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Abstract
The characterization of industrial yeast strains by examining their metabolic foot-
prints (exometabolomes) was investigated and compared to genome-based discrimi-
natory methods. A group of nine industrial brewing yeasts was studied by comparing
their metabolic footprints, genetic fingerprints and comparative genomic hybridiza-
tion profiles. Metabolic footprinting was carried out by both direct injection mass
spectrometry (DIMS) and gas chromatography time-of-flight mass spectrometry
(GC–TOF–MS), with data analysed by principal components analysis (PCA) and
canonical variates analysis (CVA). The genomic profiles of the nine yeasts were com-
pared by PCR–restriction fragment length polymorphism (PCR–RFLP) analysis,
genetic fingerprinting using amplified fragment length polymorphism (AFLP) anal-
ysis and microarray comparative genome hybridizations (CGH). Metabolomic and
genomic analysis comparison of the nine brewing yeasts identified metabolomics as
a powerful tool in separating genotypically and phenotypically similar strains. For
some strains discrimination not achieved genomically was observed metabolomically.
Copyright  2007 John Wiley & Sons, Ltd.
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Introduction

Within the industrial sector there is a continuing
need for new methods for the improved char-
acterization of yeast strains. For example, it is
important to be able to separate brewing strains
from non-brewing ‘wild’ yeast strains and also
to discriminate between closely-related brewing
strain types. Traditional characterization methods,
based on biochemical, morphological and physi-
ological criteria, deduced that top fermenting ale

strains belong to Saccharomyces cerevisiae, while
their bottom fermenting lager counterparts are
grouped in the species S. pastorianus (Deak and
Beuchat, 1996). Genome sequencing has deter-
mined that S. pastorianus strains are hybrids of
S. cerevisiae and either S. bayanus or S. mona-
censis, an old species grouped now in S. pastori-
anus (Hansen and Kiellandbrandt, 1994; Vaughan-
Martini and Kurtzman, 1985). The complexity
grew when it was discovered that S. bayanus
(CBS 380) is a hybrid of S. cerevisiae and
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S. uvarum (Nguyen et al., 2000). Rainieri et al.
(2006) deduced that there are pure strains of S.
bayanus (e.g. NBRC 1948) and S. uvarum (CBS
7001) as well as hybrid lines that contain a
third, as-yet unidentified lager genome; hybrid lines
identified included S. cerevisiae/S. bayanus/Lager,
S. bayanus/S. uvarum/Lager and S. cerevisiae/S.
bayanus/S. uvarum/Lager. Rainieri et al. (2006)
suggested that the S. pastorianus name be used for
multiple genetic lines that contain the S. cerevisiae
genome.

The identification and classification of yeast
isolates is a continuous requirement and is nor-
mally applied at the genomic level. In the recent
past, various molecular techniques have been
used to separate, classify and identify brewing
yeasts; including the interlinked species S. cere-
visiae and S. pastorianus (Tornai-Lehoczki and
Dlauchy, 2000; Wightman et al., 1996; Yamag-
ishi et al., 1999). However, the genetic complex-
ity inherent in the brewing yeast species can
result in misclassification and genetic methods do
not always allow reliable separation of closely
related strains. The metabolome (collection of low
molecular weight organic and inorganic chemi-
cal species present in a cell or biological system)
can detect genotypic and phenotypic differences
in yeast (Oliver, 1998; Raamsdonk et al., 2001;
Himmelreich et al., 2003, 2005) and is expected
theoretically, and has been shown experimen-
tally, to have a greater discriminatory power than
transcriptomics and proteomics (Kell and West-
erhoff, 1986; Urbanczyk-Wochniak et al., 2003).
The aim of the present work was thus to use a
metabolomics approach for the chemotaxonomy of
brewing yeasts.

The metabolome is considered to be a more
functional level at which to study biological
systems, as it represents the final downstream
product of gene expression (Dunn et al., 2005;
Goodacre et al., 2004; Kell, 2004, 2006; Mahar-
jan and Ferenci, 2005). Protocols involving rapid
quenching and extraction of intra-cellular metabo-
lites (the endometabolome) into organic solvents
are employed to study intracellular metabolism
(Maharjan and Ferenci, 2003). However, this is
technically and economically demanding (Villas-
Bôas et al., 2005) because of rapid metabolic
fluxes and the complexity of the metabolome
(size, physical/chemical properties, large concen-
tration ranges). Metabolic footprinting (Allen et al.,

2003, 2004; Kell et al., 2005) provides an alter-
native that does not rely on the measurement
of intracellular metabolites but on the monitor-
ing of the exometabolome, a combination of the
metabolites secreted from the intracellular volume
and any unused growth medium components, and
as such can be performed without the require-
ment for quenching and extraction. A metabolite-
rich medium is employed to ‘probe’ intracellu-
lar metabolism, with unused medium components
and excreted metabolites being detected in the
metabolic footprint. Metabolic footprinting has pre-
viously proved useful in classifying gene functions
by comparing the collection of single knockout
strains of S. cerevisiae (Allen et al., 2003), in mode
of action studies (Allen et al., 2004), in study-
ing the Saccharomyces population status of wine
fermentations (Howell et al., 2006) and in access-
ing bacterial fibre degradation (Villas-Bôas et al.,
2006). Secretion of metabolites can be optimized
by supplementing the medium with a metabo-
lite cocktail to stimulate ‘overflow metabolism’
(Allen et al., 2003; Kell et al., 2005). A num-
ber of analytical technologies can be employed
to study metabolic footprints (Dunn et al., 2005).
Direct injection electrospray mass spectrometry
(DIMS) and gas chromatography-time of flight-
mass spectrometry (GC–TOF–MS) were chosen
to be used in this study to assess whether differ-
ent brewing yeast strains could be discriminated
from each other on the basis of their metabolic
footprints.

