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ABSTRACT

Motivation: Directed evolution, in addition to its principal application
of obtaining novel biomolecules, offers significant potential as
a vehicle for obtaining useful information about the topologies
of biomolecular fitness landscapes. In this article, we make
use of a special type of model of fitness landscapes—based
on finite state machines—which can be inferred from directed
evolution experiments. Importantly, the model is constructed only
from the fitness data and phylogeny, not sequence or structural
information, which is often absent. The model, called a landscape
state machine (LSM), has already been used successfully in the
evolutionary computation literature to model the landscapes of
artificial optimization problems. Here, we use the method for the first
time to simulate a biological fitness landscape based on experimental
evaluation.
Results: We demonstrate in this study that LSMs are capable
not only of representing the structure of model fitness landscapes
such as NK-landscapes, but also the fitness landscape of real
DNA oligomers binding to a protein (allophycocyanin), data we
derived from experimental evaluations on microarrays. The LSMs
prove adept at modelling the progress of evolution as a function of
various controlling parameters, as validated by evaluations on the
real landscapes. Specifically, the ability of the model to ‘predict’
optimal mutation rates and other parameters of the evolution is
demonstrated. A modification to the standard LSM also proves
accurate at predicting the effects of recombination on the evolution.
Contact: william.rowe@manchester.ac.uk
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1 INTRODUCTION
A fitness landscape is a conceptual visualization of the topographic
relationship between a genotype and a static fitness function, a
property that will determine reproductive rate (Wright, 1932). The
properties of the fitness landscape relate to the behaviour of evolving
populations and as such they have become integral tools in both
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evolutionary biology and evolutionary computation. Despite their
long term and widespread use, the information pertaining to real
biological fitness landscapes is currently limited. As a consequence,
researchers interested in studying the dynamics of evolution are
often forced to rely on in silico landscape models instead. Many
artificial fitness landscapes have attempted to model the properties
of real biomolecular fitness landscapes. These have ranged from
John Maynard Smith’s simple word game metaphor for protein
space (Maynard Smith, 1970), to more complex models, which
incorporate properties such as ruggedness and neutrality (Barnett,
1998; Kauffman and Levin, 1987; Mitchell et al., 1992). The real
fitness landscapes of proteins are poorly understood and so the
accuracy of these simplistic models is unknown.

At the molecular level adaptive evolution is routinely studied
and exploited during the process of directed evolution. The steps
within a directed evolution experiment mimic Darwinian processes
within a lab and closely resemble the structure of many standard
genetic algorithms, methods used widely in computer science for
optimization. Iterative cycles of mutation (and/or recombination)
and selection have led to the development of a plethora of novel
or improved biological entities (Alexeeva et al., 2003; Ellington
and Szostak, 1990; Giver et al., 1998). This has been achieved
without any guidance from a molecular level understanding of
protein function.

Sequencing the intermediates produced during the course of a
directed evolution experiment reveals the series of modifications
that have led to the new functionality. This approach has provided
new insights into the relationship between the sequence and function
of proteins and how proteins may adapt during natural evolution
(Romero and Arnold, 2009). Determining how properties such as
selection pressure, mutation rate and library size (population) will
affect the success of future experiments, however, would require
extrapolation beyond these limited evaluations.

Recently, a study was undertaken to map the complete interaction
profile of every possible 10-base oligonucleotide with a fluorescent
protein (allophycocyanin), using the ability to perform highly
multiplexed assays afforded by microarrays (Rowe et al., 2009).
Based on over one million evaluations the data set reveals a
complete sequence-fitness landscape. This still represents a simple
biomolecular interaction; ideally, a resource is desired that represents
more complex biological systems. No doubt, with the continuing
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Fig. 1. Representation of an exact LSM for the MaxOnes problem where
L=5 (Corne et al., 2003).

development and availability of high-throughput sequencers and/or
microarrays, even more extensive datasets will emerge over the
coming months and years. This potential development, while
exciting, is only part of the battle, however. In order to understand
something useful about the landscapes and the dynamics of evolution
on them, appropriate models or abstractions from the raw data must
be inferred.

