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The number of instrumental parameters controlling mod-
ern analytical apparatus can be substantial, and varying
them systematically to optimize a particular chromato-
graphic separation, for example, is out of the question
because of the astronomical number of combinations that
are possible (i.e., the “search space” is very large).
However, heuristic methods, such as those based on
evolutionary computing, can be used to explore such
search spaces efficiently. We here describe the imple-
mentation of an entirely automated (closed-loop) strategy
for doing this and apply it to the optimization of gas
chromatographic separations of the metabolomes of hu-
man serum and of yeast fermentation broths. Without
human intervention, the Robot Chromatographer system
(i) initializes the settings on the instrument, (ii) controls
the analytical run, (iii) extracts the variables defining the
analytical performance (specifically the number of peaks,
signal/noise ratio, and run time), (iv) chooses (via the
PESA-II multiobjective genetic algorithm), and (v) pro-
grams the next series of instrumental settings, the whole
continuing in an iterative cycle until suitable sets of
optimal conditions have been established. Genetic pro-
gramming was used to remove noise peaks and to
establish the basis for the improvements observed. The
system showed that the number of peaks observable
depended enormously on the conditions used and served
to increase them by as much as 3-fold (e.g., to over 950
in human serum) while in many cases maintaining or
reducing the run time and preserving excellent signal/
noise ratios. The evolutionary closed-loop machine learn-
ing strategy we describe is generic to any type of analytical
optimization.

Optimization lies at the core of many if not all areas of science,
technology, and engineering.!~12 This is equally true in analytical
chemistry method development.
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The history of chromatographic optimization goes back more
than 20 years, e.g., to the work of Laub and Purnell exploiting
“window diagrams” in gas chromatography-1> and to that of
Glajch, Kirkland, and co-workers on multisolvent LC optimi-
zation16-18), These pioneering studies showed that comparatively
small changes in conditions could have substantial effects on the
effectiveness of a particular separation.

Most methods for effecting such optimizations use standard
design of experiments strategies to cover the space of possible
experiments®1019 followed by simplex kinds of optimization based
on their results.2’ Alternatively, they use prediction models based
on a more or less linear interpolation of a restricted number of
runs to predict the performance of future experiments that might
be optimal. This works well when the target metabolites are
known, the interactions between the parameters are indeed largely
linear and the optimization surface is convex, as is often the
case,=% and modeling software for estimating the optimal
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separation conditions based on a small number of trials is available
(e.g., refs 24 and 25).

However, such strategies cannot work well when the search
space is very epistatic (i.e., the optimal value of one parameter
depends strongly on the values of other parameters), nor where
the number of target components is not a priori known or may
be very large in number. This latter is very much the case in the
emerging field of metabolomics, where many hundreds of
metabolites are likely to be present.26-28

Any kind of optimization strategy involves paired sets of (a)
the variables that the experimenter controls (the independent
variables) and (b) those that are measured in response to them
(the response variable(s) or objective function(s)). A common
metaphor is then to view the possible combinations of independent
variables (properly known as parameters) as the generalized XY
(“position”) coordinates in a “landscape” in which a response
variable is encoded as a “height”, leading to the concept of a
response surface.* The search for the optimal combination of
parameters is thus a combinatorial optimization problem, whose
difficulty increases exponentially with the number of parameters
to be varied.? Such problems are normally not soluble in
polynomial time.?® For instance, if there are 12 variables, each of
which could take just 20 values, the number of combinations is
2012 (4.10%) and the lifetime of the Universe is ~10'7 s.3! Thus,
conventional strategies cannot expect to achieve anything like an
optimum, and so-called heuristic methods,*-3¢ in which a “good”
but not provably (globally) optimal solution is sought, are
necessary.

A second issue concerns the question of what it is that one is
trying to optimize. Most optimizations are single-objective (e.g.,
improving the single worst pairwise resolution in a chromato-
gram), although Vanbel used a two-objective optimization®” in
which one objective was the robustness of the separation to small
changes in the parameters. In the real world, most optimization
problems are multiobjective in nature,’123638-41 and there is
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evidence that optimization of even single-objective problems may
be improved by recasting them in a multiobjective way.* In the
case of gas or liquid chromatography, the objective functions
might include the number of peaks, the “worst” resolution of any
pair of peaks, the median peak separation of adjacent pairs of
peaks, the separation time, the number of theoretical plates, and
the average signal/noise ratio of the peaks. In the more general
context, one might also envisage linearity, limit of detection, and
precision as desirable objects for optimization.

Methods in which the choice of which experiment to perform
is part of a learning strategy are known as “active learning”
methods®~% and are appropriate to search and optimization
strategies of the present type. To help the experimenter to
implement such active learning methods, it would be desirable
to effect the complete automation of the optimization cycle, in
which the parameters are varied “intelligently” and the response
assessed iteratively and automatically in a closed-loop manner.
Such approaches have been demonstrated in clinical chemistry,*50
electrochemistry,’! fs-laser control of chemical reactions,’5® and
functional genomics.? It is also of some philosophical interest to
recognize that the iterative interplay between the computational
choice of the next experiment and the resulting data it provides
may be seen as a highly effective, and more or less purely
inductive, form of scientific reasoning.>4-6!
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Our own recent work% has used the methods of evolutionary
computing to find good solutions to analytical problems in an
astronomical search space. These encode the experimental
parameters in a tree or a string whose “fitness” is represented by
the objective function(s) and which may be evolved by processes
akin to mutation, recombination, and Darwinian selection to
produce high-quality variants in an effective and efficient manner.
(The effective population of the search space by “interesting”
examples also assists in the development of rules that allow one
to understand the basis for good solutions.®’) Numerous works
attest to the power of such algorithms (e.g., refs 5, 7, 9, 40, and
62—66), which in the experimental bioanalytical arena have also
been used in areas such as fermentation optimization.67-70
However, in all these cases, the work was done with human
intervention, with the human being involved in making up media
or changing instrumentation settings manually.