The genetic architecture of the yeasts was exam-
ined by AFLP, whole genome microarray analy-
sis and PCR–restriction fragment length polymor-
phism (PCR–RFLP) analysis. AFLP is a PCR-
based genotyping method (patented by Keygene,
The Netherlands) that has been developed for dif-
ferentiating at both the inter- and intra-specific
levels (Koeleman et al., 1998). AFLP patterns are
a representation of the whole genome and have
been used for strain typing and species iden-
tification purposes for a variety of microorgan-
isms, including yeasts of medical and industrial
importance (Azumi and Goto-Yamamoto, 2001;
de Barros Lopes et al., 2002). In this study, flu-
orescent AFLP (f -AFLP) was used in conjunc-
tion with a capillary automated DNA sequencer,
which offers a rapid route to achieving robust
strain typing of brewing yeast strains. Compara-
tive genome hybridization (CGH) to compare the
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gene content of the brewing strains to the genome-
sequenced laboratory strain S288c was employed
using microarray analysis. The hybridized array
reveals genes common to both strains and genes
that are present in the reference strain but absent
in the test strain. It is known that many lager
brewing strains are hybrids, making it difficult
to predict their metabolic capabilities, and so the
hybrid nature of the strains selected was verified
by using a PCR–RFLP approach, as described by
Rainieri et al. (2006).

In the present study, the application of chemotax-
onomy at the metabolomic functional level, using
metabolic footprinting to characterize yeast strains,
was assessed and compared to variations observed
at the genomic level, as shown by AFLP and CGH
using a whole genome microarray approach. Within
the National Collection of Yeast Cultures (NCYC)
are a number of isolates of the Saccharomyces
sensu stricto group which are employed in the
brewing industry. Nine yeast strains were chosen
for further investigation, which included two ale
strains, six lager strains and the S. cerevisiae type
strain.

Materials and methods

Yeast strains

The yeast strains used in this study are listed in
Table 1. Eight of the strains are industrial isolates
listed as either lager or ale strains. The ninth strain
is a reference S. cerevisiae strain, the taxonomic

type strain (NCYC 505), although this was itself
originally isolated from a brewery. All strains were
obtained from the National Collection of Yeast Cul-
tures, Norwich, UK (http://www.ncyc.co.uk).

PCR–RFLP analysis

The hybrid nature of the yeasts in the study was
examined by PCR–RFLP analysis, as detailed in
Rainieri et al. (2006).

Growth temperature tests

The strains were grown on Yeast Extract/Malt
Extract (YM; Difco, Becton, Dickenson and Co)
agar, containing 0.3% w/v yeast extract, 0.3% w/v
malt extract, 0.5% w/v peptone, 1% w/v glucose
and 2% agar, for 3 days at both 25 ◦C and 37 ◦C.

AFLP fingerprinting

Yeast strains were grown in YM broth for 2–3 days
at 25 ◦C on a rocker shaker. Genomic DNA was
purified using the DNeasy Tissue Kit (Qiagen), fol-
lowing a modified version of the manufacturer’s
yeast protocol. Cells were collected by centrifu-
gation at 5000 × g for 10 min, resuspended in
600 µl sorbitol buffer (1 M sorbitol, 100 mM sodium
EDTA, 14 MM β-mercaptoethanol) and 20 µl lyt-
icase solution (200 U; Sigma), and incubated at
30 ◦C for 1.5 h to digest the cell walls. Digested
cell suspensions were centrifuged at 1000 × g for
10 min and the pelleted spheroplasts resuspended
in 180 µl Buffer ATL (Qiagen) and 20 µl proteinase

Table 1. Strains used in this study

Classification method

NCYC strain Description Historical PCR–RFLP Growth at 37 ◦C

505 Type strain S. cerevisiae S. cerevisiae S. cerevisiae
1187 Ale S. cerevisiae Hybrid S. cerevisiae
1332 Ale S. cerevisiae Hybrid S. cerevisiae
453 Lager S. pastorianus Hybrid S. pastorianus or S. bayanus
530 Lager S. pastorianus S. cerevisiae S. cerevisiae
680 Lager S. pastorianus Hybrid S. pastorianus or S. bayanus
1056 Lager S. pastorianus Hybrid S. pastorianus or S. bayanus
1324 Lager S. bayanus Hybrid S. pastorianus or S. bayanus
2340 Lager S. cerevisiae S. cerevisiae S. cerevisiae

Historical classification was based on traditional chemotaxonomy and represents how the strains were originally accessioned into the NCYC.
The hybrid nature of strains was demonstrated by PCR–RFLP analysis, the term ‘hybrid’ indicating that the strain contained a mixture of S.
cerevisiae, S. bayanus and the as-yet unidentified ‘lager’ genomes. Classification based on ability to grow at 37 ◦C differentiated between S.
cerevisiae, which could grow at this temperature, and S. pastorianus and S. bayanus, which could not.
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K (Qiagen) prior to overnight lysis at 55 ◦C. The
samples were treated with 4 µl RNase A (400 µg;
Qiagen) for 2 min at room temperature. Following
purification, DNA concentrations were determined
spectrophotometrically at 260 nm and by agarose
gel electrophoresis.