In computer science, in the field of evolutionary computation,
characterizing fitness landscapes and how their features might
affect evolutionary progress and dynamics is an area of intense
study (Jones and Forrest, 1995; Kallel et al., 2001; Merz, 2004).
Grefenstette (1995) and Altenberg (1995) independently developed
the idea of modelling/predicting evolutionary progress from fitness
distribution data using, respectively, simple regressions and ‘search
kernels’ to represent these distributions. The Landscape Machine
(LSM; Corne et al., 2003) was developed independently, but is a
concrete implementation of Altenberg’s search kernel. It models the
fitness landscape of a particular abstract optimization problem as a
finite state machine, representing landscapes purely as collections of
phenotypic states and describes transitions between these states as a
consequence of mutation. Consider S is the collection of all possible
fitness values within a landscape, and s (s ∈ S) represents a value
associated with an individual (for simplicity a single sequence).
When s (the parent’s fitness) is transformed by mutation, a new
value e (e∈S, the child) is generated with a probability tse. The
probabilities of transformation between all points within S can be
stored within a transition matrix, T , and used to ‘replace’ the real
landscape.

In some cases, the LSM can model these transitions exactly.
Figure 1 represents a simple MaxOnes problem. The states s0−5
represent values of solutions to the problem, in which the aim is to
optimize the number of 1 s within a binary string {0,1} of length
L=5 (the states match the number of 1 s within the string). Arcs
indicate the transition probabilities between these states when a
single random bit is flipped (0→1 or 1→0) within a string. Such a
model can act as a substitute for the real problem when assessing the
performance of a genetic algorithm, in which candidate solutions
(variations of the string) have been replaced by these states. The
success and speed of several different algorithms (meaning different
population sizes, different methods of biased selection, different
selection pressures and so forth) can then be assessed without the
use of any genotypic information.

For more complex landscapes, calculating these transitions or
even storing a matrix of transitions between all points within S
becomes intractable. If this is the case, points within S are pooled
together into equally spaced fitness intervals (states) and transition
probabilities are inferred from values generated by a sampling
algorithm run on the real landscape. Using this approach, landscape
state machines have shown a high degree of accuracy and specificity
in predicting the performance of different evolutionary algorithms
on a range of optimization problems studied in Computer Science
(Corne et al., 2003; Rowe et al., 2006).

LSMs were proposed not only for the study of computer science
optimization problems, but also with the intention of future use in
directed evolution (Corne et al., 2003). In this article, we begin to
examine, empirically, their potential in this area for the first time.

Until now, no attempt has been made to model recombination
events using LSMs. This task is not a trivial extension to the
scheme since populating a three dimensional transition matrix (for
the fitnesses of two parents and one child) would require a much
greater number of evaluations on the real landscape. In other words,
the sampling will be at an even greater order of sparseness than with
the standard LSM. The LSM will also be limited in the algorithms
it can assess because the sampling algorithm will only sample
combinations of parents from a range dictated by the selection
pressure employed and the properties of the fitness landscape. We
attempt to correct for these problems using a simple heuristic,
described in ‘Methods’ section.

The performances of a range of genetic algorithms (including
those that incorporate recombination) were assessed on both
real landscapes and LSM abstractions of these landscapes. NK-
landscapes (Kauffman and Levin, 1987) with different levels of
epistasis and a DNA–protein interaction landscape derived from
real experimental evaluations were both investigated. The LSMs
proved adept at modelling the features of the landscapes, with
strong correlations between the relative performances of the LSMs
and the corresponding real-world algorithms. The ability to model
real biological fitness landscapes with sufficient fidelity to allow
predictions of the most appropriate (near-optimal) parameters of
evolution (mutation rates, recombination, selection pressures, etc.)
using fitness information alone seems to be an encouraging prospect
for future progress in this area.