A desirable generic goal would therefore be to produce a
system that sets up the parameters of an analytical experiment,
performs the analysis, evaluates the outcome or quality of the
analysis, and on the basis of the outcomes designs the next set
of experiments automatically and without human intervention, the
whole process continuing iteratively until some appropriately high
quality method has been evolved. The purpose of the present
paper is to describe our successful implementation of this fully
closed loop method of optimization in the field of gas chroma-
tography/mass spectrometry.

METHODS

Instrumentation. All experiments were run on a GC-TOF-
MS instrument (Agilent 6890N gas chromatograph and LECO
Pegasus III TOF mass spectrometer) using the manufacturer’s
software (ChromaTof version 2.12). The set of instrument param-
eters chosen for optimization is given in Table 1. The gas
chromatograph was operated in split mode using helium as carrier
gas in constant flow mode, with an initial GC temperature of 70
°C and an on-column volume maximum (injection volume/split
ratio) set at 0.5 uL. A DB-50 GC column (Supelco, Gillingham,
UK; 30 m x 0.25 mm x 0.25 um film thickness) was used. The
transfer line and source temperatures used were 250 and 230 °C,
respectively. The mass range used was 40—600 Da with a detector
voltage of 1700 V. In the ChromaTOF software, the S/N threshold
was set at 10, baseline offset at 1.0, data points for averaging at 5,
and peak width at 3. The TOF mass spectrometer can collect
spectra at up to 500 Hz and uses sophisticated but proprietary
deconvolution software to discriminate overlapping peaks on the
basis of their mass spectra.

Samples. Two different sample types were used in the
optimization. Human serum (Sigma-Aldrich, Gillingham, U.K,;
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Table 1. Set of Parameters Used during Optimization,
Including Range and Step Sizes?

step no. of

variable range (unit) size values
sample volume injected 1-5 (ul) 1 5
inlet temperature 200—280 °C 10 9
split ratio 1:2—1:102 1:5 21
helium flow rate 0.8—2.0 (mL-min~?) 0.2 7
acquisition rate 1-51 (Hz) 5 11
start temp hold time 4—6 (min) 0.5 5
ramp speed 12—30 (°C-min~1) 2 10
final temp 260—300 (°C) 10 5
hold final temp 0—5 (min) 0.5 11

2'The search space, which is the product of the values in the last
column, is some 200,103,750.

Catalog No. S7023) was prepared by protein precipitation (500
uL of serum rotary mixed with 1500 uL of AR grade methanol for
30 s, centrifuged at 13385¢ for 15 min). The supernatant was dried
by evaporation with a HETO VR MAXI vacuum centrifuge
attached to a HETO CT/DW 60E cooling trap (Thermo Life
Sciences, Basingstoke, U.K.). Yeast supernatant was prepared by
inoculation of 15 mL of metabolic footprinting medium” with a
single yeast colony (strain BY4743, heterozygous diploid, MATa/
MATa; his3D1/his3D1; leu2D0/leu2D0) followed by shaking at
30 °C for 24 h (stationary phase, Agyo = 0.6). After 24 h, the
supernatant was separated from the cells by centrifugation (same
conditions as for serum). The 1.5-mL aliquots of yeast super-
natant were dried by evaporation using the methods described
above.

Dried samples were derivatized as follows; 100 uL of 20 mg/
ml O-methylhydroxylamine solution was added and heated at 40
°C for 90 min followed by addition of 100 uL. of N-acetyl-N-
(trimethylsilyl) trifluoroacetamide and heating at 40 °C for 90 min.
The 20 separate samples were prepared, combined, and then
aliquoted into three separate sample vials. To ensure no or
minimal degradation at room temperature while sitting in the
autosampler, each sample was employed for a maximum of 48 h.

Computational Strategy. Modern, Windows-based analytical
instrumentation software normally requires the user to set
instrument parameters by typing them into boxes. To automate
this process without access to the source code of the manufac-
turer’s software requires the ability to “mimic” this in a manner
that may be controlled via a scripting program. The essential
strategy was to use software that behaves as a macro recorder
and can act as a “shell” to the manufacturer’s instrumentation
software, with parameter values being obtained by importing
them from the output of the genetic algorithm optimization part
of the program. The macro recorder used was Eventcorder
(http://www.volny.cz/eventcorder/eventcorder.htm). The control
software, GCTofControl V1.3, and the genetic algorithm (based
on code from JDK), were written by SO'H in (fully compiled)
Visual Basic 6.0, the playback functions of Eventcorder being
called directly from visual basic via ActiveX (a Windows technol-
ogy that allows applications to communicate with/control one
another).
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The Eventcorder macro recorder is able to record key stroke/
mouse move/click combinations in an editable and programmable
form. It differs from other such software in that it tries to address
the problems associated with recording events in the Windows
graphical user interface (GUI) where the position and hierarchy
of the different elements of the GUI are not necessarily fixed from
run to run. It does this by recording small regions of the screen
at the mouse position during click events and comparing these
stored images with those found during playback. To some extent,
the software is also able to search for the correct screen position
should the playback position on screen become “lost”. More
importantly, this reduces the likelihood that unwanted or incorrect
functions will be triggered during playback.

