
Exploiting Genomic Knowledge in Optimising Molecular
Breeding Programmes: Algorithms from Evolutionary
Computing
Steve O’Hagan1,2, Joshua Knowles2,3, Douglas B. Kell1,2*

1 School of Chemistry, The University of Manchester, Manchester, United Kingdom, 2 The Manchester Institute of Biotechnology, The University of Manchester,

Manchester, United Kingdom, 3 School of Computer Science, The University of Manchester, Manchester, United Kingdom

Abstract

Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular
genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which
organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for
which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this
way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by
optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches
from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have
knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not
(F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and
effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic
pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of
experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome
sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available
(via Supplementary information).

Citation: O’Hagan S, Knowles J, Kell DB (2012) Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary
Computing. PLoS ONE 7(11): e48862. doi:10.1371/journal.pone.0048862

Editor: Josh Bongard, University of Vermont, United States of America

Received July 6, 2012; Accepted October 4, 2012; Published November 21, 2012

Copyright: � 2012 O’Hagan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: No current external funding sources for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dbk@manchester.ac.uk

Introduction

A common circumstance in biotechnology [1] is that we have an

entity (be it a protein, nucleic acid or organism) that we wish to

improve for some specific purposes, and this is largely done by

genetic means, involving either the mutation of a single parent

entity or (if mating is possible) by means that additionally involve

genetic recombination. Of course, observations of the success of

experimental breeding (or ‘directed evolution’) contributed signif-

icantly to Darwin’s thinking, even before we knew anything about

the existence of genes, and many examples (e.g. [2–5]) show the

huge variation in phenotype achievable in inter-breeding popu-

lations. The usual metaphor here, due to Sewall Wright [6], is that

of a ‘fitness landscape’ that relates genotype (i.e. sequence) to

fitness, and that involves moving around this landscape by

mutation and recombination while seeking to improve the

fitness(es) of our offspring en route to some variety that is highly

improved relative to the starting position.

We note too that we are usually interested in optimising for

multiple traits, which may be largely independent of or at best only

partially linked to each other (e.g. disease resistance in a crop plant

is essentially independent of the metabolic processes governing

primary yield, but would potentially contribute to overall yield,

and we might select for larger roots [7,8] separately from the

agronomic benefits such as drought tolerance that they might

bring). This makes our searches for improved strains a multi-

objective optimisation problem [9]. Of course plant and animal

breeding holds considerable potential for improving food security,

a topic of substantial current interest [10–17].

The issue, then as now, is that mostly we carry out breeding

experiments ‘in the dark’ genetically, and though we may seek to

combine complementary traits from individual parents (whether

phenotypically or via Quantitative trait loci (QTLs)), the number

of experiments we can typically carry out in a generation is tiny

relative to the number of possible matings (given the size of the

parental populations available) – if there are m and f possible

parents of each gender the number is obviously mf. Note too the

gigantic (genetic) sequence space: a microarray of just the set of

30mers, made using spots of just 5 mm diameter, would cover

29 km2 [18]! This begs the question of how we optimise the

breedings we choose to perform, i.e. which parents we select to

mate with each other, and which offspring we select for further

breeding. It might be assumed that it would simply be best to

breed from the fittest parents obtained in the previous generation,

but this is well known not to be the case, since (i) the landscapes are

both complex and epistatic (the allele in one location affects what

is optimal in another location), and (ii) most mutations tend to be

deleterious and would therefore be selected out, even if it was in

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e48862

fact necessary to retain them to get to a fitter part of the landscape.

In one computational example [19], more than one third of the

non-neutral mutations (steps) in an evolutionary programme that

were productive overall were via entities with fitness lower,

sometimes much lower, than that of their parents. The intrinsic

irreversibility of evolution [20] also makes this a significant issue.

The high level of epistasis necessarily contingent upon the

organisation of gene products into pathways is probably a major

contributor to the comparative ineffectiveness of genome-wide

association studies that look solely at individual genes [21–24], as

well as the simple fact that most genes individually contribute very

little to the fitness of complex traits overall [23,25–27], albeit that

the right combinations of just a few can indeed do so [28].

While proteins link to pathways, and the enzymes encoding

them may be on different chromosomes, in our discussions we

essentially assume that we are dealing with one chromosome, as

the main analysis of genotype-phenotype mapping cares little

[29,30]. This may lead to a minor issue with respect to the effects

or effectiveness of recombination, but the frequency of recombi-

nation per meiotic event is not in fact very great in most natural

populations [31–35] and we shall ignore this.

There is also an assumption that, given our ability to generate

knowledge of genetic sequences (and markers) at massively

increasing rates (e.g. [36,37]), knowledge of parental genotypes

should somehow better inform the way in which we carry out

molecular breeding programmes, and there is some highly

encouraging evidence for this based on ‘genomic selection’ [38–

46]. Certainly there is increasing interest in and use of marker-

assisted selection (MAS) in experimental breeding programmes

generally (e.g. (Whittaker et al. 1995; Jones et al. 1997; Moreau

et al. 2000; Kim and Park 2001; Dekkers and Hospital 2002;

Koebner and Summers 2003; Dekkers 2004; Frary et al. 2005;

Williams 2005; Xu et al. 2005; Eathington et al. 2007; Ribaut and

Ragot 2007; Collard and Mackill 2008; Hospital 2009; Utomo

and Linscombe 2009; Edwards and Batley 2010; Graham et al.

2010; Bancroft et al. 2011)), with particular interest lying in the

use of dense genetic markers where available. Again, however, we

know of very few published studies [4,47–49] in which the purpose

was to compare the effectiveness of breeding programmes that

have been performed with and without the use of genetic markers.

This matters, because the continuing increase in sequencing

speeds means that it is reasonable that before long we shall have

the opportunity to acquire complete genome sequences of every

Table 1. Some evolutionary algorithms: F-Algorithms.

ALGORITHM COMMENTS REFERENCES

Breeder genetic algorithm Basic evolutionary algorithm using truncation selection [74,148]

Phenotypic niching with fitness sharing The reproductive opportunities of individuals are shared amongst members
of a niche. A niche is defined by a neighbourhood in phenotype-space, i.e. as a
vector of attributes or traits. The scheme seeks to preserve diversity.

[130,149]

Deterministic crowding Crowding is a reproduction scheme in which individuals are forced to replace
individuals in the population that are most like them. In deterministic
crowding this is achieved without inspection of the genotype; offspring merely
replace their parents (depending on the relative fitness of the parents and offspring).
Preserves diversity.

[150,151]

Local selection; local breeding; local
mating; spatially structured populations

The population is given some spatial structure (usually independently of
fitness), and mating is allowed to occur only between neighbours in this structure.
Similarly, offspring replace low-fitness individual(s) within their own
neighbourhood. Preserves diversity.

[152]

Island model GAs (Alba and Tomassini) Several populations evolve on separate islands using locally panmictic mating.
There is limited but occasional migration from one island to the other. Preserves diversity.