AFLP analysis (Keygene, The Netherlands) was
carried out using the AFLP Core Reagent Kit
(Invitrogen). Approximately 300 ng of each
genomic DNA were digested with EcoRI and
MseI, following the manufacturer’s protocol. After
2.5 h incubation at 37 ◦C and 10 min heat inac-
tivation at 70 ◦C, EcoRI and MseI adaptors were
ligated to the restriction digest at room temper-
ature for 2 h in a total volume of 50 µl, again
following the manufacturer’s protocol. Aliquots
(2 µl) of a 10-fold dilution of the ligation reac-
tion in TE buffer (10 MM Tris–HCl, 1 mM sodium
EDTA, pH 7.5) were used as template in a 20 µl
final volume ‘non-selective’ PCR with 20 pmol
each of EcoRI-0 (5′-GACTGCGTACCAATTC-3′)
and MseI-0 (5′-GACGATGAGTCCTGAGTAA-3′)
primers and 0.5 U Thermoprime-Plus DNA poly-
merase (Abgene). PCR conditions were 20 cycles
of 94 ◦C for 30 s, 56 ◦C for 1 min and 72 ◦C
for 1 min. Aliquots (2 µl) of a 50-fold dilution
of this PCR in TE buffer were then re-amplified
in a 20 µl final volume ‘selective’ PCR, using
1 pmol 6-carboxyhexachlorofluorescein (HEX)-
labelled EcoRI-AC primer (5′-GACTGCGTACC-
AATTCAC-3′) and 2.3 pmol unlabelled MseI-
C primer (5′-GACGATGAGTCCTGAGTAAC-3′)
with 1.5 mM MgCl2 and 1 U Thermoprime-Plus
DNA polymerase (Abgene). PCR conditions com-
prised an initial touchdown phase of 13 cycles
of 94 ◦C for 30 s, 65 ◦C for 30 s and 72 ◦C
for 1 min, lowering the annealing temperature by
0.7 ◦C at each successive cycle, followed by 23
cycles of 94 ◦C for 30 s, 56 ◦C for 30 s and
72 ◦C for 1 min and a final step of 72 ◦C for
5 min. 0.5 µl of each selective PCR was mixed
with 0.125 µl GeneScan-500 ROX Size Standard
(Applied Biosystems, ABI) and denatured with
9.875 µl Hi-Dye formamide (ABI) in a total vol-
ume of 11 µl at 94 ◦C for 3 min. For each yeast
strain, ‘non-selective’ PCRs were performed in
triplicate from the same ligation reaction and indi-
vidual ‘selective’ PCRs carried out with these
to determine the reproducibility of AFLP anal-
ysis. AFLP samples were electrophoresed in an
ABI 3700 series automated DNA sequencer and

the data analysed with GeneScan software (ABI).
Raw GeneScan AFLP data files were converted
to text files containing information of DNA frag-
ment size and peak intensity, using an in-house
programme kindly provided by Jenn Conn (John
Innes Centre, Norwich, UK). The fragment size
data were then converted to integer bp values and
the peak intensities for each fragment size summed
using an in-house programme kindly provided by
Mark Reuter (IFR, Norwich, UK). AFLP profiles
were trimmed so that only the size range 60–490
bp was analysed. Peak intensities were then nor-
malized within replicates so that the total trace
intensity was given a value of 1 and an average
AFLP profile was calculated from replicates. AFLP
fragments were then scored as 0 or 1 for their
absence or presence in each profile under compar-
ison, and a similarity index calculated using the
Dice coefficient between pairs of averaged AFLP
profiles (Hand et al., 2001). The Dice coefficient is
derived from the formula: 2a/(2a + b + c), where
a is the number of common fragments and b
and c are the number of unique fragments in a
given pair of AFLP profiles. Cluster analysis of
the AFLP profiles was carried out based on the
(1 — Dice coefficient) and dendrograms created by
the unweighted pair group method using arithmetic
means (UPGMA).