2 METHODS

2.1 Artificial fitness landscape: the NK Model
The NK-model is a Boolean structure conceived by Kauffman (Kauffman
and Levin, 1987) that assigns continuous values to combinations of bits in a
binary string. The model has been used to represent the combinatorial effects
of genes in a whole organism but can equally be applied to the interaction
of amino acids in a protein structure. The fitness of each individual position
(gene), fi, is determined by the state of K coupled residues as well as its
own state. N is the dimensionality of the landscape, which is equal to L,
the length of the string (chromosome). The total fitness F of a string is the
average fitness across all fi, as given in Equation (1), in which i is the position
assessed and αn are the states (1 or 0) of the K +1 coupled residues.

F = 1

N

N∑

i=1

fi(αi1,αi2,...αik+1) α∈{0,1}N (1)

The properties of the landscape can be tuned by varying K . When K is zero
the landscape is smooth resulting in a single peak of the Mount Fuji type.
When K is increased the landscape becomes increasingly rugged resulting
in many fitness peaks, making it more difficult for algorithms with high-
selection pressure to find the global optimum. Two NK-landscapes were
assessed in this study, with K =2 and K =3. Both had N =100.

2.2 Experimentally-derived DNA–protein interaction
landscape

The second landscape was obtained from measured experimental data
(Rowe et al., 2009). These data comprise every DNA sequence ten bases
in length and their corresponding affinities with the fluorescent protein
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allophycocyanin (as measured in duplicate through hybridisation on a
microarray chip). The properties of the resultant landscape were studied
using various statistical measures in comparison to known NK-landscapes
with noise added at a similar level to that observed in the experimental
replicates. A comprehensive data set allows us to evaluate genetic algorithms’
performance on the data as they would on the real landscape without the
need to perform a single measurement. The data set can be downloaded
from http://dbkgroup.org/direvol.htm.

2.3 Algorithm design
The algorithms that are assessed in this study are based upon a standard (µ,
λ) algorithm (Back, 1995), chosen as it resembles the approach employed
by many experimentalists when performing directed evolution. The fittest
µ individuals within a population of size λ are selected and reproduced
iteratively over a number of generations, with diversity introduced through
bit-flip point mutations and recombination. Point mutation rates refer to the
probability that each bit in a chromosome will be flipped (0 −>1 or 1−>0),
or in the case of the experimental landscape that a base will be switched to
one of the three alternatives.

The performances of multiple algorithms with the following properties
were assessed on both the experimental and real landscapes (L is the length
of the sequences under investigation). The algorithms based on the NK-
landscape were chosen to match those previously used to model directed
evolution (Wedge et al., 2009).

NK-landscapes

• µ=2,4,40 and 400, λ=40000

• Mutation rates {0.2, 0.4, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0, 20, 25.0
and 30.0}/L

• With and without recombination.

Experimental-landscapes

• µ=2,5,10 and 100, λ=1000

• Mutation rates {0.2, 0.4, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0 and 10.0}/L

• With and without recombination.

Recombination, when present, was applied at a rate of 0.6, with the
two parents selected randomly, to produce a single offspring in the next
generation, using standard uniform crossover (Sywerda, 1989). Performance
was measured as the mean best fitness observed during the course of each
evolution based on 100 replicates.

2.4 Construction and assessment of LSMs
In order to construct an LSM, it is necessary to sample transitions
(mutation or recombination steps) from the problem landscape. In this work,
transition probabilities for LSMs were inferred from the NK-landscapes
and experimental landscape using genetic algorithms with the following
properties:

NK-landscapes

• A standard (µ, λ) algorithm, with µ=400 and λ=40000.

• A mutation rate of 0.2/L.

• Uniform crossover at a rate of 0.6.

• 21 generations

• 10 replicates

Experimental-landscape

• A standard (µ, λ) algorithm, with µ=10 and λ=1000.

• A mutation rate of 0.2/L.

• Uniform crossover at a rate of 0.6.

• 21 generations

• 50 replicates

Fig. 2. A mutation that is included in the transition probabilities of an
LSM when applying a transition matrix repeatedly to model a mutation rate
higher than that sampled by the LSM. This mutation cannot occur during the
equivalent standard mutation on the real landscape.

