable, with
the algorithms converging on similar sequences. In this case,
this is a consequence of the structure of the fitness landscape,
which we characterize effectively via the sequence-activity
information that is generated ‘on chip’.

2. Materials and methods

Microarray synthesis was performed using a Combimatrix B3
custom array synthesiser, details of which are given elsewhere
[38]. Microarray chips were made up of 93 311 individual
spots, 25 μm in diameter spaced 20 μm apart; each spot is
composed of a single sequence that can be custom synthesized.
As in the study described by Knight et al [27, 38] sequences
were synthesized as 30 mers, and therefore had lengths typical
of many aptamers. Each 30 mer sequence was synthesized
in duplicate within each array and duplicate arrays, each with
their own random positioning of sequences, were synthesized.

Bovine serum albumin, potassium chloride, sodium
chloride, Tween 20, sodium dihydrogen phosphate and di-
sodium hydrogen phosphate (>99.5%) were purchased from
Sigma-Aldrich; biotinylated G6PD and unmodified G6PD
(Sigma G3386, G4134) were used as purchased without further
purification; all hybridizations were performed in phosphate
buffer saline (PBS) (1 × PBS = 0.15 M NaCl, 20 mM
phosphate buffer (pH 7.2)) at 37 ◦C and a protein concentration
of 0.15 μM. Arrays were first incubated in prehybridization
(prehyb) solution (5% BSA 0.5 Tween 1 × PBS) for a period of
30 min. Chips were then washed once with 1 × PBS, before
the hybridization solution containing G6PD was incubated
with the arrays for 1 h. After hybridization the arrays were
washed twice with 1 × PBS before being incubated with Strep-
Cy5 (0.02 mg ml−1) for 2 min before two further washes in
1 × PBS and scanning at 5 μm resolution using a Genepix
4000B scanner (Axon instruments).

Median intensity values were recorded for each of the
spots and spatial normalization and scaling between chips was
performed as described within Knight et al [27, 38]. During
each generation 2400 spots were replicated from the previous
generation to permit inter-generational normalization; these
spots were selected by fitness uniform selection [21].
Inter-generational normalization was performed by fitting a

linear transformation (orthogonal regression using observed
variances) to these replicates from the preceding generation
[27, 38]. High correlations of 0.9 were observed between
replicate chips. The fluorescence levels observed from the
analysis were taken as direct measures of protein binding
in our algorithm evaluation. The synthesis of sequences
on the array is done using standard amidite chemistry, with
a coupling efficiency of approximately 95%. As such
the number of complete full length sequences available
for binding can be difficult to calculate. To confirm the
binding between G6PD and the aptamer sequences, and to
remove any doubt that these incomplete/partial sequences
are responsible for the observed binding, the binding
characteristics were tested on an alternative technology by
measuring binding constants using surface plasmon resonance
(SPR), as described in the supplementary information available
at stacks.iop.org/PhysBio/7/036007/mmedia.

2.1. Algorithm design

The genetic algorithms assessed within this study were based
upon a standard (μ, λ) algorithm [4]. In this type of algorithm,
μ represents the number of ‘parent’ sequences in each
generation, and λ represents the total number of ‘offspring’
sequences produced. In our case, in each generation, the λ new
offspring sequences are synthesized on the chip and screened
for binding affinity. To obtain the μ parent sequences for
the subsequent generation from these, the best μ in terms of
binding are identified and selected.

The value of λ was 4733 (to allow all experiments of a
generation to be conducted on a single microarray), except
in generation one (see below). The value of μ was 50 in
all cases. In all algorithms, modifications were induced by
applying point mutations to each of the bases within the
sequence with a probability of 1/30; each mutated base was
altered to one of the other three bases, selected at random with
uniform probability. In addition, indel mutations (where one
base is inserted and then another base deleted randomly from
the sequence) were applied at the same rate. If the sequence
remained unmodified after this process, the procedure was
repeated until the sequence was distinct from the parent
sequence.