Comparative genome hybridization (CGH)

Microarray probes representing 6250 open read-
ing frames (ORFs) in the S. cerevisiae genome
were purchased from MWG and consisted of 40-
mer oligonucleotides. These were printed onto
Aldehyde+ slides from Genetix, using an in-
house arrayer built to Pat Brown’s specifications
(http://cmgm.stanford.edu/pbrown/mguide/
index.html). Target DNA was extracted from
strains using the protocol described by Borts
et al. (1986), subjected to sonication (XL-2020
Sonicator and cup horn from Misonix) at 25%
maximum power to generate random fragments
of 1 or 2 kb and purified using a QIAquick

PCR purification kit (Qiagen). Sample and ref-
erence DNA was then random prime-labelled,
using Cy3 and Cy5 conjugated dUTP from Amer-
sham, and hybridized to post-processed arrays for
at least 18 h at 60 ◦C (detailed protocols can
be found at: http://cmgm.stanford.edu/pbrown/
protocols/index.html). Following washes of 2×
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SSC, 0.14% SDS, 2× SSC, 1× SSC and 0.6× SSC,
the arrays were immediately scanned and analysed
using Genepix 6 and a 4000B reader from Axon
Instruments. Triplicate arrays were used per yeast
strain analysed. Array data were analysed using the
GENCOM excel add-in, as described by Pin et al.
(2006). Genes from each test strain that were iden-
tified as variable (i.e. absent, partially divergent
or deleted) in two or more of the triplicate slide
set were designated as being variable in the anal-
ysed strain compared to the S288c reference strain.
Genes were then scored as 0 for variable and 1
for non-variable and a similarity index calculated
using the Dice coefficient.

Metabolic footprinting: DIMS and
GC–TOF–MS

Yeasts were maintained on YM agar, whose com-
position is described above, at 30 ◦C. Inocula for
DIMS and GC–MS experiments were prepared
from single colonies grown in 10 ml YM broth
with shaking at 150 r.p.m. and 30 ◦C for 16 h,
washed with sterile Ultrapure water, counted in
a haemocytometer and inoculated into 50 ml syn-
thetic defined minimal media supplemented with a
metabolite cocktail of amino acids, organic acids
and pyrimidine bases (Allen et al., 2003). Cultures
were inoculated at a final concentration of 5 ×
105 cells/ml and incubated until stationary phase,
with shaking at 200 r.p.m. and 30 ◦C for 20 h
prior to harvesting. 1 ml samples of spent culture
medium were centrifuged at 8000 × g for 5 min
and each supernatant divided into 200 µl aliquots
for storage at −80 ◦C. Samples for DIMS analy-
sis were diluted ten-fold with 30% v/v methanol
in Ultrapure water containing 27 mM formic acid
and centrifuged at 8000 × g for 5 min immediately
prior to analysis (Allen et al., 2003). 450 µl sam-
ples for GC–MS analysis were spiked with inter-
nal standard (100 µl 0.18 mg/ml succinic d4 acid)
and lyophilized using a HETO VR MAXI vacuum
centrifuge attached to a HETO CT/DW 60E cool-
ing trap (Thermo Life Sciences, UK). To induce
volatility and thermal stability, chemical deriva-
tization was performed in two stages; 20 mg/ml
O-methylhydroxyamine in pyridine (50 µl) was
added and the mixture heated at 40 ◦C for 90 min
before N -methyl-N -(trimethylsilyl)trifluoroacet-
amide (50 µl) was added and the mixture fur-
ther heated for 90 min at 40 ◦C. All chemicals

for GC–TOF–MS were of analytical grade min-
imum (Sigma-Aldrich, UK). Samples for DIMS
analysis were analysed by direct infusion for 2 min
into a Waters electrospray Q-TOF instrument at
a flow rate of 100 µl/min. Three biological and
three analytical replicates were analysed. Mass
spectra were exported as text files and their for-
mat changed using a Perl macro, before being
combined using a Matlab (www.mathworks.com)
macro into a m/z nominal mass vs. intensity for-
mat (both macros written in-house). The data were
normalized to the highest intensity peak for each
sample, and all samples combined into a sin-
gle data matrix, tabulating the intensity for each
mass between m/z 65 and 999. All samples were
also analysed by GC–TOF–MS (Agilent 6890 gas
chromatograph; LECO, Stockport, UK) coupled
to LECO Pegasus III time-of-flight mass spec-
trometer, (LECO, Stockport, UK) as previously
described (O’Hagan et al., 2005). From the three
biological replicates available for each strain, one
biological replicate was analysed three times and
the other two biological replicates once, giving a
total of five analyses per strain. Raw data pro-
cessing was performed using ChromaTof version
2.12 and was exported in ASCII format as a list
of metabolite peaks and associated peak areas, if
the peak was detected in the sample; 383 unique
metabolite peaks were detected in all samples,
from which 146 were identified by comparison of
their mass spectra with libraries of reference com-
pounds [authors’ library and the Golm Metabolome
Database (http://csbdb.mpimp-golm.mpg.de/
csbdb/gmd/msri/gmd msri.html)] analysed under
the same instrumental conditions (comparison
based on mass spectrum). From these, 112 were
definitely identified using the authors’ mass spec-
tral/retention index library (comparison based on
mass spectrum and retention time), and this cor-
responded to 77 actual metabolites. All data
were normalized to the internal standard (peak
area — metabolite/peak area — internal standard)
prior to subsequent multivariate analysis. This was
carried out in Matlab (http://www.mathworks.
com) for both types of data. GC–TOF–MS data
were normalized to zero mean and unit variance
and DIMS data to zero mean, with subsequent prin-
cipal components analysis (PCA) being performed
to model variation in the metabolic footprints of
each strain compared to the variation associated
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within the group of strains. For DIMS data, subse-
quent canonical variates analysis (CVA) was per-
formed, with each group containing all analytical
replicates of a given biological replicate (hence,
9 × 3 groups were defined in total). For this CVA,
26 PC scores were passed on as input variables as
the minimum possible for the calculations to be sta-
tistically robust. Although this approach was only
‘semi-supervised’ and less prone to overfitting than
a fully-supervised method (in which case one group
per strain would have been defined), care was taken
to validate the analysis using cross-validation (val-
idating both the PCA and CVA steps and leaving
three analytical replicates out at a time). Note that
this was not suitable for the GC–MS data, due to
the lesser availability of analytical replicates.