Despite these features, we found it desirable to minimize
mouse use and to plan the recording of the GC/MS operation
carefully and in such a way as to avoid “ambiguous” procedures.
We nevertheless encountered situations where the software
playback of recorded macros lost their screen position and halted,
resulting in the need for user intervention; this intervention
involved the GC/MS operator resetting the starting screen
conditions and reinitializing the genetic algoritm (GA) software.
The GA software then searched for the last experiment completed
and restarted from the next experiment number. This was
performed at the instrument site but could have been performed
remotely using remote-operating software. Intervention was typi-
cally needed once every day or so.

The GA part of the software was written in C by JDK and
translated into Visual Basic by SO'H. While it is of much interest
to compare the effectiveness of different flavors of genetic and
other algorithms in heuristic search, in the present work, we used
a simple multiobjective GA, PESA-II,”27 that has already shown
strong performance on a suite of well-known and respected test
functions (mathematical optimization problems that test for an
algorithm’s ability to cope with different dimensions of problem
difficulty).

In general, genetic algorithms work (partially) on the basis of
assigning greater reproductive opportunities to solutions that have
higher “fitness”. However, in the case of multiobjective optimiza-
tion, fitness is itself multidimensional, so a further process must
be used to convert the raw fitness values associated with a solution
into something that can be used by the GA to bias the reproductive
opportunities of solutions appropriately. The method used by
PESA-II (as for several other multiobjective GAs) is based on the
concept of Pareto dominance: given two solutions, one is said to
(Pareto) dominate the other if it is better on at least one dimension
of fitness, while not being worse on any other dimension;
moreover, from any set of solutions, there always exists a subset
that is nondominated, that is to say, no other solutions within the
set dominate them. These nondominated solutions are highly fit.
PESA-II stores such highly fit, nondominated solutions in an
“external population”, EP, and updates this population, every
generation, with new solutions that are generated by reproducing
and varying some of them. A block diagram showing the high-
level working of PESA-II is given in Figure 1B.
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An important aspect of the operation of a multiobjective GA is
how diversity in the population is maintained and encouraged. In
PESA-II, this is achieved via two closely linked processes. If the
external population, EP, becomes too large (larger than a preset
size, epsize), then some nondominated solutions must be dis-
carded. To help maintain diversity, PESA-II prefers to discard
solutions that are proximal to others in the multiobjective fitness
space. In this way, solutions that are more distinctive in their
combination of fitnesses are maintained. Similarly, in selecting
the “internal population”, which actually undergoes reproduction
and variation, solutions are selected from the EP in such a way
that “unique” or isolated solutions are selected more often than
those that populate a densely crowded area of the fitness space.
This is achieved by keeping the solutions in “bins” based on their
fitness values (i.e., solutions with similar fitness values populate
the same bin) and selecting uniformly from among the bins, rather
than uniformly from among the solutions. Exact details of these
selection and update procedures can be found in ref 73.

GA-Based Parameter Simulation. PESA-II has a number of free
parameters that must be set before it can be applied to any specific
optimization problem. These include the size of the external and
internal population, the type and rate of recombination (crossover),
and the mutation rate. While generic settings for these have been
derived previously for test functions,” in these cases, the number
of fitness evaluations available is typically large (of the order of
10 000—100 000) because, for test functions, fitness evaluation of
a solution takes a fraction of a second. When applying PESA-II to
optimizing “wet” experimental setups, as here, the number of
experiments that can be performed is necessarily much more
limited. Therefore, we must assume that we are outside the normal
operating conditions of the algorithm. To derive appropriate
settings, we therefore undertook a large number of in silico
simulation runs of the algorithm for different setups, using GA
run lengths and numbers and ranges of independent variables
(over which to optimize) appropriate to the “real” experiments
here. As well as choosing the above parameters of the algorithm,
we also investigated the most appropriate number of fitness
functions (objectives) to optimize. Our main findings were as
follows: that uniform crossover” performed better than one-point
crossover, that ipsize = 2 should be used, a value much lower
than is usual for in silico test functions, probably because this
leads to a more aggressive search appropriate to the relatively
small number of fitness evaluations available, and that two or three
objective functions lead to better results than using four or more
objectives. Overall, the parameter settings for PESA-II that we
use are as follows: epsize = 200+ (or, as large as the total number
of experiments to perform; in the present case, the maxiumum
number of nondominated solutions did not exceed this); ipsize =
2; crossover type = uniform; crossover rate = (.7; mutation rate
= 1/L (where L is the length of the binary chromosome); number
of objectives = 3.