[54,153–155]

Landscape state machine tuning of
directed evolution (LSM-DE)

In this technique, choices for mutation rate, population size, selection pressure
and other evolutionary parameters are based on some prior sampling – and
subsequent modelling – of the fitness landscape (or one believed to have similar
topological features). Tunes the search algorithm specifically to the problem.

[90,156,157]

Fitness uniform selection scheme (FUSS) FUSS is a selection scheme that preserves phenotypic diversity. [158,159]

Hybrid local search or memetic algorithms Evolution scheme in which selected individuals (usually fitter ones) in each
generation are improved by performing a fitness-directed walk on the landscape.
Improves exploitation of fit individuals, driving them towards optima. May not be
feasible for some types of Directed Evolution experiment. These may not perform
well when large populations but small numbers of generations are available (since
the adaptive walks necessarily take the equivalent of several breeding generations
to complete.)

[160,161]

Statistical Racing Several evolutions, each with different parameters controlling selection
pressure, mutation rates, and so on, are run simultaneously. At intervals, any
evolution that is performing statistically significantly
worse is dropped and its resources are allocated equally to the others. Expensive
but effective.

[162,163]

Self-tuning evolutionary algorithms Mutation rates, selection pressure, rates of recombination are controlled
during evolution. These may be changed deterministically according to a
schedule; changed according to some rules based on the progress being made;
or actually evolved by making the parameters themselves subject to selection
and variation.

[60]

doi:10.1371/journal.pone.0048862.t001

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e48862

organism in a breeding population [50], i.e. knowledge of precisely

where we are in the genetic landscape for each organism. It is

reasonable that the much lowered costs of sequencing will be

outweighed significantly by the knowledge that they bring.

However, knowing how much we can benefit from this knowledge,

and in particular how best to exploit it (in terms of the breeding

algorithms), will be extremely important to the future of plant and

animal breeding.

In silico evolution – evolutionary computing
The large field of in silico evolution or evolutionary computing

has remained surprisingly divorced from ‘real’ biological genetics

(albeit that it has been of considerable value in helping our

thinking about these landscapes, e.g. [51,52]; Stadler, 2002; Jones,

1995; Weinberger 1990). Meanwhile, it has developed a plethora

of algorithms to search these fitness landscapes with great facility

(e.g. [53–63]). Since the search spaces are typically astronomic,

and the problems NP-hard [64,65], they seek (as heuristic methods

(Pearl, 1984; [55,66,67], to find ‘good’ but not provably (globally)

optimal solutions.

Evolutionary computing algorithms are based loosely on the

principles of Darwinian evolution, involving the generation and

analysis of variation, and selection on the basis of one or more

measured fitnesses. Typically they are used to solve combinatorial

optimisation problems (e.g. [55]) as well as nonconvex continuous

problems such as parameter estimation [68] in which there are

many possible configurations. The ‘search space’ is the number of

possible solutions given the dimensionality of the problem as

defined. If there are n variables (dimensions), each of which can

take m distinguishable values, the number of possible combina-

tions is evidently mn, i.e. such problems scale exponentially with

the number of variables. While evolutionary algorithms come in

many flavours, some of which we discuss below, in all cases they

involve a population of (in silico) individuals each encoding a

candidate solution to a problem of interest. Each of the members

in the population has a fitness that is evaluated. Selection biased by

fitness is used to determine which members of the population

breed in a given ‘generation’, and offspring of these ‘parent’

individuals are created either by sexual recombination (after

matching up of parents), or asexually by cloning a single parent. In

either case, mutation is typically applied so that offspring differ

from their parents. New individuals are evaluated for fitness, and

then these replace (all or some) members of the parent population

to form the next generation population. Evolution continues with

rounds of mutation/recombination and selection until a desired

endpoint is achieved (or a certain number of evaluations

performed).

In Genetic Algorithms, both cloning and recombination are

biased toward more fit individuals via the tournament selection

used; however cloning tends to preserve the population genetic

profile, whilst recombination creates more diversity. The (low)

mutation rate on both cloned and recombined offspring provides

more diversity and helps to prevents stagnation.

In the context of breeding, ‘cloning’, could represent the

individual being retained for the study rather than culled; for plant

studies ‘cloning’ may be reproduction via cuttings etc. It may be

argued that the stochastic nature of the algorithms will mimic the

real-world environmental factors that influence breeding experi-

ments.

Much of the literature of evolutionary algorithms is concerned

with optimising the nature of the search, typically couched in

terms of a tension between ‘exploration’ (wide search to find

Table 2. Some evolutionary algorithms: G-algorithms.

ALGORITHM COMMENTS REFERENCES

Niching by genotypic fitness sharing Fitness (reproductive opportunity) of individuals is shared amongst
members of the same genotypic niche. Maintains diversity.

[130,149]

Learnable Evolution Model (LEM) Uses classifiers to learn the genotypic basis of fitness during an evolutionary
run; the inferred basis is used to alter selection to favour
those with high predicted fitness, and disfavour those inferred to be deleterious.

[131,164]

Metamodel-assisted EAs A regression model relating fitness to genotype is learned during evolution.
The model is used to filter
offspring individuals before they are evaluated (if their predicted fitness is low).

[78–81]

Efficient Global Optimisation
(EGO, ParEGO)

A regression model of Gaussian process type is used to relate fitness to
genotype (based on a sparse initial sampling of individuals). The model is
globally searched to find the individual with the best ‘‘expected improvement’’ in fitness.
This individual is then evaluated and used to update the model, and the process iterated.

[83,87,165]

doi:10.1371/journal.pone.0048862.t002

Table 3. Parameter settings used in the F and G algorithms.

Algorithm Type Key parameters

Breeder F l= 1000; pm = 1/N

Standard GA F l= 1000; pm = 1/N; pc = 0.7; tsize = 10

Local mating F l= 1000; pm = 1/N; pc = 0.7; tsize = 10

Niching G l= 1000; pm = 1/N; pc = 0.7; tsize = 10; niche radius = dynamic with target niche count, Tq = 5

EARL1 G l= 1000; pm = 1/N; pc = 0.7; tsize = 10

EARL2 G l= 1000; pm = 1/N; pc = 0.7; tsize = 10

doi:10.1371/journal.pone.0048862.t003

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e48862

promising areas of the search space) and ‘exploitation’ (a narrower

search to optimise within such areas), while seeking to avoid

‘premature convergence’ to a local optimum that may be far less

good than the global (or other local) optimum.