All parent and child fitness values were recorded and stored. Scores were
then partitioned into 200 evenly spaced states based upon the highest and
lowest values recorded by the sampling algorithm. The partitioned parent
and child data were then used to populate a 200×200 transition matrix. The
corresponding states of individuals from the first generation of the sampling
algorithm were stored separately. Individuals were selected randomly from
these states to form the starting populations of all algorithms tested using
the LSMs.

Genetic algorithm performance was then assessed using the LSM as
it would be on the real landscape. Mutations were represented by states
changes, with the new states determined by fitness proportionate selection
from the transition probabilities associated with the parent’s state. The
algorithm performance on the LSMs was evaluated over 1000 replicates
by measuring the highest state achieved or, if two algorithms achieved equal
values, the number of generations taken to reach this value.

2.5 Modelling mutation rates
Higher mutation rates can be approximated by raising the transition matrix,
T , to the appropriate power. For example, to model a mutation rate of 1/L,
based upon a sampling algorithm using a mutation rate of 0.2/L, T would
be applied five times (represented as T5). This approach approximates the
higher mutation rates but can become inexact under certain circumstances.
First, if the LSM is extrapolated to a high mutation rate from an extremely low
mutation rate, any errors in sampling (where the true transition probabilities
have not converged) will become magnified. To assess this effect, a sampling
algorithm was also run at 1/L and the performance at higher mutation rates
was compared to that of the sampling algorithm run at 0.2/L.

A second problem arises when modelling landscapes where L is small. An
LSM modelling a mutation rate of 2/L derived from a sampling algorithm run
at 1/L is essentially modelling two successive rounds of mutations. When
L is small the probability that a bit (or a base) will be mutated and then
mutate back to the original base in the second round of mutations is high (see
Figure 2). This will have the effect of distorting the transition probabilities.
As L increases, the probability of these ‘nullifying mutations’ decreases and
so they have less effect on the transition probabilities. It is simple to compute
these errors exactly. Consider a sequence of length 5 and a mutation rate of
2/L. The probability that all five bits flip from 0 to 1 is (2/L)L =0.01024.
The probability that all five bits are flipped P(α1t =1, α2t =1...αLt =1) by
two consecutive applications of a 1/L mutation is a product of the probability
that a 1 is generated (by one of two routes 0→1→1 or 0→0→1) at each
position i in L. This is given by Equation (2), in which α∈{0,1}.

P(α1t =1,α2t =1...αLt =1)=
L∏

i=1

(P(αit =1|αit−1 =1|αit−2 =0)

+P(αit =1|αit−1 =0|αit−2 =0))

(2)

where αit is the state (1 or 0) after i successive mutations. When L=5 this
equals 0.00336, about a third as much. Thus, for a short sequence and an
extreme event, probabilities are underestimated.

These errors could be corrected by using transition matrices for
single-mutation events rather than for a fixed mutation rate. These matrices
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would be applied x times, where x is determined by the expected probability
of 1,2,...,L mutations. However, this would incur some cost to the simplicity
of the method and would require the collection of sequence information
that is not commonly available during directed evolution experiments. An
alternative approach, which we adopt here, is to retain the simpler fixed
mutation rate model, but to assess its accuracy. We note in advance, however,
that the NK-landscape is much less likely to be affected by this problem than
is the experimental landscape as L=100 in the former and L=10 in the latter.

2.6 Modelling recombination
To model the consequence of crossover on genetic algorithm performance, a
separate recombination transition matrix was constructed. In this 3D array,
an element eijk represents the (sample) probability of obtaining offspring of
fitness k from parents of fitnesses i and j (where here fitnesses are understood
to have been discretized and normalized), where the array is symmetric and i
is the fitter parent. Due to considerations of the sparseness of this array, a GA
evaluated on the LSM may require transitions from a parental combination
that was not encountered by the sampling algorithm. To address this issue, a
heuristic was implemented such that instead of using row e_ij of the matrix,
eim was used, where m≤ i was the closest row to j in which at least one
crossover event had been encountered during sampling.