The parameters for each gene were binary-encoded with a
number of bits sufficient to cater for the number of possible values
each gene could take (Table 1).
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Figure 1. Block diagram of the closed-loop evolutionary optimization process. (A) The overall evolutionary process. Background knowledge
is used to parametrize and to “seed” the first generation of the evolutionary algorithm (EA). The system then sets the parameters of the GC-
TOF-MS, performs the run, analyses the results, and uses the EA to choose the next set of parameters, run the next experiment, and so on.
When a suitable metric or metrics have been produced, the loop exits to provide the experimenter with a choice of “final” parameter settings.
(B) The PESA Il algorithm uses the concept of Pareto dominance to differentiate between better and worse solutions (here, the quality of
GC-TOF conditions, as judged by our three measures). Nondominated solutions are stored in an “external population”, which is the memory of
the best solutions found so far. Each generation of PESA-II selects, from this external population, a smaller internal population, which will
“reproduce” using recombination and mutation. The resulting “offspring” solutions are evaluated (by running the required experiment) and, if
they are nondominated, join the evolving external population. This loop continues until a desired level of performance has been reached.

In an attempt to obtain a “true” measure of the number of
peaks in the chromatogram, we filtered out noise peaks based

GA-Based Parameter Optimization. One particular feature of
the present LECO GC/MS deconvolution software is that it tends

to generate artifactual peaks corresponding to noise (as judged
by the mass spectrum and TIC chromatogram) and to produce
duplicate or multiple peak assignments that (again from the mass
spectra) clearly correspond to a single chromatographic peak and
chemical entity. Such artifacts can account for 10—20% of the peaks
in the chromatogram. With the current version of the LECO
software, the operator has little control over the deconvolution
parameters to remedy this.

In GC/MS applications in which the analyst is able to scrutinize
the chromatogram (e.g., where there are a small number of
compounds or a targeted compound method), these artifact peaks
present little problem. However, for metabolomics studies, and
for this closed-loop optimization in particular, it is desirable to be
able to reject such peaks automatically.
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upon the peak characteristics, which were exported into the GA
software. As we had no theoretical basis on which to filter out
artifact peaks, we chose to use a simple GA to obtain an em-
pirical filter function. Initially, principal components analysis (PCA)
and a genetic programming strategy using the gmax-bio software
(see below) were used to model a training set of data for which
peaks had been designated as “noise”, “multiple”, or “true peak”
by an experienced GC/MS analyst. Six data sets were employed
from the analysis of a single sample with widely different
instrument parameters. The gmax-bio models showed that no
single peak parameter could account for the duplicate and multiple
peaks but that the noise peaks were mainly dependent on
the peak full width at half-height, fwhh, and the “purity”, P
(a peak parameter generated by the LECO software, defined as



“a measure of how much the unique mass coelutes with other
compounds”).

Inspection of the training data set using a plot of P versus fwhh,
suggested rather simple criteria, viz:

P<r
or flag as true peak
fwhh x k—P=0

Here 7 and % are empirical parameters to be optimized using
the genetic algorithm approach. For the GA fitness function, F,
we chose to minimize, F = (number of false positives + number
of false negatives — number of correctly flagged peaks).

Using a simple single-objective GA running under Microsoft
Excel, near optimum values of £ and » were found to give, for the
yeast data, a correct ID (in terms of noise/not noise) for 87% of
peaks in the training set, with 3.5% false negatives, and 9.4% false
positives. The serum training data set gave somewhat different
values of & and 7, but similar performance.

The noise filter function above was incorporated into the
closed-loop GA software to give a “truer” estimate of the number
of peaks in each experimental run. It was this corrected peak count
that was optimized (see below) and that was used, and that
appears as such, in all the data on peak numbers.

We were unable to find a filter function to flag duplicate and
multiple peaks from the chromatogram using a similar strategy,
even when we extended the method to look at the similarity
between the mass spectra of adjacent chromatographic peaks.
However, while the GA closed-loop optimization does not at
present address the deconvolution or integration parameters that
contribute to the occurrence of multiple artifact peaks, we do
expect that the ratio of multiple peaks to true peaks will remain
more or less the same.

Genetic Programming. Genetic programming was carried
out using the commercially available software gmax-bio
(Predictive Solutions/Aber Genomic Computing http://www.
predictivesolutions.co.uk). The inputs were the fields (presented
via an Excel sheet) representing the independent variables while
the outputs were the objective functions such as peak number,
signal/noise ratio, and so on. Default parameters were used.

RESULTS

Figure 1 shows the essential strategy of the closed-loop
optimization method. As to the fitnesses, we chose to optimize
three separate objectives, which were chosen to reflect distinct
features of the separation.

S/N: the mean signal-to-noise ratio for the 15% of peaks with
the worst signal-to-noise found in the sample. Signal-to-noise is
calculated by the LECO software as the peak height from
corrected baseline/noise for the ion of unique mass calculated
by the LECO deconvolution software. This unique mass can vary
between analyses, and hence, the data are at best an estimate of
S/N as different unique ions of different intensities will provide
different S/N values. Most peaks, in fact, have very good signal-
to-noise virtually irrespective of instrument settings; taking the
average of the worst 15% of peaks thus gives a more sensitive
fitness function, and the lowest value of S/N permitted by the

software was 10. This objective was chosen as larger S/N
correlates with both lower detection limits (and also detection of
greater numbers of peaks) and greater precision, both important
in metabolomic studies.

Peaks: the number of peaks in sample minus the number of
peaks flagged as noise peaks. As the noise filter function is not
perfect, this is at best an estimate of the true number of peaks.
This objective is chosen as in metabolomic studies analyses are
not targeted but are nonbiased and so detection of the greatest
number of peaks possible is required.