For present purposes, the methods (algorithms) fall into two

broad camps: those that at each generation know only the fitnesses

of individuals, and those that also know where they are in the

sequence/search space (and that thus at each generation increase

our knowledge of the landscape). We shall refer to these as Fitness-

only (F-) and Genomic (G-) methods. The first question then arises

as to whether the kinds of algorithm available with G-methods

typically outperform those available with F-methods, in other

words whether the genomic knowledge buys you anything, and if

so how best to exploit it. A second motivation for the present work

hinges on the fact that while the experimental breeding

programmes are comparatively slow and costly, computational

power is increasingly cheap, and should be exploited (as in projects

such as the Robot Scientist [69–71], Robot Chromatographer [72]

and experimental directed evolution [18]) to optimise the

experimental design via ‘active learning’ (see also [73]). Indeed,

one algorithm – known as the breeder genetic algorithm [74] – is

based on the principles of classical experimental breeding and

simply selects the fittest n individuals of a population and breeds

with them. Clearly this is likely to lead to premature convergence

to a local optimum that is much less fit than others possible. A final

recognition is that while no algorithm is best for all landscapes [75]

(there is ‘no free lunch’ [76,77]), some algorithms do indeed do

considerably better in specific domains, especially if given some

Table 4. Tuneable Algorithm Parameters.

Computation Parameter Corresponding Breeding Scenario

Population Size, P Size of experimental population

Mutation Rate Radiation dose

Cross-over rate Self-pollination vs Cross-pollination?

Tournament size Could be done directly via statistical sampling pool used to select breeders.

Niche Radius/Target No. of Niches Could be done directly by statistical methods of measuring similarity.

doi:10.1371/journal.pone.0048862.t004

Figure 1. Relative performance of the six algorithms on the modified NK-landscapes where l = 10000, N = 250, K = 5, r = 10 & burn-
in = 20. Note that there a discontinuity in fitness where the algorithm switches from ‘global fitness’, F, to trait fitness, F’. Key: A. Mean Entropy Profile
at Final Generation; B. Mean Fitness; C. Mean Fitness Rank; D. Mean Entropy; —— Breeder; —— Standard GA; —— Local Mating; —— Niching; ——
EARL1; —— EARL2; Error bands are 61 standard error = 6 stdev/!n.
doi:10.1371/journal.pone.0048862.g001

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e48862

knowledge of the landscape. Indeed, some G-algorithms (e.g. [78–

81]) explicitly include iterative modelling (‘metamodelling’ [82–

85]) of the landscapes themselves.

While much of the evolutionary computing literature has

assumed access to large populations and generation numbers

compared to the smaller populations and 70 generations we used,

some methods have purposely focussed on small ones [86,87], and

from the other side we have measured (experimentally) genotype-

fitness data on more than 1 million samples (all 10-mers of nucleic

acid aptamers [88]). Our discussion does therefore recognise the

requirement to keep population sizes reasonably compatible with

those likely to be accessible to experimenters.

The chief purposes of the present analysis, then, are (i) to bring

to the attention of experimentalists interested in experimental

breeding a knowledge of the literature of evolutionary computing,

and (ii) to perform a study in silico to assess explicitly the kinds of

benefits that can be had using knowledge of the genotype relative

to those where only the (fitness of) the phenotype is known.

Table 3 illustrates possible correspondences between GA

tuneable parameters and a real-world breeding scenario.

We have chosen uniform cross-over [89] in our genetic

algorithms rather than tried to simulate real biology more closely.

Whilst uniform crossover is reasonably efficient, the disadvantage

is that it tends to preserve shorter schemata – however this is offset

in that that it may be likely to explore the search-space more

thoroughly. We believe this to be a more important consideration

given the vast search-space in real genetics. We see no good reason

to use other crossover methods since any simulated crossover

process that ‘breaks’ a conserved region of coupled genes will not

influence the population as the corresponding individual will be

automatically culled. In some sense, this means that the algorithm

will ‘learn’ the real genetics.

Experimental

F- and G-algorithms
As a prelude to comparing F- and G-algorithms on the same

landscapes, we here survey a selection of known algorithms of the

two types. Tables 1 and 2 therefore summarises a number of the

algorithms that have been proposed in the in silico literature,

distinguishing those (F-algorithms) that know only the fitness

(based on the ‘phenotype’) at each generation from those (G-

algorithms) that also exploit knowledge of the position in the

search space (the ‘genotype’).

There are essentially three ways in which an F-algorithm may

be designed to improve over the basic Breeder Genetic Algorithm:

(i) by better preserving diversity for longer, with the purpose of

preventing convergence to a population that is located on a low

fitness peak, and which has little ability to evolve further; (ii) by

having mechanisms for tuning its own parameters adaptively,

particularly the mutation and crossover rates; and, (iii) by using

adaptive walks very near to the fitter ‘parent’ individuals to exploit

these solutions more intensively (see Table 1; hybrid or memetic

algorithms). Diversity preservation is by far the most important of

these mechanisms in our case since (ii) and (iii) will usually demand

large numbers of generations to be effective, whereas we are

Figure 2. Relative performance of the six algorithms on the modified NK-landscapes where l = 10000, N = 250, K = 5, r = 10 & no
burn-in. Key: A. Mean Entropy Profile at Final Generation; B. Mean Fitness; C. Mean Fitness Rank; D. Mean Entropy; —— Breeder; —— Standard GA;
—— Local Mating; —— Niching; —— EARL1; —— EARL2; Error bands are 61 standard error = 6 stdev/!n.
doi:10.1371/journal.pone.0048862.g002

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e48862

concerned with small generation numbers (see below for why).

Although it is probable that most existing experimental breeding

programmes do not in fact optimise (i), (ii) and (iii), we felt (a) that

we should draw the attention of experimental breeders to this

knowledge, and (b) we should not artificially ‘load the dice’ in

favour of G-algorithms by using a poor F-algorithm as compar-

ator. Thus we are likely to minimise the perceived benefits of G-

algorithms over present practice.

G-algorithms may be able to achieve even more effective

diversity preservation, as they have access to far more information,

but the question is open. Moreover, G-algorithms have access to a

further route to improvement not available to the F-algorithms:

they may ‘learn’ or induce explicit statistical models of the

sequence-fitness landscape, using this to select for breeding more

accurately (see Learnable Evolution Model, metamodel-assisted

EAs and EGO in Table 2, and the approach and data in [18]). It is

also possible that G-algorithms could be designed to exploit the

knowledge of the genotype-fitness map to effect directed variation (i.e.

mutation and crossover) of individuals, not just to aid in more

accurate selection for breeding. However, we exclude this avenue

here as it assumes the ability to manipulate specific genes, which is

an additional requirement separate from the ability to sequence

(know about) the genotypes of individuals (though synthetic

biology aims to make this a real possibility in future).

In our experimental study, we cannot hope to show a definitive

advantage of one set of algorithms over the other on all problems

(in fact that is a doomed proposition due to the No Free Lunch

Theorem [75,76]). Our aims are more illustrative. One aim is to

compare the effectiveness (in terms of fitness improvement) of

attempts to preserve diversity in an F-algorithm and a G-

algorithm. The G-algorithm can explicitly measure and control

genetic diversity, whereas an F-algorithm promotes diversity only

by restricting mating. A second aim is to assess the relative

effectiveness of G-algorithms that learn to model and exploit the

fitness-sequence landscape, an approach borrowing from LEM

(Table 2). These aims are reflected in the six algorithms that we

use in our experiments, described in detail below.