A single sampling algorithm was used to populate the mutation and
crossover matrices: when individuals were selected for crossover this event
was used to populate the crossover LSM (fitness values were assessed before
mutation was applied); when individuals were mutated these operations were
stored in the mutation only LSM. To implement the effect of crossover
the two matrices were used in series, with the crossover-modelling matrix
applied before the mutation-modelling matrix. Compatibility between the
crossover and mutation matrices was ensured by parameterizing the data into
the same intervals within both matrices. Keeping the two processes separate
enables the assessment of a wider range of algorithms using the LSMs.

The ability of the LSMs to represent the different landscapes was measured
in three different ways:

• Pearson correlation between the algorithm performances on the real
landscape and the LSM, at different mutation rates. For example this
could represent the correlation between the performance of a (µ, λ)
algorithm with µ=2 and λ=1000 over a range of mutation rates (0.2,
0.4, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0 and 10.0/L) on the experimental landscape
and on the LSM.

• The ability of an LSM to determine the optimal mutation rate for each
algorithm.

• The overall rank correlation between the performances of the LSM
and (µ, λ) search on a real landscape as measured by the Kendall
tau correlation coefficient. This represents the correlation of the
performance rankings on the LSM and the real landscape across all
algorithms, taking into account variations in µ, the presence or absence
of crossover, and the range of mutation rates, and therefore represents
a single statistic for each landscape.

3 RESULTS

3.1 NK-Landscapes
Plots of the performance of each of the algorithms assessed on the
real landscapes and the LSMs are displayed in Figures 3–6; the
corresponding Pearson correlation coefficients are listed in Table 1.

The correlations between the values produced on the LSM and
the real landscapes are high for both NK-landscapes, ranging from
0.94 to 1.00. While these values are strikingly high, in real terms
they only relate to the general trends in performance of each of the
algorithms (with increasing mutation rates) in isolation. The relative
performance at each mutation rate was ranked for all algorithms and

Fig. 3. Displaying plots of differing GA performance with increasing
mutation rate based on evaluations on the NK-landscape, where N =100
and K =2 (λ=40000).

Fig. 4. Displaying plots of differing GA performance with increasing
mutation rate based on evaluations on an LSM derived from an NK-
landscape, where N =100 and K =2 (λ=40000) (sampled at 0.2/L).

Fig. 5. Displaying plots of differing GA performance with increasing
mutation rate based on evaluations on the NK-landscape, where N =100
and K =3 (λ=40000).
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Fig. 6. Displaying plots of differing GA performance with increasing
mutation rate based on evaluations on an LSM derived from an
NK-landscape, where N =100 and K =3 (λ=40000) (sampled at 0.2/L).

Table 1. Pearson correlation coefficients observed between average best
fitness values observed on two NK-landscapes and those predicted using
the LSM for different µ, λ algorithms (where λ=40000)

Algorithm K =2 K =3

µ=2 0.98 0.97
µ=4 0.97 0.94
µ=40 0.97 0.95
µ=400 0.99 0.97
µ=2+crossover 0.99 0.98
µ=4+crossover 0.99 0.97
µ=40+crossover 1.00 0.98
µ=400+crossover 1.00 0.99

the degree of correspondence between the rankings on the LSMs
and the (µ, λ) algorithm was determined using the Kendall tau
correlation coefficient (Kendall, 1938).Values of tau were 0.82 and
0.64 for the landscapes where K =2 and K =3, respectively.

Performance can also be measured as the ability of the LSMs
to determine the best parameters such as mutation rate for further
optimizations in experiments such as directed evolution. In practical
terms, the optimal mutation rate will vary according to many
factors, including the properties of the landscape and construction
of the algorithm assessed (Cervantes and Stephens, 2009). It has
for instance been observed that high mutation rates are superior
when libraries are large in directed evolution (Drummond et al.,
2005). Amongst the evolutionary computing community there has,
however, been almost a prescriptive trend to use the 1/L heuristic
(Mühlenbein, 1992), to set the mutation rate.