Results and discussion

In this study genetic variation of nine brewing-
related Saccharomyces strains was characterized
by AFLP, PCR–RFLP and CGH. The effect of
this variation on the final downstream product of
gene expression, the metabolome, was examined.
The discriminatory power of the various techniques
was compared and conclusions drawn based on the
different patterns of genetic and metabolic variation
observed.

Hybrid nature and nomenclature of the
brewing yeast strains used in this study

The brewing yeasts used in this study were
deposited into the National Collection of Yeast
Cultures between 1955 and 1989. All had been
originally classified by traditional chemotaxonomic
methods and their nomenclature had often changed
as new methodologies were introduced.

Using the most recently described PCR–RFLP
method (Rainieri et al., 2006), the genetic back-
ground of the brewing strains analysed was deter-
mined (Table 1). The PCR primers used were based
on the S. cerevisiae and S. uvarum genomes and
allowed for the amplification of three different
homologous genes; FUN14, RIP1 and HIS3 from
S. cerevisiae, S. uvarum and S. bayanus genomes.
PCR–RFLP analysis was used to differentiate
between S. uvarum and S. bayanus genomes.

Interestingly, the two ale strains designated as S.
cerevisiae were found to contain both S. cerevisiae

and S. bayanus RFLPs. This suggested that they
should be designated as S. pastorianus under the
Rainieri et al. (2006) proposal that the S. pastori-
anus name should be used for the multiple genetic
lines that contain the S. cerevisiae genome, viz.
the S. cerevisiae/S. bayanus hybrid line and the S.
cerevisiae/S. bayanus/S. uvarum hybrid line.

Four of the six lager strains (NCYC 453, NCYC
680, NCYC 1056 and NCYC 1324) were correctly
(according to Rainieri et al., 2006) designated S.
pastorianus, as they were also found to contain
both S. cerevisiae and S. bayanus RFLPs. The
remaining two lager strains (NCYC 530 and NCYC
2340) were found to contain only a S. cerevisiae
background, despite one (NCYC 530) having been
deposited originally as S. pastorianus.

Ability of ale strains to grow at 37 ◦C
The capacity for growth at 37 ◦C is currently
regarded as an additional differentiating factor,
allowing for taxonomic separation of S. cerevisiae,
which can grow at 37 ◦C, from strains of S. pas-
torianus or S. bayanus, which do not have this
ability (Vaughan-Martini and Martini, 1993; Walsh
and Martin, 1977). The two ale strains analysed
grew at 37 ◦C (Table 1), suggesting that they should
be classified as S. cerevisiae, which is contrary
to the hybrid nature determined by PCR–RFLP
but consistent with the historical classification. The
two lager strains shown by PCR–RFLP to be
pure S. cerevisiae strains (NCYC 530 and NCYC
2340) were also able to grow at 37 ◦C, which is
in agreement with previous temperature differen-
tiation tests. Likewise, all lager strains shown to
be hybrids by PCR–RFLP were unable to grow
at 37 ◦C. These results highlight the limitations of
such techniques for discrimination amongst indus-
trial strains and more precise methodologies are
discussed below.

Genetic fingerprinting of ale and lager brewing
yeasts

AFLP analysis was used to give a ‘snapshot’ of
DNA sequence variation across the whole genome.
The banding patterns are shown in Figure 1 and
the resulting cluster analysis based on the Dice
coefficient in Figure 2. Greater genetic diversity is
shown by larger 1-Dice coefficient values. AFLP
analysis separated the yeast strains into two main
clusters. The lager strains NCYC 680, NCYC 1056,
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NCYC 1324 and NCYC 453 grouped together, with
NCYC 453 and 1324 being most genetically sim-
ilar. The lager strain NCYC 530 and the S. cere-
visiae type strain NCYC 505 clustered with the
ale strain NCYC 1332. The ale strain NCYC 1187
and the lager strain NCYC 2340 were shown to
be the most genetically diverse when compared to
all the other strains studied. Although AFLP gave
good strain discrimination, the observed groupings
did not correlate precisely with industrial classifi-
cations.