The landscapes on which we evaluate these algorithms are

described next.

Landscapes
The choice of landscapes is more difficult, in that it is known

that algorithms can be ‘tuned’ for specific landscapes. However, in

this case we are purposely comparing different classes of algorithm

on the same landscapes, and we choose landscapes of different

character. The character of these landscapes is hard to define

exactly, but here the concept of ‘ruggedness’ is important [52,90].

Ruggedness describes the likelihood that the fitness is well

(‘smooth’) or poorly (‘rugged’) correlated with the genotypic

distance from a particular starting point. In a very smooth

landscape the fitness will decrease smoothly with distance, and the

correlation will be good, whereas in a rugged landscape with many

peaks and valleys the fitness-distance plot will be much more

stochastic and the correlation lower.

Figure 3. Relative performance of the six algorithms on the modified NK-landscapes where l = 10000, N = 100, K = 5, r = 10 & burn-
in = 20. Note that there a discontinuity in fitness where the algorithm switches from ‘global fitness’, F, to trait fitness, F’. Key: A. Mean Entropy Profile
at Final Generation; B. Mean Fitness; C. Mean Fitness Rank; D. Mean Entropy; —— Breeder; —— Standard GA; —— Local Mating; —— Niching; ——
EARL1; —— EARL2; Error bands are 61 standard error = 6 stdev/!n.
doi:10.1371/journal.pone.0048862.g003

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e48862

Because of the nonlinearity of enzyme kinetics, and the

existence of feedback loops, real biochemical networks are highly

nonlinear and epistatic (even if they occasionally appear linear/

additive for small changes). Thus it is commonly the case that a

change in one enzyme A or another enzyme B alone has little

effect on a pathway (this follows from the systems properties of

networks [91–93] and the evolution of biological robustness), but

that changes in both have a major effect. This is then epistasis or

synergy, and is very well established in both genetics and

pharmacology (e.g. [94–108]). Epistasis is even observed within

individual proteins (e.g. [109–115]. What landscapes should we

then choose to model?

Despite the increasing availability of ‘genome-scale’ biochemical

networks (e.g. [116,117], these are mainly topological rather than

kinetic and so it is not yet possible to model the detailed effects of

multiple modulations on ‘real’ (in silico) biochemical networks,

albeit that there are excellent examples where such models have

proved useful in biotechnological optimisation [28,118–121]. For

this reason, we have chosen to develop our analyses using

‘artificial’ landscapes with more or less known properties as a guide

to the effectiveness (or otherwise) of adding knowledge of the

genotype to the knowledge of the phenotype (fitness) during

experimental optimisation/breeding programmes.

Whilst not directly modelled after ‘‘real’’ genetics, we believe

that the chromosome representation used together with the NK-

landscape-based fitness function mimic all the salient features of

real genetics, this model is used for both F- and G-algorithms.

Whether the algorithm is F- or G-depends on the information

obtained (phenotype/genetic information) and selection method

used; these are entirely under the control of the experimenter in

real breeding programs, therefore we expect no mechanism for

unintentional bias towards F-algorithms, since selection is not

coupled to the biological model.

Modified NK-landscape
So-called NK-landscapes were developed by Kauffman

[51,122]. NK-landscapes are a class of synthetic landscapes that

describe the epistatic relationships between genes in an organism

and the consequent fitness of that organism. In the model genes

are represented as bits in a binary string of length N, The total

fitness F of a string (chromosome) is derived from the average

fitness contribution of all the positions (genes):

F~
1

N

XN

i~1

fi (ai,1,ai,2,:::ai,kz1) a[f0,1gN

ai,j.elements of a that contribute to fi

via mapping table of size, N(kz1)

A chromosome, a, is a binary vector of length N, a M {0,1}N.

The fitness, fi, of ‘each position’, i, is a function of a sub-vector of

length k+1, which is constructed from a subset of elements drawn

Figure 4. Relative performance of the six algorithms on the modified NK-landscapes where l = 1000, N = 250, K = 5, r = 10 & burn-
in = 20. Note that there a discontinuity in fitness where the algorithm switches from ‘global fitness’, F, to trait fitness, F’. Key: A. Mean Entropy Profile
at Final Generation; B. Mean Fitness; C. Mean Fitness Rank; D. Mean Entropy; —— Breeder; —— Standard GA; —— Local Mating; —— Niching; ——
EARL1; —— EARL2; Error bands are 61 standard error = 6 stdev/!n.
doi:10.1371/journal.pone.0048862.g004

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e48862

from a such that ai,1 = ai and ai,j (j?i) are selected uniformly at

random without replacement from the elements of a. Thus fi has

2k+1 states, and these are allocated at random in the range 0R1, fi
M [0,1].

In the notation ai,j, ‘i,j’ contains the pseudo-subscript ‘j’ which

represents position along the sub-vector of length (k+1). The

mapping of elements of the sub-vector to elements of a is achieved

via a look-up table of size N(K+1).

In NK models, the N parameter controls the length of the

chromosome and the corresponding search space, and the K

parameter determines the degree of epistasis. It is not practical

computationally to have N approach the number of genes found in

organisms (yeast: ,6000, man: ,24000), so one must choose a

suitable compromise that nevertheless gives a sufficiently large

search space to be comparable with real breeding populations, we

have chosen: N = 1000R21000<10300,

N = 10000R210000<26103010. The fitness of a gene depends on

K other genes; increasing K increases the ruggedness of the

landscape, for K = 0, the fitness function generally has a trivial

global optimum that is easy to locate. We have looked at K values

in line with typical epistasis seen in real organisms.

NK-landscapes have been used extensively in the evolutionary

computation literature as proxies for a variety of complex systems.

It is rare that the exact properties of real biological fitness

landscapes are known; however we can modify the properties of

our models to the system we are studying more accurately, and the

recent empirical studies on DNA binding support the view that NK

landscapes make a reasonable approximation to real biology

[85,123].

Here, our aim is to use NK-landscapes to study the particular set

of conditions faced by a human breeder trying to improve certain

(quantifiable) traits. We do this by making a small modification to

the basic NK model. In plants, as in animals and bacteria, certain

genes will contribute more strongly to a particular trait than do

others. When breeding plants, the aim is to optimize these traits

whilst not comprising other qualities of the organism. In NK-

landscapes the fitness contribution to each bit from all combina-

tion of K+1 bits is assigned randomly. At low values of K the

maximum contribution of individual bits may vary greatly across

N, however as K increases this proportionality may be minimized.

In modified NK-model we weight a portion of the chromosome (r

bits) more highly by assessing these bits contribution to the overall

fitness of the string.