Of the 16 algorithms assessed, the LSMs predict 3 optimal
mutation rates correctly (see electronic supplementary information).
On average the predictions disagree with the real data by 1.79/L,
with seven predictions disagreeing by more than 1/L . Nevertheless,
the use of LSM-predicted mutation rates results in a significant
improvement over the use of a fixed 1/L rate. A fixed 1/L
mutation rate is on average inaccurate by 2.2/L. None of the optimal
mutation rates correspond to 1/L and 10 algorithms have optimal

Fig. 7. Displaying plots of differing GA performance with increasing
mutation rate based on evaluations using the experimental landscape data
(L=10, λ=1000).

Fig. 8. Displaying plots of differing GA performance with increasing
mutation rate based on evaluations on an LSM derived from the experimental
landscape using a sampling algorithm run at 0.2/L (L=10, λ=1000).

mutation rates during search on the real landscape that differ from
this value by more than 1/L.

3.2 Experimental landscape
Plots of the performance of the different algorithms on the
experimental landscapes and the resultant LSMs are displayed
in Figures 7 and 8. There are many differences between the
experimental landscape and the NK-landscapes listed previously.
In particular:

• The experimental landscape has been shown to be filled
with local optima from noise. However, there is still a high
underlying correlation between neighbouring (in terms of
sequence similarity) sequences (Rowe et al., 2010).

• The sequences are shorter than those that comprise the NK-
landscapes.

Despite these two factors there is an overall consistency shown by
the genetic algorithms, all of which performed better at mutation
rates lower than 10/L (a level at which new sequences are essentially
generated randomly).
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Table 2. Pearson correlation coefficients observed between average best
fitness values observed on the experimental fitness landscape and those
predicted using the LSM for different µ, λ algorithms (where λ=40000)

Algorithm Correlation

µ=2 0.76
µ=5 0.67
µ=10 0.62
µ=100 0.49
µ=2+crossover 0.74
µ=5+crossover 0.67
µ=10+crossover 0.59
µ=100+ crossover 0.79

The Pearson correlation coefficients of the average best fitness
achieved on the real landscape and the LSM are much lower for
the experimental landscape than for the NK-landscapes (Table 2).
Correlations between 0.49 and 0.79 are observed for each individual
algorithm and a value of tau of 0.61 from the Kendall tau correlation
test was recorded, based on the overall predicted and observed
values. Although these values are not as high as those for the NK-
landscapes, there are still very clear trends in algorithm performance
on the real landscape that are identified by the LSM. This is best
exemplified by the clear differentiation of performance of the two
algorithms where µ=100 (with and without crossover) from the
other algorithms.

In terms of predicting the optimum mutation rate the LSM
performs well. The predictions differ from the actual landscape
on average by only 0.88/L, with only one algorithm differing by
more than 1/L. In contrast the 1/L heuristic performs poorly on
this landscape, with optimal mutations rates differing on average
by 2.25/L.

3.3 Recombination
To determine how accurately the LSM is modelling the effect of
crossover, the specificities of the predictions were assessed. To
assess whether the LSMs could accurately depict the difference
between algorithms with and without crossover a simple metric
was applied. The performance (mean best score) of each algorithm
without crossover was deducted from the performance of the same
algorithm with crossover at each mutation rate. Specificity was
recorded as the Pearson correlation between values derived from
evaluations on the LSM and those on the real landscape.

From the results in Table 3, it can be seen that there is a general
trend between the performance of the LSMs at modelling the effect
of crossover and the value of µ for each algorithm. At low values
of µ the correlation between the LSMs and the real landscapes is
low. As µ increases the correlation increases, reaching 0.99 in each
of the NK-landscapes where µ=400 and 0.97 in the experimental
landscape where µ=100.At low values of µ, there is little difference
in the performance of the algorithms with and without crossover on
all of the real landscapes assessed (Table 4). When the performances
of the two sets of algorithms are so similar it is difficult to model
the difference between the two. As µ increases, the algorithms
that include crossover increasingly outperform those without and
consequently the specificity metric increases.