Run time: the time between the injection of sample and the
end of data collection. The large number of samples required to
be analyzed in metabolomic studies makes short run time
desirable. The ability of the LECO software to deconvolute
overlapped chromatographic peaks also makes it possible that
more compressed chromatograms can be usefully utilized than
is perhaps the case in traditional GC/MS software systems.

Figure 2 shows the run from the first generation (using human
serum) that had the larger number of peaks. Both the conditions
and the outcome are similar to those described previously.?” While
>500 peaks is very respectable, we have no a priori way of
knowing the “true” number of realistically observable peaks in a
particular metabolome. (There are sampling theories that, given
sufficient runs, might allow us to make reasonable estimates’™ 76
(and see later)).

Since the closed-loop method is entirely automated (in practice
it was restarted three times—see above), we simply allowed the
system to evolve improved conditions for 120 generations (i.e.,
240 experiments) over a period of some 118 h, with the results
shown in Figure 3. Figure 3 encapsulates many of the features of
the improvements obtained. Thus, the number of peaks that can
in fact be observed in the same sample is more than double the
larger number observed in generation 1. However, there is a clear
relation between the number of peaks observed and the run time,
even when all the other parameters change over a wide range.
The Pareto front represents the set of so-called nondominated
solution, in which individuals cannot be improved in any dimen-
sion of fitness without suffering a deterioration in at least one other
dimension. Here, the Pareto front is extremely broad, allowing
many tradeoffs between peak number and run time, depending
upon the experimenter’s preferences. There is a slight tendency
for the S/N to improve as the run time decreases, but the
numerical values, typically between 10 (the minimum allowed by
the software) and 20, suggest that this is not therefore a major
issue. Thus, peak number and run time, both of which are
important in metabolomics experiments with large data sets, are
the chief focus of our interest.

To understand better those parameters which most affected
the number of peaks, we ran a genetic program (GP; see for
example, refs 59, 60, and 77) to model the process. The purpose
of the GP is to evolve a model that best explains the output in
terms of a restricted subset of inputs that are allowed to interact
in a (potentially highly) nonlinear manner. The results of this

(75) Kallel, L.; Naudts, B.; Reeves, C. In Theoretical aspects of evolutionary
computing; Kallel, L., Naudts, B., Rogers, A., Eds.; Springer: Berlin, 2001,
pp 175—206.

(76) Reeves, C. R. Genetic algorithms: principles and perspectives: a guide to GA
theory; Kluwer Academic Publishers: Dordrecht, 2002.

(77) Kell, D. B. Trends Genet. 2002, 18, 555—559.
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Figure 2. Human serum TIC chromatogram for generation 1, experiment 2. Sample volume 4 uL, Injection temperature 270 °C, split ratio
1:57, flow rate 2.0 mL.min~1, acquisition rate 15 Hz, initial hold time 5 min, GC temperature ramp 24 °C-min~1, final GC temperature 290 °C,

and final hold time 0 min.
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Figure 3. Evolution of GC-TOF conditions for the optimal separation of typical serum metabolites. The diagram shows the 2 main outputs
(peak number and run time) for each trial separation in 120 generations (240 examples). The generation number is encoded in the size of the
symbol (larger = later) and the signal/noise ratio via the color (bluer = higher). The peak number is the “raw” peak number including duplicates

provided by the LECO software after correction for noise peaks.

(Figure 4) indicated that the ramp, the on-column volume, and
the final temperature were the chief determinants of this, and that
is illustrated in Figure 5.

Other features (data not shown) were the relative independ-
ence of good solutions from the initial hold time, flow rate, and
sample volume per se, an optimal inlet temperature of 270 °C, a
preferred final temperature of 290 or 300 °C, a split ratio below
10 coupled to an on-column volume of 0.5 uL, the lack of need
for a final hold time, and an optimal acquisition rate of 15 Hz.
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The analyses were performed in split mode with a maximum on-
column volume of 0.5 uL. Results showed an injection volume of
2.0 uL and split ratio less than 10 were optimal. These are similar
to splitless conditions. To assess whether splitless injections would
be preferable, three replicate injections were performed at the
optimized conditions with the exception of split ratio and injection
volume. Instead, an injection volume of 1 uL. was used in splitless
mode (purge after 60 s). The results (not shown) provided less
optimal results in terms of peak number.
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The result of this is that a series of optimal conditions are
obtained, from which it was possible to choose that or those which
represented, for the experimenter, the best tradeoff between
number of peaks and run time. Inspection of Figure 3 suggested
that the run with 1208 peaks and a run time of 20.5 min (from
experiment 2 in generation 113) represented an excellent choice,
and the relevant chromatogram is shown in Figure 6. On further
investigation of the analysis results by a GC/MS expert, 228 noise
peaks were identified (the software calculated 164 noise peaks)
and 193 duplicate peaks were identified, of which 78 were
identified as pyridine (solvent peak) at the beginning of the
chromatogram. Although a solvent delay was used, this was set
at 240 s at the beginning of experimentation and not changed as
flow rate was varied. Therefore, 951 true peaks were observed. It
should be noted that the method of derivatization can produce
more than one derivative for a single metabolite, and therefore,
this peak number does not equal the number of metabolites
detected. (We note that the application of GCx GC-TOF-MS"7
should both increase the number of peaks detected (by improved
chromatographic separation and improved S/N in the second-

(78) Blumberg, L. M. J. Chromatogr., A 2003, 985, 29—38.
(79) Wilson, 1. D.; Brinkman, U. A. J. Chromatogr., A 2003, 1000, 325—
356.

dimension GC column) and reduce the run time (by improved
separation conditions).)