Fr~
1

r

Xr

i~1

fi (ai,1,ai,2,:::ai,kz1) a[f0,1gN

ai,j.elements of a that contribute to fi

F 0~
0, FvFth

F|Fr, F§Fth

(

Figure 5. Relative performance of the six algorithms on the modified NK-landscapes where l = 1000, N = 100, K = 1, r = 10 & burn-
in = 20. Note that there a discontinuity in fitness where the algorithm switches from ‘global fitness’, F, to trait fitness, F’. Key: A. Mean Entropy Profile
at Final Generation; B. Mean Fitness; C. Mean Fitness Rank; D. Mean Entropy; —— Breeder; —— Standard GA; —— Local Mating; —— Niching; ——
EARL1; —— EARL2; Error bands are 61 standard error = 6 stdev/!n.
doi:10.1371/journal.pone.0048862.g005

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e48862

Fr is multiplied by F to generate a new fitness value F’. If F has a

value below the fitness threshold, Fth, F’ is reduced to 0; this is to

simulate the effect of optimizing a trait at the expense of the

overall fitness of the organism, and the catastrophic effect of

certain deleterious mutations. The fitness threshold, Fth, was set at

the minimum value (0.55) for which at least some fraction of the

initial population had non-zero F’.

Assessment of Algorithms

Despite the wealth of EAs available our choices are constrained

by the nature of the breeding problem. While advances in

synthetic biology (e.g. [124–126]) may in time lead to the routine

synthesis of bespoke genomes, this approach is currently not

feasible. Many G algorithms (EDAs, LEM, proSAR) would

require the complete synthesis of new chromosomes and so

cannot be considered in this study.

We assess the performance of 6 algorithms on a group of

modified NK-landscapes.

3 F algorithms:

Breeder algorithm (1+l).

Standard genetic algorithm.

Local mating algorithm.

3 G algorithms:

Niching genetic algorithm.

Evolutionary algorithm with Rule-based Learning, type 1

(EARL1).

Evolutionary algorithm with Rule-based Learning, type 2

(EARL2),

each of which we now describe. As noted, we have sought to tune

each beforehand (via preliminary experiments that sought to

optimise the mutation, crossover and selection pressure based on

tournament size), so as not to give any one an obviously unfair

advantage. In the Spirit of Open Science [127], the code is made

freely available.

Breeder algorithm (1+l)
The breeder algorithm (Mühlenbein and Schlierkamp-Voosen

1993b) is an evolutionary algorithm that uses truncation selection,

i.e. the best T% of the offspring population is selected

deterministically to become the parents of the next generation.

In our version, we use a so-called (1+l) reproduction scheme: the

offspring of a generation all have the same single parent, which is

the fittest individual of the previous generation. The offspring are

generated by cloning and mutation only. The algorithm has two

free parameters, l, the population size, and pm, the per-bit

mutation rate. The settings for both of these can be seen in

Table 4. The algorithm represents a greedy (or strongly elitist)

approach that is a priori unlikely to be competitive over larger

numbers of generations, but may be expected to raise the

population mean fitness very quickly. The initialization of the

first-generation population used in this and all subsequent

algorithms is the same, and is based on the niching GA described

below. The procedure is detailed in a separate section below. Like

all the algorithms described here, the algorithm terminates when a

fixed, pre-ordained number of generations has been reached.

Standard GA
The standard GA takes the form of a generational genetic

algorithm, as described in [128]. The population size is l. Each

generation, l offspring individuals are produced, and these

entirely replace the previous generation (even if less fit than the

parents, i.e. the algorithm is non-elitist). Let P denote the current

population and P’ denote the population of the next generation.

To produce one offspring individual for P’, a random variate is

drawn to determine if the offspring is created by recombination of

two parents, followed by mutation, or by cloning followed by

mutation. The former occurs with probability pc, the latter with

probability 1-pc. For offspring produced by recombination, two

parents are selected from P, with replacement, using tournament

selection [53,59] with tournament size = 10 (based on preliminary

experiments that suggested that this was optimal). Uniform

crossover [89] is used. The resulting individual then undergoes

mutation with a per-bit (i.e. per base) mutation rate of pm. For an

individual produced by cloning, just one parent is selected by

tournament selection (from P with replacement), it is cloned, and

the clone undergoes mutation with the same per-bit mutation rate

of pm.

Local mating
The local mating algorithm follows principles set forth in [129].

The idea is for mating to occur only between individuals that are

‘geographically’ proximal to each other. Specifically, this struc-

tured population resists rapid take-over, preserving diversity for

longer after a beneficial mutation or recombination event occurs

in the population. Our standard generational GA is adapted so

that each individual assumes a fixed location on a two-dimensional

grid. To construct the next-generation population P’, each

individual i in the current population P is taken in turn. If

recombination of individual i occurs, i is recombined with the

individual selected by an adapted tournament selection (described

below) and the resulting offspring will replace i in the next

generation population. If only mutation occurs, an individual

found by the adapted tournament selection is cloned and mutated,

and this will replace i. The tournament selection method is

adapted so that given an individual i, the tournament returns the

fittest individual from among the t_size (= 10) neighbours sampled

at random (with replacement) from the 24 grid cells that surround i

in a 565 square.

Niching Genetic Algorithm
The niching GA reduces the fitness of individuals that share a

similar genotype with other individuals in the population, a

concept known as genotypic fitness sharing [130]. The GA follows

the standard one, except that the fitness associated with an

individual in the population, which by definition determines its

chances for reproduction via the tournament selection, is its shared

fitness. The shared fitness is computed over the population by first

counting, for each individual, the number of other individuals

whose genotypes differ in ‘nr’ (the niche radius) or fewer genes; this

number is referred to as the niche count nc. The shared fitness is

then fshare = 10f/(9+nc), where f is the normal fitness of the

individual before sharing is applied (in our version of the

algorithm, we have scaled fshare so that if the niche count is one,

fshare = f.

Simple versions of niching GAs use a fixed and arbitrary value

of the niche radius, nr; we have adopted a dynamic niche radius

scheme whereby the effective niche radius is adjusted at each

iteration (generation) of the loop so as to approach a target

number of niches, Tq. We estimate the number of niches, q, by use

of a sampling strategy rather than evaluate the whole population,

as the later would be computationally expensive O(n2). We chose

Tq = 5 based on preliminary runs of the niching GA.

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e48862

EARL1
Evolutionary Algorithm with Rule-based Learning (EARL1):

Devised in the spirit of Michalski’s LEM algorithm [131] and

Llorà and Goldberg’s ‘‘wise breeding’’ algorithm [132], EARL1

uses the statistical model AQ21 [133] which performs pattern

discovery, generating inductive hypotheses. This is achieved by

employing Attributional Calculus (http://www.mli.gmu.edu/

papers/2003-2004/mli04-2.pdf), and produces attributional rules

that capture strong regularities in the data, but may not be fully

consistent or complete with regard to the training data (it is a

‘fuzzy’ algorithm). Each generation the AQ21 model is trained by

selecting the top 20% (T-set) and bottom 20% (L-set) of individuals

(in terms of fitness) from the current population. The AQ21

algorithm generates a vector of rules R (in the form attributes (loci)

and attribute values), which are satisfied in the H set but not the L

set.