We use three different algorithms. What differs between
them is the method of generating the offspring sequences from
the parents, a process which is done entirely in silico in all
three algorithms. For the simplest algorithm, the mutation-
only evolutionary algorithm, the λ offspring are produced
from the μ parents by repeatedly (i.e. λ times) selecting a
parent at random (with replacement), copying it and mutating
the copy. In the recombination algorithm, each offspring is
generated either by recombination and mutation or by mutation
alone. Recombination is used with probability of 0.6 and
mutation alone with a probability of 1–0.6. Standard uniform
crossover [45] of two parents was used as the method of
recombination; the two parents were selected randomly from
the parent population. With this type of crossover there is
an equal probability that any particular base will be passed
to the child sequence from either of the two parents. The
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implementation of crossover was the only feature that differed
from the ‘mutation only’ algorithm as point mutations and
indels were applied at the same rate.

The third algorithm used a statistical model to predict
sequence binding affinities. The aim of incorporating a
statistical model into the directed evolution procedure is to
focus selection not just on genes but also on the mutations
made to those genes. Fox et al applied a partial least-
squares model to guide the decision as to which individuals
to include in combinatorial libraries in the development of
bacterial halohydrin dehalogenase, with improved volumetric
production in a cyanation process [14]. This was described
as an extension of the QSAR approach commonly used in the
development of small molecule drugs.

The applicability of the partial least-squares approach
to modelling molecular structure activity relationships has
recently been reassessed for QSAR and directed evolution,
as the model is unable to detect complex interactions between
variables [36]. Non-linear models such as Random Forests
[8] are capable of capturing these interactions and may be
more appropriate for a wider range of systems. The Random
Forest model has already been utilized in the study of aptamer
binding relationships, displaying strong predictive power on
unseen data [27].

In our model-based algorithm, a Random Forest statistical
model (details below) was used to select sequences from a
larger pool of child sequences (of size 10 × λ). These
children were generated by either mutation or mutation and
crossover in silico but not synthesized. From this pool, the
best λ were chosen based upon their predicted binding affinity
using the model trained with data produced from the previous
generations of the evolution. A feature set was generated
to describe the sequences, based on position-specific base
composition, overall base composition, and the prevalence
and position of specific monomers, dimers and trimers.

The algorithms were evaluated over five generations in
three independent blocks on the same chip (see figure 1).
Within each block there is one replicate of each algorithm
type (a total of nine evolutions running in parallel on the same
chip). In order for paired statistical tests to be used to compare
the performance of the three algorithm types, the algorithms
within a block are started from the same initial (generation 1)
population. Thus, the 45 000 independent random sequences
that are synthesized and assayed in generation 1 are divided
into three (and not nine) independent populations: one for each
block. Thus, in generation 1, λ is effectively 15 000 for each
algorithm. Subsequently, in each generation, each of the nine
algorithms will produce its own offspring population of size λ

= 4733, which gets its own space on the chip, and thus these
algorithms run independently from generation 2 onwards. In
summary, each of the three blocks is entirely independent;
within each block the starting population (generation 1) was
the same for each of the three different algorithms being tested,
allowing the variance due to starting population to be mitigated
and thus slightly more powerful statistical tests to be performed
when comparing the different algorithm types. (Note: the
reason that λ = 4733 and not 5000 for generations 2–5 is that
267 spots are reserved for the purpose of inter-generational
normalization.)

Population 1
15000

individuals

asexual 1

4733 individuals

crossover1

4733 individuals

model 1

4733 individuals

asexual 1

4733 individuals

crossover1

4733 individuals

model 1

4733 individuals

Population 2
15000

individuals

asexual 2

4733 individuals

crossover 2

4733 individuals

model 2

4733 individuals

asexual 2

4733 individuals

crossover 2

4733 individuals

model 2

4733 individuals

Population 3
15000

individuals

asexual 3

4733 individuals

crossover 3

4733 individuals

model 3

4733 individuals

asexual 3

4733 individuals

crossover 3

4733 individuals

model 3

4733 individuals

Generation 1 Generation 2 Generation 3

Figure 1. Population construction. Construction of populations
within the directed evolution experiment. Sequences on the
microarray were first divided into three to form the seeds for nine
directed evolution experiments.