Not all biological samples are of course alike, and the yeast
supernatants are expected a priori to differ quite markedly from
the serum samples, in both the number and nature of the
metabolites formed. This is because, for instance, the yeast
supernatant metabolome is dominated in terms of mass by some
20 metabolites (Figure 7), which compared to the serum con-
strains the allowable split ratio much more. Figure 8 shows the
number of peaks and run time (in the same manner as did Figure
3) for the evolution of the conditions for the yeast supernatant
experiments over 114 generations. In this case, there are notice-
ably fewer peaks observable, and the structure of the evolving
Pareto front is significantly different from that observed for serum.
There is again a very wide variation in the peak numbers and run
times observed. The algorithm here places especial emphasis on
a short run time, although some regions of the search space do
also permit a high number of peaks to be observed.

An inspection of the search space showed that high sample
volumes were preferred, but with the higher split ratios favored
to give on-column volumes near to 0.1 uL, an inlet temperature
of 270 °C was probably optimal, that the preferred final temper-
ature was 290 °C, that peak numbers were essentially independent
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Figure 6. Human serum TIC chromatogram for optimized conditions (generation 113, experiment 2). Sample volume 2 uL, injection temperature
270 °C, split ratio 1:3, flow rate 0.8 mL-min~!, acquisition rate 15 Hz, initial hold time 4.5 min, GC temperature ramp 20 °C-min~1, final GC

temperature 300 °C, and final hold time 4.5 min.

of flow rate and hold time, a preferred acquisition rate was 10
Hz, and that—presumably for reasons connected to the run
time—fast ramps were preferred. Final hold times of 0 or 1 min
were also preferred.

To finalize an optimal set of conditions for our own “metabolic
footprinting” experiments in yeast (cf. ref 71), we finally ran a
local search around the optimum found above in which just the
split ratio (with a 5uL. sample volume) and inlet temperature (230,
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250, 270 °C) were varied systematically. This led us to our final
set of conditions that are given in Table 2 and the chromatogram
shown in Figure 9.

Landscape Analyses. The properties of the “search land-
scape” of the optimization problem (that is to say, the surface
obtained when fitness is plotted in the z dimension, against the
independent variables in the x—y plane) are also important and
interesting for us because they can give us clues as to the most
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Figure 8. Evolution of GC-TOF conditions for the optimal separation of typical yeast supernatant (“metabolic footprint”) metabolites. As in
Figure 3, the diagram shows the two main outputs (peak number and run time) for each trial separation in 114 generations (228 examples).
The generation number is encoded in the size of the symbol (larger = later) and the signal/noise ratio via the color (bluer = higher). The
peak number is the “raw” peak number including duplicates provided by the LECO software after correction as described in the text for noise

peaks.

efficient and effective ways to search this and similar problems
in future. In simple terms, landscapes that are smooth and contain
few local optima can be searched readily by simple hill-climbing
methods or even classical fractional factorial design of experi-
ments. More rugged landscapes indicate that fitness is a more
complex, nonlinear function of the variables, and in these cases,
genetic search may be more appropriate. Ultimately, we would

like to be able to parametrize our GA (i.e., choose the mutation
rate, crossover type, population size, etc.) as a function of observed
landscape properties and using prior experience with the best GA
settings as a function of these. At present, the technology for doing
this is not available, although several promising methods for
measuring landscape properties have been proposed in the
relevant literature.33.7580-83
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Figure 9. Yeast supernatant TIC chromatogram for optimized conditions (generation 113, experiment 2). Sample volume 5 uL, injection
temperature 270 °C, split ratio 1:45, flow rate 1.0 mL-min~1, acquisition rate 10 Hz, initial hold time 4.0 min, GC temperature ramp 28 °C-min1,

final GC temperature 290 °C, and hold time 1.0 min.

Table 2. Conditions Chosen as Optimal for Human
Serum and Yeast Supernatant

human yeast
variable serum supernatant

sample volume injected (uL) 2 5
Inlet temperature (°C) 270 270
split ratio 1:3 1:45
helium flow rate (mL-min—!) 0.8 1
acquisition rate (Hz) 15 10
start temp hold time (min) 4.5 4
ramp speed (°C-min—) 20 28
final temp (°C) 300 290
hold final temp (min) 4.5 1

initial GC temperature (°C) 70 70
detector voltage (V) 1700
run time (min) 12.2

A simple method for gaining an understanding of the relation-
ships between variables and fitness(es), which we can readily
apply to our data, is to measure their correlation coefficients. We
have chosen to use the Spearman rank correlation because this
measures both linear and nonlinear correlations. Tables 3 and 4
give the correlation coefficients for each variable independently,
against each of the three fitnesses (first three columns). The
fourth column gives the correlation between the variable and the
nondominated rank of the solution (which is an overall measure
of its fitness —lower ranks being fitter). Several observations can
be made: (1) that the two landscapes are significantly different
from each other; (2) that all variables make some contribution

(80) Davidor, Y. Complex Syst. 1990, 4, 369—383.