When generating a new individual, a rule rx is selected from R,

as in LEM the rule is selected weighted by its abundance within

the top T individuals within the population. Individuals from the

current generation are evaluated in terms of whether they satisfy

rx, this subset, s, of individuals form a pool from which parents are

selected.

Like a standard genetic algorithm, tournament selection

(tournament size of 10) is used to select a parent; however, this

parent can only be selected from s. When recombination is

applied, tournament selection is used to select the second parent

again from the subset of individuals that obey rx; s. The strategy

aims to maintain rules within the next population and prevent the

potentially destructive effects of recombination.

EARL2
EARL2 presents an alternative hypothesis, that the loci that

make up individual rules represent interesting points within the

search space from which further improvements can be made.

EARL2 has the same structure as EARL1, i.e. each new individual

within a population is selected from a subset, s, which obeys a

selected rule rx. However when crossover is applied, the second

parent is selected by tournament selection from the remainder of

the individuals within the population which do not obey rx.

This approach attempts to disrupt individual rules and may be

particularly suited to highly non-linear landscapes, where moving

to areas of higher fitness requires breaking of cooperative

interaction between loci.

In both EARL1 and EARL2, where no rules are found by the

AQ21 algorithm, selection defaults to tournament selection.

Initialization Procedure (all algorithms)
In crop breeding (and in evolution generally), mutation rates are

low [134] and beneficial mutations are rare, arguably reflecting

the fact that plants have been evolving for many generations. The

standard practice when using NK-landscapes is to generate the

binary strings randomly in the first generation of an evolution.

Mutating these strings will generate a substantial portion of

beneficial mutations, which is unrepresentative of real biology

systems. To capture the evolution of plants in a crop breeding

programme more accurately, we implement some prior evolution

before evaluating the performance of the various algorithms.

In order to simulate a ‘burn-in’ period or warm start to the

evolution, i.e. to start with a genetically diverse population of

moderately fit individuals that mimics the population one would

see in a typical crop-breeding trial, we first run the Niching GA

(see above) on the original (unmodified) NK landscape for a periods

of 0, 20 and 50 generations. The resulting populations are then the

starting population for each of the six methods described above,

i.e. the starting population of each algorithm is paired (or matched)

with the others. This procedure is repeated for each independently

drawn NK landscape a total of 100 times, giving us 100 matched

samples. We ran the algorithms for a further 70 generations after

‘burn-in’.

Evaluation of algorithms
In addition to plotting the mean fitness and mean population

entropy of the repeated runs, we plotted the performance of the

algorithms in terms of ranks. In each case (for each setting of

N,K,r) we measure the rank of an algorithm, on each of the 100

landscapes, as 1 if it has the lowest NKr fitness score of the C

samples and, C if it has the highest fitness, where C is the number

of algorithms (here, usually six), other ranks being assigned

analogously, with ties being dealt with by assigning the mean rank

to each of the tied results in the normal way [135]. For statistical

robustness [136] we average these ranks over the 100 landscapes

and plot these averages of ranks for each algorithm. This

procedure averages the effect of the 100 independent landscapes,

and allows us to see easily which algorithms have the best

performance, especially where the absolute fitnesses are close

together. (One might also argue that such regions indicate

convergent performance for all practical purposes).

Assessment of G-type algorithm performance
In the NKr landscapes, r loci have been artificial weighted in

terms of their contribution to overall fitness. Accepting our

rationale is correct, EARL1 should identify these r loci and quickly

promote convergence on a consensus sequence, while EARL2 will

maintain diversity across these positions. The Shannon Entropy H

[137] is a measure of uncertainty or more precisely the minimum

amount of information required to describe a discrete random

variable X for a set of K observations x1,......,xk.

H~{
X

i

p xið Þlog2 p xið Þð Þ

where p(xi) is the probability mass function of xi

The algorithms were run up to generation 70 on the NKr

landscapes beyond the ‘burn-in’ period. Shannon Entropy was

measured for each position in the sequence as the mean of one

hundred replicates. Convergence on a set of sub-strings across the

chromosome will be evidenced by a consequent loss of entropy at

these positions and thus demonstrate the mode of action of the two

algorithms.

Results and Discussion

From figures 1, 2, 3, 4 and 5 (and see supplementary

information for the raw data), illustrating fitness and entropy, it

can be seen the breeder algorithm displays inferior performance

relative to the other evaluated algorithms, indicating that strong

selection pressure without recombination is not conducive to

optimisation on the modified NK-landscapes; whilst the fitness

(apparently) rises rapidly, the entropy drop almost immediately to

near zero, indicating that population diversity is low, conditions

typically seen with premature convergence to a local maximum.

On aggregate the model-based algorithms (EARL1 and EARL2)

display very similar performance to the standard GA. Similarly the

Niching algorithm (the other G-type algorithm assessed in this

study) is much worse in terms of fitness for most of the early

generations, it does however start to converge at generation ,70

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 10 November 2012 | Volume 7 | Issue 11 | e48862

for N = 100; for N = 250 it reaches a plateau. The N parameter

determines the gene length, and as the trait fitness is dependent on

only 10 loci, any algorithm that preserves overall entropy will have

a more detrimental effect on fitness the longer the gene length.

Niching does conserver diversity for longer as indicated by the

entropy. There appears to be a Diversity/fitness trade-off. The

local mating algorithm is the F-type algorithm that also attempts to

maintain population diversity; this too exhibits the same kind of

trade-off.

The time and expense associated with breeding experiments

necessitates the development of an individual with the desired

phenotype within the fewest generations possible. The fitness

penalty associated with maintaining diversity may therefore be too

heavy a price to pay, and any of the EARL1, EARL2 or Standard

GA may be preferable – however, EARL1 and EARL2 being

more computationally expensive are slower to run an equivalent

number of generations, and there appears to be little reason not to

favour the simple GA algorithm.

We also looked at results for various values of the ‘ruggedness

parameter’, k and the trait bit length, r (k = 1,2,3,5; r = 1,5,10).

Whilst there was some inevitable shifting of the positions of the

fitness and entropy curves, we did not see any evidence that there

was any appreciable change in the relative performance of the

algorithms overall. Similarly, runs with low population size (1000)

compared to high population size (10000) showed similar

behaviour, even though one might expect the higher population

to provide a greater reservoir of genetic diversity.

On comparing the trait fitness of runs with no ‘burn-in’ to those

with ‘burn-in’ set at 20 and 50 generations, we may gauge the effect

of starting from an unfit breeding population compared to ‘well-

bred’ population. Burn-in used the niching algorithm so as preserve

population diversity. The results indicate that all the algorithms

proceed with very similar fitness/entropy profiles (except for the

translation of the starting point by virtue of the burn-in period used).

Undoubtedly this is due to the trait fitness being very low whether or

not any burn-in period is used; in general, the features that

contribute to the global fitness will not contribute to the trait fitness

chosen by the breeder. Additionally, we found that ‘burn-in’ had

already essentially reached a fitness plateau at 20 generations, and

that therefore runs for burn-in of 50 did not provide any additional

information on algorithm performance.