3. Results

Nine algorithms were assessed over five generations (asexual,
crossover and model based). After five generations the
binding constant of the highest affinity sequence from all
evolutions was evaluated ‘off chip’ using SPR (as described
in the supplementary information available at
stacks.iop.org/PhysBio/7/036007/mmedia). This sequence
was produced by the algorithm that included recombina-
tion. The sequence ‘TTTAGAAGGATTAGTACCTTTT-
TAAAAAAT’ was found to have a KD of 245 nmol L−1,
which is comparable to other aptamers raised to protein
targets through SELEX [2, 52]. Typically, we are interested
in the best fitness achieved in each generation, rather than
the population mean. Figure 2 plots this value for each
algorithm (in the last generation of implementation, three of
the model-based genetic algorithm, the data became corrupted
and were lost, leaving only eight sets of sequences in the final
generation). A Wilcoxon paired rank test confirms that there
is no significant difference between crossover and asexual
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Figure 2. Algorithm performance. Plot displaying the performance of each of the nine algorithms assessed in terms of binding affinity of
the best sequence produced in each generation. In the last generation of implementation 3 of the model-based genetic algorithm, the data
became corrupted and were lost, leaving only eight sets of sequences in the final generation.

reproduction in terms of the best sequence binder produced
in the final generation. While we are unable to determine a
superior methodology for the evolution of aptamers to G6PD
in these terms, we can study the performance of the separate
algorithms in relation to the aptamer fitness landscape. In
particular we focus on the performance of crossover versus
asexual reproduction and on the relative performance of the
model-based algorithm. The trends in the sequences produced
by the algorithms and the performance of the algorithms
over the four generations give us some insight into the way
algorithms may work on other problems and the feasibility of
future stepwise evolution experiments.

3.1. Convergent evolution

Convergent evolution describes the phenomenon where similar
phenotypic traits evolve in unrelated organisms. Birds,
bats and insects developed wings not because of common
evolutionary history but because the wing structure represents
a general solution to a problem upon which all three have
independently converged. This is of course in contrast to the
idea that, should the evolutionary tape be replayed, everything
would be different. Recurrence is a similar concept to
convergent evolution describing the phenomenon whereby
different evolving populations follow identical trajectories
from the same initial starting point. Recurrence has been
demonstrated previously in vitro in multiple continuous
evolution experiments developing a 150 nucleotide ligase
ribozyme [30]. It was observed that in 13 different lineages,
whilst sequences varied, the same nine mutations achieved
fixation and dominated.

The probability of convergence occurring will depend
upon a number of factors, including the rate and type of

genetic operator employed, the shape of the biological fitness
landscape and the composition of the initial populations [18].
When generating aptamers through stepwise evolutionary
methods, such factors are important in determining whether
sequences with high affinity to the target ligand can be
evolved reproducibly with small initial populations. If the
same sequence (or vital feature of a sequence) is repeatedly
generated it can be indicative of a peak on the fitness landscape
with a broad basin of attraction; if not, the landscape may be
rugged with multiple local optima.

When studying the highest affinity sequences produced
by the eight completed experiments the number of coincident
bases at the 5′ end is striking, indicating a high level of
convergence. A multiple sequence alignment generated
by CLUSTALW [29] demonstrates that between the best
sequences produced by these eight experiments, eight of the
first nine bases are fully conserved, with the other base either A
or G (see figure 3). It should be remembered that these eight
runs are not fully independent. However they are derived
from three distinct populations. It is unlikely that this motif
has arisen by chance alone (e.g. randomly generated in the first
generation) in all eight instances. This motif was not produced
in any of the initial populations; the fact that each of the eight
implementations produces the same motif indicates that the
motif represents a peak on the fitness landscape with a broad
basin of attraction.