CGH of ale and lager brewing yeasts

A microarray comprising of 6250 ORFs in the S.
cerevisiae S288c genome was used to compare the
whole genome gene content diversity among the
nine yeast strains. The GENCOM algorithm (Pear-
son et al., 2003; Pin et al., 2006) was used to anal-
yse the microarray data by comparing the ratios of
the fluorescence signals obtained to predict whether

Figure 1. Computer-generated gel image of AFLP
traces from the nine brewing yeast strains. Fluorescently
HEX-labelled AFLP traces are shown in green, along
with one of the internal ROX-500 molecular weight
marker traces shown in red. The image was created
using Genographer version 1.6.0 freeware (Benham JJ;
http://hordeum.oscs.montana.edu/genographer/)

Figure 2. Phylogenetic tree derived from cluster analysis
of AFLP patterns from the nine brewing yeast strains

or not a gene is variable. A variable gene could be
absent from the genome, partially deleted or diver-
gent, to the extent that it gives a significantly lower
hybridization signal than the control strain. The
hybridized array revealed genes common to both
strains and genes that are present in the reference
strain but absent in the test strain. This method
cannot, of course, detect genes present in the test
strain but missing in the reference strain. Strains
found to be similar in terms of having similar genes
absent compared to the reference strain (see Sup-
plementary Table 1), fell into two main groups.
Group 1 included the ale strain NCYC 1187 and
the lager strains NCYC 530, NCYC 680, NCYC
1056 and NCYC 2340. Group 2 included the lager
strains NCYC 453 and NCYC 1324, the ale strain
NCYC 1332 and the reference strain NCYC 505.
These results did not correlate with: (a) historical
strain information; (b) genetic variation as identi-
fied by AFLP analysis; or (c) metabolic profiling
(see below). This may be because the reference
strain S288c is a laboratory strain and may be
missing genes associated with brewing (e.g. for
flocculation, head formation, maltose metabolism)
that would have aided in the differentiation between
brewing strain types. Many of the strains anal-
ysed were identified as hybrids and thus, without
comparing them to reference S. pastorianus and S.
bayanus whole genome arrays, it is hard to inter-
pret the data obtained, due to the complexity of
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the biological pathways involved. Nevertheless, we
conclude that currently available methods of CGH
analysis failed to provide meaningful discrimina-
tion in an industrial strain context.

We did, however, identify a number of vari-
able genes that are associated with carbohydrate
metabolism in brewing, such as ADH7, AAD3,
AAD15 and AAD1 6 (alcohol metabolism), ALD2
(aldehyde metabolism), HXT15 and HXT16 (glu-
cose metabolism), MAL33 (maltose metabolism)
and GDB1 and GPH1 (glycogen metabolism). A
number of asparaginases were also identified to be
variable (ASP3-1, ASP3-2, ASP3-3 and ASP3-4 )
and the presence or absence of these genes may be
of future discriminatory importance, as it is known
that asparagine is a key amino acid present in wort
(Jones and Pierce, 1964).

Metabolic footprinting of ale and lager brewing
yeasts

GC–TOF–MS and DIMS detected a wide vari-
ety of metabolites in the metabolic footprint,
including amino and organic acids, carbohydrates,
lipids, alcohols and phosphorylated compounds
(see Supplementary Tables 2 and 3), demonstrat-
ing the richness of biological information that can
be obtained using these approaches.

The DIMS data were analysed by PCA
(Figure 3a), the scores of which were then fur-
ther analysed by CVA in a fully validated model
(Figure 3b). The scores plots showed similar clus-
tering but the combination of techniques allowed
further interpretation to be carried out. Both plots

show that there was a clear grouping of the ale
strains, NCYC 1187 and NCYC 1332. The lager
strains NCYC 680 and NCYC 1056 formed a clus-
ter with two other lager strains, NCYC 453 and
NCYC 1324 (although these two sets of strains are
separated on PC2, which represents 10.1% of the
variance, they are very close on PC1, which rep-
resents 73% of the variance; they are also close
on the CVA plot). The reference S. cerevisiae
type strain NCYC 505 exhibited more variabil-
ity between biological replicates than other strains,
and was positioned between the ale strains and the
group of lager strains described above. The lager
strain NCYC 2340 was overall similar to the group
of lager strains but was found to differ at a num-
ber of specific m/z values (i.e. higher intensities at
m/z 86 as well as 99, 113, 72, and lower inten-
sities at m/z 84 and 130), which caused it to be
separated in the CVA on CV2, and in the PCA on
the fifth PC axis (1.9% of the variance). The lager
strain NCYC 530 distinguished itself from all oth-
ers on CV2 (and it did this only slightly on the
second PC axis), and this was because of extremely
low responses at m/z 110 and 156 and a quite
low response at m/z 80. The results obtained with
DIMS were extremely encouraging in their ability
to explore the similarities between strains, but an
inherent limitation of the technique is in terms of
interpretability. Chromatography–mass spectrom-
etry technologies are thus required for metabolic
identification.