The successful performance of genetic algorithms in optimisa-

tion is widely considered to be derived from their ability to identify

a subset of strings with high sequence similarity in certain loci

termed schema [128,138]. In the modified NK-landscapes r loci

have been weighted to increase their contribution to the overall

fitness of an individual. The ability of the algorithms to identify

and optimise these loci will therefore dictate their performance. In

figures are displayed the entropy across the loci after the first 70

generations of evolution. From the plots it can be seen the entropy

of the first r loci is significantly different depending on the

algorithms used and the N parameter chosen. After 70 generations

the two entropy-preserving algorithms (niching and local mating)

appear to have reduced entropy of the first r loci relative to the

remainder of the genome. The remaining algorithms have flat or

nearly flat and low entropies. This appears to be an inter-play

between the natural trend of genetic algorithms to reduce the

entropy in those loci that contain fitness information and the

entropy-preserving qualities of the two algorithms. We see little

evidence that any of the rule-based algorithms have ‘focused-in’ on

relevant loci.

It might seem strange that rule-based approaches would not

out-perform simple algorithms such as the Standard GA.

Certainly, G-type approaches will still obey the principles of No

Free Lunch. For instance it has been previously observed that

ProSAR [139] proves effective when addressing landscapes with

low levels of epistasis and its bespoke role of optimization of

protein sequences in directed evolution experiments, yet perfor-

mances diminish relative to a standard F-type GA when levels of

epistasis are increased [52,123]. This is arguably unsurprising,

given that ProSAR is effectively a piecewise linear algorithm as it is

based [140] on partial least squares [141]. Whilst EARL1 and

EARL2 should not suffer from the disadvantage of being limited to

linear problems (being based on the AQ21 attributional calculus

learning module), it is by no means certain that the rule engine

employed is suitable to the domain of application; the NKL

landscapes we have used may not be amenable to description by

such rule sets. In fact, even those runs with k = 1 (low ruggedness/

epistasis) showed little or no improvement in the performance of

EARL1 and EARL2 algorithms over the standard GA.

These data highlight the gains that can be achieved simply, both

through the optimal choice of algorithm and through thoroughly

tuning those algorithms to the landscape investigated, consistent

with the No Free Lunch theorems alluded to above. We note that

the comparative lack of benefit of G-algorithms here contrast

somewhat e.g. with that observed in previously problems such as

that studied using ParEGO [87]. However, that problem involved

many fewer dimension (20) rather than the 1000 considered here,

used a greater number of generations (250) than would be feasible

in a ‘real’ breeding programme, and involved landscapes that were

somewhat less rugged. Given the benefits of combining mutations

in multiple known genes for pathway engineering [28,118–121], it

seems likely that the greatest benefits of G-algorithms will be

manifest when they are able to incorporate prior knowledge.

The benefit of tuning control parameters such as selection

pressure and mutation rate is not a new concept to those practised

in designing breeding programs. Inbreeding depression is well

known as a consequence of over-selection in hermaphroditic crops.

Similarly, the gains of increasing mutation rates to increase

diversity in evolutionary search have become well known (e.g.

[52,142,143]). Marker-assisted selection combined with backcross-

ing is a more direct method of improving phenotypic properties

and bears similarities with algorithms that use machine learning to

aid the evolutionary processes such as EARL1 and EARL2. The

difference here is that we use knowledge of an entire in silico

genome rather than just a few QTL markers for the breeding

programme.

In marker-assisted selection (see above) the marker (usually a

QTL, but increasingly a SNP) is used as an indicator of fitness for

a desired phenotypic trait. In this approach, the phenotypic trait is

assumed to be governed purely by the marker and not through

cooperative interactions from elements on distal chromosome

locations. The success of MAS is in some part reliant on how well

the model reflects reality, and when the phenotypic trait is highly

epistatic the model and consequently the evolution will tend to fail.

Similarly, the success of evolutionary algorithms augmented with

machine learning models will be highly reliant on how well the

model reflects the true landscape.

The G-algorithms presented here were designed for applications

in experimental breeding programmes, especially when we have

sequences for all members of the breeding population of interest. To

this end, they would appear to be a highly promising means of

understanding the mapping between genotype and phenotype

explicitly.

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e48862

Concluding Remarks

The increasing availability of genomic (sequence) knowledge,

and our need to exploit it in experimental breeding programmes,

points up the requirement for exploiting the best algorithms

available. Those in use nowadays tend to exploit the methods of

statistical genetics, but many more (and different) ones are known

in the literature of evolutionary algorithms. We have here

surveyed some of these approaches (and note that we do not

include any consideration of epigenetics (e.g. [144])), finding that a

well-tuned ‘simple’ GA can perform as effectively as some of the

more sophisticated rule-based methods in these landscapes, that

were not provided with any ‘prior knowledge’ of which genes

might enjoy epistatic interactions. This has implications for

experimental breeding programmes, especially when we can

determine directly what we might wish to produce, for instance

using the emerging methods of synthetic biology [126,145–147].

Supporting Information

File S1 Raw data for Fig 1.
(XLSX)

File S2 Raw data for Fig 2.
(XLSX)

File S3 Raw data for Fig 3.

(XLSX)

File S4 Raw data for Fig 4.

(XLSX)

File S5 Raw data for Fig 5.

(XLSX)

File S6 zipped file containing non-proprietary code
used.

(ZIP)

Acknowledgments

DBK thanks Professors Darren Griffin (University of Kent) and Graham

Moore (John Innes Centre), and in particular Professor Ian King

(University of Nottingham) for useful discussions. We thank Dr Will Rowe

for assistance with developing the rule-based algorithms.

Author Contributions

Conceived and designed the experiments: SOH JDK DBK. Performed the

experiments: SOH JDK. Analyzed the data: SOH JDK DBK. Contributed

reagents/materials/analysis tools: SOH JDK. Wrote the paper: SOH JDK

DBK.

References

1. Kell DB (2012) Scientific discovery as a combinatorial optimisation problem:

how best to navigate the landscape of possible experiments? Bioessays 34: 236–

244.

2. Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme

fruit size in tomato using a cross between the small-fruited wild species

Lycopersicon pimpinellifolium and L. esculentum var. giant heirloom. Genetics 158:

413–422.

3. Hill WG (2005) A century of corn selection. Science 307: 683–684.

4. Edgerton MD (2009) Increasing crop productivity to meet global needs for

feed, food, and fuel. Plant Physiol 149: 7–13.

5. Johansson AM, Pettersson ME, Siegel PB, Carlborg Ö (2010) Genome-wide

effects of long-term divergent selection. PLoS Genet 6: e1001188.

6. Wright S. The roles of mutation, inbreeding, crossbreeding and selection in

evolution. In: Jones DF, editor; 1932; Ithaca, NY. Genetics Society of America,

Austin TX. 356–366.

7. Kell DB (2011) Breeding crop plants with deep roots: their role in sustainable

carbon, nutrient and water sequestration. Ann Bot 108: 407–418.