Analysis of the best sequences produced overall by the
asexual algorithm reveals that the nine-base motifs have not
arisen randomly in the initial populations but are in fact derived
from precursors to this sequence through a series of mutations
(3, 2 and 2 mutations respectively; see figure 4).

Beyond the nine-base motif the level of sequence
similarity between the highest affinity sequences from
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erocs gnidnib                                                       mhtirogla

asexual(2) TTTAGAAGG-A-TTATTTTACGTTTCCC---CCCT---- 13.45
crossover(1) TTTAGAAAGTA-TAATTTGAC-CTACCCA--CCC----- 13.64

05.31----GCAT--GGCTGT-GCAA-ACAATCA-GGAAGATTT)2(ledom
asexual(3) TTTAGAAGG-ATTAGT---ACCTTTTTAAAAAAT----- 13.74
asexual(1) TTTAGAAAGAA-CAATA-GGTCCC-CGAA--ACCG---- 13.59
crossover(3) TTTAGAAAGAA-CCCCA-GGTCCT-T-ACCCACC----- 13.51
crossover(2) TTTAGAAAGT--CCCTAAGAACCAGG-AA--ACC-C--- 13.57

05.31 GAATGCGA--AA-TGACCCAG---CCC---GAAAGATTT)1(ledom
******* *

Figure 3. Alignment of best sequences. Multiple sequence alignment of the best sequences produced by eight of the algorithms. Binding
scores for each sequence are listed.

Figure 4. Evolutionary path of asexual algorithms. The evolutionary path of the three implementations of the asexual (μ, λ) algorithm
indicating insertions (+), deletions (−) and point mutations (→), leading to the first ten bases of the best sequences in the final generation.
These sequences are derived from three different starting populations.

each of the eight populations is not as clear. Sequence
similarity was calculated between the eight aptamers using
an implementation of the Needleman–Wunsch algorithm [35].
This revealed that on average each pair of aptamers shared
15.39 bases in common, although if the first nine bases are
excluded only 6.93 bases are coincident. The latter figure is
only slightly greater than the 5.25 (0.25 × 21) bases we would
expect to be coincident by chance alone; this tallies well with
the inevitable loss of diversity resulting from selection in a
small population (i.e. drift), rather than indicating a particular
direction or fitness bias of the search.

3.2. Recombination

Mutation alone (asexual reproduction) has been criticized
as a method for creating genetic diversity both within the
directed evolution and evolutionary computation literature
[25, 41]. It has been shown, especially in small populations,
that purely asexual reproduction can lead to the accumulation
of deleterious mutations over a period of time to the
detriment of the evolutionary process [33]. It is believed
that recombination can reduce this effect through the removal
of deleterious mutations while combining advantageous
mutations.

The benefits of recombination are not assured and in
the evolutionary computation literature it is well known

that the advantage of employing recombination is dependent
on the control parameters of the algorithm (e.g. population
size, selection pressure and mutation rate) in addition to
the properties of the fitness landscape assessed. There are
numerous methods of performing recombination within the
directed evolution literature, although direct comparisons of
its performance with that of asexual reproduction have been
limited [41].

After five generations there appears to be no advantage
in using recombination within this study, with performance at
each generation being comparable in terms of the affinities of
the best aptamers produced (see figure 2). However, after
three generations there is a clear advantage with all three
implementations outperforming the six implementations of the
other two algorithms. It is after this that the performances of
the algorithms converge to similar levels.

3.3. Model-based genetic algorithm performance

The accuracy of the predictions made by the Random Forest at
each stage of the evolution was assessed retrospectively with
unseen data. These data were selected from the sequences
that were not derived from the same starting population. One
thousand points were selected by fitness uniform selection
[21] and used to test the performance of the Random Forest
using accumulated data from each of the generations produced
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Figure 5. Mean binding scores. Plot displaying the performance of each of the nine algorithms assessed in terms of mean binding affinity of
all sequences produced in each generation.

Table 1. Displaying correlation (Pearson correlation coefficient)
between predicted and observed values for unseen values for a
Random Forest model constructed with data produced from each
generation of the evolution.