(81) Weinberger, E. Biol. Cybernet 1990, 63, 325—336.

(82) Rosé, H.; Ebeling, W.; Asselmeyer, T. In Proc. Fourth Conf. Parallel Problem
Solving from Nature (PPSN 1V); Voigt, H.-M., Ebeling, W., Rechenberg, 1.,
Schwefel, H.-P., Eds.; Springer: New York, 1996; pp 208—217.

(83) Merz, P.; Freisleben, B. In New ideas in optimization; Corne, D., Dorigo,
M., Glover, F., Eds.; McGraw-Hill: London, 1999; pp 245—260.
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Table 3. Spearman Rank Correlation Coefficients (with
Correction for Tied Values) for Each Objective in the
Serum Experiments and for the Nondominated Rank vs
Each Parameter of the Instrument Setup

nondom

S/N peaks run time rank
sample vol —0.014 0.066 0.144 0.140
injector temp 0.160 0.130 0.046 —0.068
split ratio —0.561 —0.542 —0.112 0.670
flow rate 0.027 0.234 0.273 0.017
acquisition rate 0.189 0.263 0.200 0.094

Table 4. Spearman Rank Correlation Coefficients (with
Correction for Tied Values) for Each Objective in the
Yeast Experiments and for the Nondominated Rank vs
Each Parameter of the Instrument Set-up.

nondom
S/N peaks run time rank

sample volume 0.530 0.401 —0.004 —0.266
injector temp 0.106 0.400 0.392 —0.081
split ratio —0.241 —0.600 —0.440 0.196
flow rate —0.045 —0.148 0.067 0.137
acquisition rate -0.499 —0.183 0.224 0.644
init hold time —-0.181 0.089 0.522 0.466
ramp 0.463 0.004 —0.350 —0.126
final temp 0.130 0.428 0.439 0.228
final hold time 0.028 0.217 0.269 0.297

(positive or negative) to at least one measure of fitness; (3) that
a few variables make large contributions. Taken together, these
observations indicate that a good setup of the instrument is indeed
a rather complicated function of the independent variables and
tend to support the choice of a GA to optimize this setup. We can
also see from these tables that a low acquisition rate and small
hold time are the most important determinants of good solutions
in the yeast experiments, whereas a low split ratio seems most
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Figure 10. Visualization of the optimization landscapes using PCA. The dimensionality of the independent variables was reduced from 9 to
3 by taking the scores of the principal components of their variance. Such landscapes are shown for both the serum (A) and yeast supernatant
(B) optimizations, with the peak numbers encoded by the size of the symbols and the generation by the color (blue = later). To illustrate the
multiobjective landscape, the rankings are shown for serum (C) and yeast (D) with the code red (1), blue (2), yellow (3), black (4), green (5),
cyan (6), and gray (lower ranks) and with the generation number encoded by size.

important in the serum experiments. However, there were
numerous differences, as can be seen from the optimal values
recorded in Table 2.

Another way of understanding the nature of the search space
is to visualize it by reducing its intrinsic dimensionality to 2 or 3.
This is conveniently done using PCA on the independent vari-
ables.%0 A typical analysis of this type showing just the data for
peak number is shown in Figure 10 for both serum (Figure 10A)
and yeast supernatant (Figure 10B). Another way of visualizing
the landscape that simultaneously incorporates all three objectives
is to indicate the “nondominated rank” of each individual, where
an individual of rank 1 is on the Pareto front, an individual of rank
2 is on the Pareto front when all individuals of rank 1 have been
removed, and so on. These plots are shown in Figure 10C and D.
A number of points emerge: (i) the landscapes are significantly
different both in terms of their variance (the first three PCs
accounting for 44 and 60% of the variance in the two cases) and
in the manner in which the GA explores it, (ii) the GA nevertheless
explores the landscape very effectively, and does home in on the

optimal regions; (iii) the landscapes are significantly less epistatic
than those studied previously for electrospray mass spectrom-
etry.% Loadings plots (not shown) also reflect the individual
variables that most contribute to the variance that is explored via
the guided genetic search.

DISCUSSION

Many problems in analytical science (and in science more
generally) can in fact be represented as combinatorial optimization
problems, in which even a modest number # of parameters, each
of which can take m values, allow 7" combinations. This number
(obviously) scales exponentially with # and soon reaches astro-
nomical values in which exhaustive testing is quite impossible.
In the case of electrospray mass spectrometry we identified 14
such parameters,® while for the GC-TOF separations in the
present work we chose to study 9. In the present case, we
recognized that there were at least three objectives we wished to
optimize, viz. the number of peaks observed, the run time, and
the signal/noise ratio of the 15% of peaks with the lowest S/N,
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such that this was a multiobjective optimization problem. Classical
design of experiment strategies can neither usefully handle these
numbers of variables nor are able effectively to cope with gen-
uinely multiple objective functions. By the use of macro recoding
software, which acted as a “shell”, we developed an entirely
automated, closed-loop machine learning strategy for such opti-
mizations that does not require access to the source code of the
manufacturer’s software and that exploited a modern and effective
multiobjective optimization heuristic, the PESA-II algorithm.