PCA of GC–TOF–MS data (Figure 4) also
clearly separated the ale strains, NCYC 1187 and
NCYC 1332, from the others. Metabolites showing

Figure 3. Metabolic footprinting of brewing yeast strains by DIMS, (a) analysed by PCA and (b) validated by subsequent
semi-supervised CVA. NCYC 505 is the type strain of S. cerevisiae, NCYC 1187 and NCYC 1332 are S. cerevisiae ale strains,
while all others are lager strains of S. cerevisiae, S. pastorianus or S. bayanus
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concentration-related differences between strains
NCYC 1187 and NCYC 1332, and the other strains
included trehalose and organic/fatty acids, such as
octadecanoic, lactic and trans-aconitic. Indeed, tre-
halose was below the level of detection in the type
strain and all the lager strains tested and only found
in the two ale strains (Figure 5 and see Supple-
mentary Table 4). Trehalose acts as a protectant
that contributes to the survival of yeast under var-
ious stressful conditions (Fernandes, 2005; Van-
laere, 1989). It has been found to accumulate in
high amounts in ethanol-tolerant mutant sake yeast
(Ogawa et al., 2000) and as such is a beneficial
characteristic for brewing yeast. The results pre-
sented here suggest that this metabolite may be
useful in discrimination between brewing strains.
The type strain NCYC 505 and the lager strain
NCYC 530 can be seen to separate on PC2 away
from the other strains with GC–TOF–MS data.
The lager strains NCYC 1056 and NCYC 680 clus-
tered with the lager strains NCYC 453 and NCYC
1324. A number of amino acids (valine, lysine,
alanine and methionine), maltose and pyruvic acid
showed concentration-related differences for these
four strains relative to other strains, based on the
GC–TOF–MS data (see Supplementary Table 3).
The lager strain NCYC 2340 was isolated again;
however, there was only a small separation in
PC4 between NCYC 2340 and two other lager
strains, NCYC 453 and NCYC 1324. Of interest
is the discriminatory power of these techniques;
GC–TOF–MS was simply analysed by unsuper-
vised PCA and allows for definitive metabolite
identification with a throughput of 80 samples/day,
whereas DIMS allowed for rapid screening (2 min)
with good separation by PCA or CVA and a higher-
throughput approach compared to GC–TOF–MS
(15 min), but lacked the ability for specific metabo-
lites to be identified.

The metabolic footprinting clustering patterns
obtained from multivariate data analysis of both
DIMS and GC–TOF–MS data were similar. Sig-
nificantly, in both analyses the ale strains (NCYC
1187 and NCYC 1332) formed a defined clus-
ter, separated from the lager strains. Generally the
lager strains NCYC 453, NCYC 1324, NCYC 680
and NCYC 1056 group together. However, the
lager strain NCYC 530 has a different metabolic
profile in both DIMS and GC–TOF–MS com-
pared to all of the other analysed strains, but is
most metabolically similar to the type strain NCYC

Figure 4. Metabolic footprinting of brewing yeast strains
by GC–TOF–MS, analysed by PCA. NCYC 505 is the type
strain of S. cerevisiae, NCYC 1187 and NCYC 1332 are S.
cerevisiae ale strains, while all others are lager strains of S.
cerevisiae, S. pastorianus or S. bayanus

Figure 5. ‘Box-and-whisker’ plot of relative trehalose levels
in GC–TOF–MS samples from the nine brewing yeast
strains. The response ratio is the measure of trehalose
signal relative to the internal standard in each sample. The
lower and upper edges of the ‘box’ are the 25th and
75th percentiles of the samples, with the distance between
them being the inter-quartile range. The sample median is
represented by the line inside the ‘box’ and its position
away from the centre represents the degree of skewness
in the data. The ‘whiskers’ extending from the upper and
lower edges indicate the maximum and minimum sample
values, respectively

505. The lager strain NCYC 2340 shows the most
variance between the two metabolic footprinting
methods, having a metabolic profile most similar
to the main cluster of lager strains (NCYC 453,
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NCYC 680, NCYC 1056 and NCYC 1324) in the
GC–TOF–MS PCA, whereas classification based
on DIMS data suggests a more diverse profile com-
pared to the other strains analysed.

When performing metabolic footprinting, care
must be taken to ensure that any differences
observed between strains are not growth stage-
related. This is normally achieved by inoculating
cultures with the same number of cells and incu-
bating for a sufficient period of time following
entry into stationary phase before harvesting the
culture medium (Allen et al., 2003). In the present
study, the same numbers of cells were used as start-
ing inocula but variability in cell size may have
resulted in variation in starting OD600nm values and
subsequent final OD600nm values (Table 2). Differ-
ences in growth rate between strains also could not
be ruled out, but when the final OD values were
compared with the PCA and CVA plots for both
the DIMS and GC–TOF–MS data, there was no
trend relating PC1, PC2, CV1 and CV2 scores to
growth (Figure 6), thus the discrimination between
strains was not simply growth-related.