Generation Accuracy

1 0.507
2 0.609
3 0.852
4 0.884

by implementation 1 of the model-based genetic algorithm.
Model accuracy (as measured by the Pearson correlation
coefficient of observed versus predicted scores) increases at
each generation, reaching 0.88 by the final generation (see
table 1). This indicates an improvement in the ability of
the Random Forest to characterize the features that determine
aptamer binding. This is the result of the greater volume of
data within the training set in addition to a greater proportion
of the data coming from sequences with higher affinities.

The accuracy of the model is reflected in the mean
sequence affinity in each generation being higher than that
for all other algorithms (see figure 5). Given this, why
does the model-based algorithm not outperform the other two
algorithms in terms of the best sequence produced within
each generation? The entropy of the sequence describes
the variability observed in an aligned column of bases (the
uncertainty) [43]. The greater the variability within the
column, the greater the entropy, so a column of random
variables would have a value of 2, whereas a completely
conserved column has a value of 0. Figure 6 shows a plot
of the total uncertainty over all columns (bases). It can be
seen that in the first generation the entropy in each algorithm
is 60 indicating (as expected) completely random sequences.

As each of the algorithms progresses the entropy decreases,
and this is most evident within the model-based evolution. At
each stage of the evolution the entropy for the model-based
algorithm is lower than that of the other algorithms. This is a
result of the model-based algorithm fixing bases it ‘perceives’
to be important to protein binding. Fixing bases reduces the
search space that the algorithm can cover, which can have
a beneficial or detrimental effect on algorithm performance.
This balance of exploration versus exploitation is a well-
known issue within the evolutionary computation literature
[12]. Employing model-based selection of variants is similar
to employing greater selection pressure in evolutionary search
in that it strengthens the role of exploitation while limiting that
of exploration. As such the population may be more prone to
convergence to a local optimum.

The loss of diversity we observed in our model-based
genetic algorithm does not rule out the possibility that other
model-based methods may be able to raise the progress of
evolution without causing such loss. For example, the use of
a better cost function for training the model [7], less greedy
selection based on the model predictions [6], or models that
estimate their own uncertainty [21] may all go some way to
preventing the kind of diversity loss we observed with our
model-based algorithm.

3.4. Analysis of the landscape

While the Random Forest model can accurately predict
the binding affinities of previously unseen sequences, the
processes upon which it makes these decisions are opaque to
the investigator. Like Random Forests, regression trees [9] are
capable of modelling non-linear interactions between features.
However, they have the advantage over the Random Forest
model that the criteria which they use to make predictions are
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Figure 6. Entropy of sequences. Plot displaying the entropy (uncertainty) of the sequences for each of the nine algorithms assessed within
each generation.

intelligible to the user. In the case of our aptamer dataset this
should provide a clear indication of the sequence/structural
features that determine protein binding. If we can determine
these features we can make interpretations on the structure
of the landscape and how this will have affected algorithm
performance.

The sequences produced over five generations by
implementation 1 of the model-based genetic algorithm were
utilized as the training set for our regression tree model and
the sequences generated by the other algorithms (previously
used to test the Random Forest model) were employed as a
test set. In addition to the features used to train the Random
Forest model additional features were added, characterizing
both predicted structures and commonly occurring motifs.
Minimum free energy structures for each of the sequences
were predicted using hybrid-ss-min (UNAFold) version 3.4
[31], using the DNA input mode. The temperature was set at
38 ◦C and the NaCl concentration given as 0.58 M (these values
correspond to the conditions under which protein hybridization
was performed). These structures were converted into discrete
features using parsing software developed in-house.

Over-represented motifs were identified in 100 sequences
from implementation 1 of the model-based genetic algorithm
using MotifSampler v3.2 against a random background model
[46]. To avoid partially the problems associated with a strong
phylogenetic structure within the data, the 100 sequences
were not the top 100 sequences in terms of binding affinity.
Rather, a level of diversity between the sequences was enforced
by selecting the top 100 sequences with fewer than 15
coincident bases (as measured using an implementation of the
Needleman–Wunsch algorithm [35]) from the five generations.
The training and testing sets were scanned using MotifScanner
v3.2 for the five top motifs identified by MotifSampler and the

start points and scores of the highest scoring occurrences were
recorded.