Metabolomics in its usual definition (e.g., refs 27 and 84) is a
generic strategy in which we seek to measure all the metabolites
in a particular sample, which may typically contain hundreds or
thousands of individual species. The datacentric philosophy$!8
behind such metabolome studies means that in addition we often
wish or need to run very large numbers of samples. Two important
objectives in metabolomics are therefore to maximize the number
of peaks observed while minimizing the run time, objectives that
are to some extent likely to be orthogonal or even negatively
correlated. We applied our strategy successfully to the (separate)
optimizations of the GC-TOF-MS analysis of both serum and yeast
fermentation broth supernatants.

A number of points are worth discussing here. The first is that
“one size does not fit all”; i.e., the nature of the two types of sample
means that good instrumental conditions (and indeed the search
space for exploring and finding them) are quite different for the
two matrixes (serum vs yeast broth). Further variables that could
be studied include the derivatization conditions (solution volumes,
derivatization temperatures, times) and data processing variables
(baseline, peak smoothing, peak width, S/N threshold). Neverthe-
less, the evolutionary algorithm used was well able to find
excellent solutions that provided acceptable tradeoffs between the
largely (and demonstrably) incompatible objectives chosen. In
each case, in just over 100 experiments, we were able to explore
an effective search space of combinations that was more than 2
million times greater.

Although this number is a small fraction of the search space,
it is still a reasonably large number by normal standards of
instrument optimization, and it is appropriate to check that the
algorithm is not simply doing a random search. Indeed, observa-
tion of some of the plots of peaks, S/N, and run time, against
generation number can give the impression that the GA does not
seem obviously or monotonically to evolve better solutions over
time. To establish whether this is the case, we can estimate the
statistical likelihood of a random search (i.e., where the setup
parameters are chosen at random, rather than by evolution)
generating the same or a greater progress than the GA. Our
method for computing this is as follows. We take the experiments
(for either yeast or serum, independently) in the order they were
performed and label them 1 to N. We then compute the nondomi-
nated rank of each experiment. The sum over the products of
the label and the rank is then computed. Clearly, if this sum is
small then it means that better solutions (those with lower rank)
must have been generated later (are paired with higher labels);
whereas for a random search, we would expect that the distribu-
tion of the different ranks over the experiments would be random.
We computed the likelihood of the sum being less than the

(84) Fiehn, O. Comp. Funct. Genomics 2001, 2, 155—168.
(85) Breiman, L. Stat. Sci. 2001, 16, 199—215.
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observed value, by random chance alone, by computing the sum
of the products for 10 000 different random orderings of the
experiments, and by comparing this distribution to the observed
sum of products, using a Student’s ¢ test. The results of this
computation are as follows, first for serum: N = 239, observed
product of ranks and labels = 114 386, mean (10 000 random
orderings) = 134 099, SD = 3295.96, ¢ value (observed versus
random) = 5.98, p (observed not better than random) < 0.001.
Equivalently for yeast, we have (for the GA experiments only, not
the final local search): N = 226, observed product of ranks and
labels = 142 669, mean (10 000 random orderings) = 166 607, SD
= 3914.64, t value (observed versus random) = 6.11, p (observed
not better than random) < 0.001. It is obvious that the success
of the GA is not due to chance.

The LECO software deconvolutes coeluting derivatized com-
pounds with peak apices separated generally by more than 0.05
s. However, the software can observe noise as peaks and identify
single peaks multiple times. Although this is dependent on
operator-set software variables (baseline, peak smoothing, peak
width, S/N threshold) there is no one set of variables that will be
successful for all peaks in a metabolomics analysis with a wide
range of metabolites and metabolite concentrations. Therefore,
the peak numbers reported are estimates rather than accurate
descriptions. Other parameters could be optimized, such as the
initial GC temperature, or we might have used nonlinear GC
temperature ramps or operated the GC in splitless mode.
However, it was decided to run a linear GC ramp to reduce the
search space size (and simplify the GC operation) and to run in
split mode to ensure that the column was not overloaded (the
maximum on-column volume was set at 0.5 L) and that the
column lifetime was maximized by reducing contamination onto
the column. A further investigation showed no benefit in peak
number when operating in splitless mode. Also, different GC
columns could be investigated in a similar manner, for example,
DB-5 columns as used by a number of metabolomics groups. With
a certain sample type, although generally similar in nature, the
number of peaks observed will vary significantly (as we have
observed in the analysis of a wide range of yeast supernatants to
be reported elsewhere). Therefore, the conditions chosen are not
“globally” optimal but a compromise set based on the analysis of
one sample. Thus, it is implicitly assumed that samples within a
sample type will not vary excessively.

With the chosen optimized conditions, 10 replicate analyses
were performed for serum and yeast supernatant and the precision
(coefficient of variation, » = 10) for 12 randomly chosen
metabolites with a range of area responses was calculated.
Precision was 11—30% with no internal standard (peak area
determined) and 2—16% when a metabolite peak was used as an
internal standard (ratio peak area (internal standard)/peak area
(metabolite) determined).

In conclusion, the strategy of using a macro recording “shell”
script means that the present approach may be modified and
applied to any computer-controlled instrumentation for which the
executable code is available, even when it is controlled by software
that uses an operating system with a window-based GUI. Clearly
such a system might also be used to explore in an entirely
automated manner (i.e., without human intervention) the effective-
ness of different algorithms for solving any combinatorial optimi-
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