Similarly, the estimated number of elapsed gen-
erations did not correlate with PC1, PC2, CV1 and
CV2 scores (see Supplementary Figure 1) On the
contrary, many of the strains clustering metaboli-
cally showed large differences in their growth pat-
tern, e.g. the NCYC 1187/NCYC 1332 and NCYC
680/NCYC 1056 metabolic clusters. In addition,

Table 2. Growth of strains for metabolic footprinting

NCYC
strain

Starting
OD600 nm

Final
OD600 nm

Estimated number
of generations

530 0.18 7.9 5.4
2340 0.12 7.0 5.8
1332 0.08 6.2 6.2
505 0.08 5.0 6.0
1056 0.09 4.9 5.7
1187 0.12 4.9 5.3
453 0.14 4.8 5.1
1324 0.08 4.8 5.9
680 0.09 3.5 5.2

Washed inocula were prepared as described in Materials and methods
and added at an initial concentration of 5 × 105 cells/ml to the defined
metabolite cocktail-containing medium of Allen et al. (2003). Cultures
were incubated at 30 ◦C, 200 r.p.m. for 20 h prior to harvesting.

many of the discriminatory metabolites between
strains in the PCA were not present in the 0 h post-
inoculated growth medium and hence were secreted
from the cells. These differences were therefore not
due to altered consumption rates of growth medium
components. Undoubtedly, growth rate and growth
phase will have an influence on strain separation in
PCA space, but this is considered to be negligible
in the present study because of the trends in the
data described above.

The method is being developed for rapid, high-
throughput analysis of samples and hence requires
to be robust with respect to differences in growth

Figure 6. Lack of relationship between growth, as expressed as final culture OD600nm, and PCA/CVA scores from
metabolic footprinting
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rate between strains within certain limits. With
this in mind, different growth media, some more
minimal than that used in the present study, are
currently being examined for their usefulness in
metabolic footprinting, but the metabolite cocktail-
containing medium used by Allen et al. (2003)
has already been optimized for probing ‘overflow’
metabolism in yeast.

Metabolic footprinting clearly separates ale and
lager strains

The analysis of metabolic footprints by GC–
TOF–MS and DIMS, and subsequent multivariate
analysis, showed a similar but not identical pattern
of diversity, as evident from AFLP analysis. Of
particular interest was the clear separation of ale
and lager strains by metabolic footprinting, as
would be expected biologically.

Both metabolic footprinting and AFLP analysis
separated the lager strains NCYC 453, NCYC 680,
NCYC 1056 and NCYC 1324 from all of the
other strains in the study, showing that they are
the least diverse of the strains analysed. Despite
originating from geographically diverse regions
(UK, Japan and Czech Republic), these strains
are likely to have been derived originally from
a similar brewing strain. These strains were also
all shown to be hybrid in nature by PCR–RFLP
analysis (containing a mixture of S. cerevisiae, S.
bayanus and lager genomes) and were unable to
grow at elevated temperature (37 ◦C).

The lager strain NCYC 2340 (originating from
Belgium) was clearly both genetically and metabol-
ically divergent to the other strains analysed, as it
showed a distinctive metabolic profile (using DIMS
data) and genetic profile (AFLP data). NCYC 530
is clearly more metabolically diverse than any other
strain analysed, yet using AFLP analysis it was
shown to be genetically similar to NCYC 505
and NCYC 1332. This result shows the discrim-
inatory power of metabolic footprinting compared
to genomic approaches and its applicability to a
highly discriminatory chemotaxonomic methodol-
ogy. This is also shown for the ale strains NCYC
1187 and NCYC 1332 below.

Importantly, on the basis of their genetic data, the
ale strains NCYC 1187 and NCYC 1332 clustered
with different groups of lager strains, rather than
with each other, but metabolically they cluster
together in multivariate space. Both strains were

from UK sources and both were shown to be
hybrids. Their AFLP patterns indicated that they
are genetically diverse in the context of this strain
set but they clearly produce similar metabolic
profiles.

Concluding remarks

It is known that changes in the metabolome
are amplified relative to the proteome and tran-
scriptome (Kell and Westerhoff, 1986) and there-
fore provide a more sensitive system to deter-
mine the effects of genomic differences in many
different biological systems (Allen et al., 2003;
Fiehn et al., 2000; Kaderbhai et al., 2003). Anal-
ysis of the endometabolomes of different strains
of Escherichia coli by two-dimensional high-
performance thin-layer chromatography showed a
wide range of biodiversity that correlated well with
the genetic relationships among strains (Maharjan
and Ferenci, 2005). Similary, metabolomic analy-
sis of whole cells from different Candida species
by nuclear magnetic resonance spectroscopy pro-
vided a rapid method for identification and intra-
specific strain discrimination (Himmelreich et al.,
2003, 2005). The results presented here show
that the exometabolome may be used to discrim-
inate and classify industrial yeast strains and pro-
vide a new approach for chemotaxonomy. Sev-
eral discriminatory metabolites were identified. In
particular, metabolic footprinting had the abil-
ity to group the ale strains, which could not be
achieved by AFLP and gene content analysis. The
two metabolomic methods employed gave similar
results. While the groupings obtained do not corre-
late well with groupings observed by genetic meth-
ods, they are more discriminatory and more readily
interpreted. However, because of the observed dis-
crepancies in the metabolic and genetic data, a
combination of both approaches should be used
for a fully comprehensive strain characterization.
The ale strains show divergence at the geno-
typic level despite conservation at the phenotypic
level, suggesting that genetic divergence does not
always lead to metabolic divergence. We conclude
that there is an exciting possibility of employ-
ing the exometabolome and metabolic footprint-
ing for high-throughput yeast chemotaxonomy and
to interpret the results in terms of commercially
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important traits, as well as in terms of evolution of
novel pathways and novel biological variation.
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