The regression tree was built using a recursive partitioning
algorithm implemented using the rpart package within R and
pruning of the tree was performed according to Breiman’s ‘one
standard error’ rule [7]. The correlation between observed
and predicted binding scores in the testing set was found to be
0.80 (somewhat lower than the Random Forest model). From
the representation of the regression tree in figure 7 it can be
seen that prediction of binding is based exclusively on features
associated with the TTTAGAmn motif. The position and score
of this motif appear to be the primary determinants of protein
binding. These results may explain why there is parity between
genetic algorithm performances, as optimizing eight bases in
a fixed position within a DNA sequence is trivial for a genetic
algorithm given the number of evaluations. Therefore it will
be hard in this case to discriminate between the different forms
of evolutionary search.

4. Discussion

Previous evolutions of aptamers to the proteins thrombin and
allophycocyanin on microarrays have also indicated strong
dependences on the bases at the 5′ end of the DNA sequence
[27, 38]. These sequences are projected furthest away from
the microarray surface and so are more likely to interact with
the protein target. Aptamers derived through SELEX are
often characterized by their secondary and tertiary structures.
However, no structural features (based on the predicted
secondary structure) were found to be associated with protein
binding. Known aptamers with complex secondary and
tertiary structures have been shown to be capable of binding
their target ligands when synthesized on combimatrix 90k
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Figure 7. Decision tree derived from sequence-binding relationships. Displaying a decision tree built using data compiled from a single
implementation of one of the algorithms assessed in this paper (model-based algorithm, replicate 1).

arrays [37] and so there is no physical limitation to evolving
aptamers with secondary structures. The question arises:
can complex structures be evolved by stepwise evolutionary
methods using relatively small populations?

The development of aptamers through SELEX works
not through directed search but by exploiting the immense
sequence coverage generated in the initial libraries via
purifying selection. Genetic algorithms, as used in this study,
work differently to this. Strong binding aptamers are obtained
because we use parameters for the evolution selection pressure
and variation schemes (mutation or recombination) that are
theoretically justified [10, 34] under mild assumptions, and
have been empirically confirmed to work numerous times.
The selection pressure we use, for instance, is much smaller
than that used in SELEX, i.e. fitter sequences are only slightly
more likely to have ‘offspring’ sequences than their less fit
counterparts. This means that if no strong binders are found
initially, the population will remain diverse and will continue to
explore the fitness landscape via mutation. Only when stronger
binders are found, do they get selected more frequently,
but even then the evolution is gradual, and allows further
exploration to occur. This is why nine different evolutions
starting from three entirely independent small populations can
arrive at the same motif. In the model-based algorithm we
also use sequence information to directly guide selection, but
this seems to make only a small improvement to the rate of
evolutionary progress.

It has previously been stated in a study investigating
sequence variants of the IgE aptamer [24] that, since all of the
1-, 2- and 3-base mutants of the aptamer have poor IgE binding,
it would be difficult to generate the aptamer through stepwise
evolutionary methods. Similarly, binding of the thrombin
aptamer has been shown to be dependent on an immutable
quartet of guanine repeats that fold to form a unimolecular
quadruplex structure. The consensus sequence of the thrombin
aptamer, ‘GG(A/T)TGGN3–5GGT(A/T)GG’, has a 0.55

probability of being generated randomly within a 30 mer
in 40 000 sequences on a microarray [38]. If a variant of
this sequence can be found with a higher binding affinity
than the background then this sequence can be selected and
optimized. If the consensus sequence is immutable and such
a sequence is not present then the evolution will fail. This
scenario is described in the evolutionary computation literature
as ‘isolation’ or ‘needle in a haystack’ [20], and represents a
difficult search problem for genetic algorithms. Aptamers have
been developed to the protein thrombin on DNA microarrays
with populations of around 40 000 sequences [38]. However,
the sequences developed did not possess the usual consensus
sequence of a thrombin aptamer developed through SELEX.
Instead binding was shown to be dependent on a short motif of
GGTTGG, again at the 5′ end of the oligonucleotide sequence.