Table 3. Pearson correlations representing the difference in performance
of algorithms with and without crossover on the real landscape and the
performance of algorithms with and without crossover on the LSM

µ NK, K =2 µ NK, K =3 µ Experimental landscape

2 0.75 2 −0.03 2 0.35
4 0.90 5 −0.02 4 0.77

40 0.98 10 0.93 40 0.75
400 0.99 100 0.99 400 0.97

Table 4. Pearson correlation coefficients between the performances of
algorithms with and without crossover with increasing values of µ on the
NK and experimental landscapes

µ NK, K =2 NK, K =3 µ Experimental landscape

2 0.99 0.99 2 0.98
4 0.98 0.98 5 0.95

40 0.95 0.96 10 0.92
400 0.92 0.93 100 0.90

3.4 Effect of sampling
Sampling the landscapes with an algorithm using a mutation rate
of 0.2/L means relying on a huge extrapolation of the sampled
probabilities when predicting performance at 30/L. Figures 7
and 8 represent the performance of algorithms on the experimental
landscape and the corresponding LSM. For this landscape, L is
low (10). From these figures, it may be seen that the relative
performances of the algorithms at low and high mutation rates are
incorrectly predicted by the LSMs. Specifically, in the real landscape
the performances of algorithms at low mutation rates (0.2/L) are
better than those at high mutation rates (10/L), whereas for the LSM
this trend is reversed. This is most likely a result of inaccuracies
in the transition probabilities when L is low owing to the inherent
bias in the simulation of high mutation rates due to the effect that
mutations can be ‘undone’ (see discussion above). While the LSM
has been raised to the power of 10 the effective mutation rate is
actually much lower.

Table 5 shows the correlation of performance of genetic
algorithms on the real landscapes and two LSMs, derived from
sampling algorithms employing a 1/L mutation rate and a 0.2/L
mutation rate (only genetic algorithms run at a mutation rate of
1/L or greater were assessed). For each of the three landscapes—
NK-landscape with K =2, NK-landscape with K =3 and the
experimental landscape—8 different mutation rates were assessed.
An increase in accuracy when sampling at 1/L was seen in,
respectively, 8, 5 and 7 cases. In the four cases where there was
a loss in accuracy the drop was small (0.036 maximum). In contrast,
the gains in accuracy were in some cases high, especially in the
experimental landscape. In Supplementary Figures 1 and 2 it can
be seen, for instance, that the performance of a genetic algorithm is
predicted to be better at 10/L than at 1/L. However, with the LSM
sampled at 0.2/L this is not the case.

Sampling at the higher mutation rate also greatly improves
prediction of the optimal mutation rate compared to the use of the 1/L
heuristic. Of the 16 algorithms assessed on the NK-landscapes the
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Predictive models for population performance

Table 5. Pearson correlation coefficients between average best fitness values
observed using the NK-landscapes (K =2, K =3) and the experimental
fitness landscape and those predicted using LSMs sampled at 1/L and 0.2/L
for different µ, λ algorithms (where λ=40000) with varying mutation rate
(X denotes crossover)

NK, K =2 NK, K =3 Experimental
landscape

Algorithm 1/L 0.2/L 1/L 0.2/L Algorithm 1/L 0.2/L

µ=2 0.993 0.990 0.971 0.982 µ=2 0.966 0.927
µ=4 0.992 0.990 0.965 0.976 µ=5 0.989 0.878
µ=40 0.990 0.989 0.975 0.971 µ=10 0.959 0.915
µ=400 0.996 0.994 0.989 0.982 µ=100 0.891 0.767
µ=2+X 0.997 0.995 0.980 0.982 µ=2+X 0.982 0.715
µ=4+X 0.996 0.994 0.982 0.981 µ=5+X 0.969 0.784
µ=40+X 0.996 0.995 0.991 0.983 µ=10+X 0.987 0.837
µ=40+X 0.999 0.997 0.996 0.988 µ=100+X 0.891 0.787

LSMs sampled at 1/L predict five optimal mutation rates correctly.
Most importantly, the predictions of the LSM sampled at 1/L are
better than (or at least as good as) the 1/L heuristic on every single
landscape and at every selection-pressure setting, both with and
without crossover.