The short motif ‘GGTTGG’ was generated in the first
generation (of random individuals). Binding to the aptamer
was then optimized over the course of the evolution by
developing a chain of thymine bases that may serve as a
linker to prevent interaction between the protein and the array
surface [38]. While the motif identified here is short, it has
not occurred by chance. Rather, it is derived from (differing)
precursor sequences that have evolved to a common sequence
(see figure 4). This result indicates a biological fitness
landscape with a broad basin of attraction, rather than a ‘needle
in a haystack’ type landscape. This result is encouraging for
the potential to evolve other aptamers on microarrays.

It should be noted that despite the aptamers evolved on
microarrays being characterized by short motifs at the 5′ end
of the sequence, they are capable of binding target ligands
with binding constants comparable to more orthodox aptamer
structures. This observation fits a trend that we previously
noted during the evolution of aptamers to both thrombin and
APC [27]. It is clear that a portion of the sequence close
to the 3′ end is used as a spacer to project the binding site
away from the surface. Due to this unique arrangement we
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chose a surface-based technique to determine their binding
characteristics, i.e. SPR. Whilst solution-based assays, such
as calorimetry or the filter binding method, reveal a great
deal of information about the binding strength and kinetics,
CLADE was developed as a surface-based assay technique
and as such we have opted to measure KD in the environment
in which it will ultimately be used. The tethering of one
end of the sequence to a surface will most likely change
its binding kinetics from those observed in its free state in
solution. However, this enhanced or altered kinetics can be
used as a powerful assay format [28].

No higher (secondary or tertiary) structural features were
determined to be causal to protein binding in the G6PD
aptamer. This is not to say that the aptamer does not possess
structure. As the TTTAGAA(A/G)G motif does not vary
significantly we cannot determine any covariance, which could
indicate the formation of a small hairpin and so only structural
studies (such as by NMR or protein crystallography) would
reveal the conformation this motif adopts when binding the
protein.

In evolutionary computation, the choice of control
parameters can greatly affect performance for a given problem.
As a result of the inherent expense of laboratory-based
experiments in directed evolution and particularly array-
based evolution of aptamers, this becomes of paramount
importance. While in this instance we cannot determine
a significant difference in the performance of the three
algorithms assessed in terms of best aptamer produced, we can
identify differences in how the algorithms are working. The
algorithm incorporating recombination appears to converge on
a high affinity sequence quicker than the other two algorithms.
In addition we can define properties of the search space and
how the algorithms perform relative to this landscape. This
knowledge arises from evolution on the microarray platform,
which permits a level of understanding of genotype-phenotype
relationships that is currently unsurpassed. Microarrays
have been used recently in the study of the interaction of
transcription factors with all ten base pair permutations of
a DNA sequence [5]. To study the interaction of proteins
with more complex (longer) sequences, algorithms similar
to those presented here could be applied to sample the
sequence landscape and generate a model of the interaction
profile. While this magnitude of information is not currently
available for the directed evolution of proteins, advances
in next generation sequencing technologies should aid our
knowledge of these more complex fitness landscapes and aid
in the design of evolutionary optimization.

The evolution of such short motifs is reminiscent of the
word game described by John Maynard Smith as an analogy
for protein spaces [32]. He compared protein evolution to
words that could be converted to new viable words through
a change of letter. We observe a biological fitness landscape
where a network of interchangeable sequences represents a
broad basin of attraction, leading to an optimal motif produced
by all eight algorithms. This motif has not arisen randomly in
each of the populations and then become fixed; it has evolved
in each instance from an inferior sequence through a series of
mutations, each of which has conferred a selective advantage

on the mutant. Such adaptation is essential for stepwise
evolution to be a viable method for developing aptamers.
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