4 DISCUSSION
Predicting the performance of genetic algorithms using limited
sampling is not a new concept and a multitude of statistics have
been developed to characterise the features of landscapes and the
consequent effects on algorithm performance (Naudts and Kallel,
2000). These statistics tend to be self validating in that they are
correct only in their own terms and require prior knowledge of the
landscape they are characterising. In practice these predictors of
genetic algorithm hardness often underperform and are incapable
even of determining whether a hillclimber (an algorithm that
accepts only beneficial changes) will be more effective than a
genetic algorithm. Identifying whether a landscape is ‘easy’ or
‘hard’ to search using these measures gives almost no indication
of how to tackle it. Currently, the only way to tune algorithms for
optimal performance on a landscape is to assess the performance
of these algorithms through trial and error. LSMs are abstractions
of real landscapes based on limited sampling data, allowing genetic
algorithm performance to be assessed as it would be on the real
landscapes. The ability of the LSM to characterize the landscape of
interest can be directly measured by comparison of the performance
of the genetic algorithms on the landscapes and on the LSMs.

The LSMs in this study are capable of closely replicating
algorithm performance on the landscape from which they are
derived. The cost of generating the models described here is high,
with the number of evaluations sampled from the experimental
landscape (1 050 000) similar to the number required to map
the entire 10-mer landscape (1 048 576). In contrast no sequence
information is required to construct the LSMs. This makes LSMs
cheap to construct as by-products of directed evolution experiments,
which are more than capable of producing quantities of data of this
magnitude.

It has previously been shown that accurate LSMs can be
constructed with far fewer real evaluations and an effective sampling
algorithm can be beneficial to LSM accuracy (Rowe et al., 2006).
In this study, a sampling algorithm with a low mutation rate was
selected not for its performance on the landscape, but because from
this low mutation rate a much greater range of mutation rates can
be assessed by the LSM through matrix multiplication. This comes
at a price: higher mutation rate transitions may not be sampled.
The predictions made on the performance of algorithms with much
higher mutation rates show only a small loss in accuracy, which
is remarkable given that any error within the transition matrix is
multiplied with every matrix multiplication.

The most important finding of this study has been that the simple
structure of the LSM is capable of mimicking the features of a real
biological landscape derived from real experimental data, despite
the noise that is inherent to such measurements and the complex
sequence/structural interactions. It would be interesting to determine
to what extent LSMs can replicate real biological fitness landscapes,
and whether they can be extended to model non-static and multiple
fitness functions. It may be necessary to modify the structure of
the LSMs (as we have attempted here to model recombination).
For instance higher order Markov models may be more appropriate
for highly neutral and epistatic landscapes. Further, landscape state
machines are not limited to studying static mutation rates but could
also be applied to dynamic mutation rates and could feasibly be
implemented in memetic algorithms (Merz, 2004).

Directed evolution experiments give an insight into the process
of molecular evolution that is unobtainable at the level of whole
organisms. Parent and child fitness values have previously been used
to make quantitative assessments of biomolecular fitness landscapes
through measures such as autocorrelation. LSMs go beyond simple
landscape metrics, providing an abstraction of the real systems upon
which further experiments can be performed (Altenberg, 1995). With
the onset of high-throughput methodologies for the assessment of
modified/transformed peptides (Drummond et al., 2005), proteins
and cells, LSMs can make use of this deluge of data in a tractable
manner independent of any sequence or structural information. The
resulting LSMs may serve as a resource to researchers studying
molecular evolution, providing a platform beyond simplistic and
often unrealistic model landscapes.

In this study, we extended LSMs to generate 3D structures capable
of modelling recombination in genetic algorithms (Altenberg, 1995).
Using several matrices representing different mutation rates serially
can permit the assessment of algorithms with dynamic mutation
rates and there is no reason to suggest that the structure of the
LSMs could not be extended to model multiple fitness functions
simultaneously. Experiments performed using NK-landscapes and
an experimental landscape indicates LSMs represent a promising
tool in both evolutionary computation and evolutionary biology.
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