8. Kell DB (2012) Large-scale sequestration of carbon via plant roots in natural

and agricultural ecosystems: why and how. Phil Trans R Soc 367: 1589–1597.

9. Knowles J, Corne D, Deb K, editors (2008) Multiobjective Problem Solving

from Nature. Berlin: Springer.

10. Beddington J (2010) Food security: contributions from science to a new and

greener revolution. Philos Trans R Soc Lond B Biol Sci 365: 61–71.

11. Fedoroff NV, Battisti DS, Beachy RN, Cooper PJ, Fischhoff DA, et al. (2010)

Radically rethinking agriculture for the 21st century. Science 327: 833–834.

12. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, et al. (2010)

Food Security: The Challenge of Feeding 9 Billion People. Science 327: 812–

818.

13. Godfray HCJ, Crute IR, Haddad L, Lawrence D, Muir JF, et al. (2010) The

future of the global food system. Philos Trans R Soc Lond B Biol Sci 365:

2769–2777.

14. Lal R (2010) Managing soils for a warming earth in a food-insecure and energy-

starved world. Journal of Plant Nutrition and Soil Science 173: 4–15.

15. Pretty J, Sutherland WJ, Ashby J, Auburn J, Baulcombe D, et al. (2010) The

top 100 questions of importance to the future of global agriculture. Int J Agric

Sust 8: 219–236.

16. Tester M, Langridge P (2010) Breeding technologies to increase crop

production in a changing world. Science 327: 818–822.

17. Foresight (2011) The Future of Food and Farming: final project report.

London: Government Office for Science.

18. Knight CG, Platt M, Rowe W, Wedge DC, Khan F, et al. (2009) Array-based

evolution of DNA aptamers allows modelling of an explicit sequence-fitness

landscape. Nucleic Acids Res 37: e6.

19. Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evolutionary origin of

complex features. Nature 423: 139–144.

20. Bridgham JT, Ortlund EA, Thornton JW (2009) An epistatic ratchet constrains

the direction of glucocorticoid receptor evolution. Nature 461: 515–519.

21. Moore JH, Boczko EM, Summar ML (2005) Connecting the dots between
genes, biochemistry, and disease susceptibility: systems biology modeling in

human genetics. Mol Genet Metab 84: 104–111.

22. Moore JH, Williams SM (2005) Traversing the conceptual divide between
biological and statistical epistasis: systems biology and a more modern synthesis.

Bioessays 27: 637–646.

23. Maher B (2008) The case of the missing heritability. Nature 456: 18–21.

24. Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for
genome-wide association studies. Bioinformatics 26: 445–455.

25. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009)

Finding the missing heritability of complex diseases. Nature 461: 747–753.

26. Rockman MV, Skrovanek SS, Kruglyak L (2010) Selection at linked sites

shapes heritable phenotypic variation in C. elegans. Science 330: 372–376.

27. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, et al. (2010)

Common SNPs explain a large proportion of the heritability for human height.
Nat Genet 42: 565–569.

28. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia

coli for the production of L-valine based on transcriptome analysis and in silico

gene knockout simulation. Proc Natl Acad Sci U S A 104: 7797–7802.

29. Kell DB (2002) Genotype: phenotype mapping: genes as computer programs.
Trends Genet 18: 555–559.

30. Fisher P, Noyes H, Kemp S, Stevens R, Brass A (2009) A systematic strategy for

the discovery of candidate genes responsible for phenotypic variation. Methods
Mol Biol 573: 329–345.

31. Gordo I, Charlesworth B (2001) Genetic linkage and molecular evolution. Curr
Biol 11: R684–686.

32. van Veen JE, Hawley RS (2003) Meiosis: when even two is a crowd. Curr Biol
13: R831–833.

33. Hillers KJ (2004) Crossover interference. Curr Biol 14: R1036–1037.

34. Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP (2007) Gene
conversion: mechanisms, evolution and human disease. Nat Rev Genet 8: 762–

775.

35. Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM (2008) High-

resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature
454: 479–485.

36. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:

1135–1145.

37. Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev

Genet 11: 31–46.

38. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic

value using genome-wide dense marker maps. Genetics 157: 1819–1829.

39. Gianola D, Perez-Enciso M, Toro MA (2003) On marker-assisted prediction of

genetic value: beyond the ridge. Genetics 163: 347–365.

40. Xu S (2003) Estimating polygenic effects using markers of the entire genome.
Genetics 163: 789–801.

41. Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy
cattle. Journal of Animal Breeding and Genetics 123: 218–223.

42. Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:
323–330.

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 12 November 2012 | Volume 7 | Issue 11 | e48862

43. Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, et al. (2009) The

accuracy of Genomic Selection in Norwegian red cattle assessed by cross-

validation. Genetics 183: 1119–1126.

44. Ødegård J, Yazdi MH, Sonesson AK, Meuwissen TH (2009) Incorporating
desirable genetic characteristics from an inferior into a superior population

using genomic selection. Genetics 181: 737–745.

45. Fahrenkrug SC, Blake A, Carlson DF, Doran T, Van Eenennaam A, et al.
(2010) Precision genetics for complex objectives in animal agriculture. J Anim

Sci 88: 2530–2539.

46. Maenhout S, De Baets B, Haesaert G (2010) Graph-based data selection for the

construction of genomic prediction models. Genetics 185: 1463–1475.

47. Moreau L, Lemarie S, Charcosset A, Gallais A (2000) Economic efficiency of
one cycle of marker-assisted selection. Crop Sci, 40: 329–337.

48. Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007)

Molecular markers in a commercial breeding program Crop Sci 47: S154–
S163.

49. Kean S (2010) Besting Johnny Appleseed. Science 328: 301–303.

50. Meuwissen T, Goddard M (2010) Accurate prediction of genetic values for

complex traits by whole-genome resequencing. Genetics 185: 623–631.

51. Kauffman SA (1993) The origins of order. Oxford: Oxford University Press.

52. Wedge D, Rowe W, Kell DB, Knowles J (2009) In silico modelling of directed

evolution: implications for experimental design and stepwise evolution. J Theor
Biol 257: 131–141.

53. Bäck T, Fogel DB, Michalewicz Z, editors (1997) Handbook of evolutionary

computation. Oxford: IOPPublishing/Oxford University Press.

54. Haupt RL, Haupt SE (1998) Practical Genetic Algorithms. New York: Wiley.

55. Corne D, Dorigo M, Glover F, editors (1999) New ideas in optimization.
London: McGraw Hill.

56. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization:

methods and applications. Aachen: Shaker Verlag.

57. Deb K (2001) Multi-objective optimization using evolutionary algorithms. New

York: Wiley.

58. Coello Coello CA, van Veldhuizen DA, Lamont GB (2002) Evolutionary
algorithms for solving multi-objective problems. New York: Kluwer Academic

Publishers.

59. Reeves CR, Rowe JE (2002) Genetic algorithms – principles and perspectives: a
guide to GA theory. Dordrecht: Kluwer Academic Publishers.

60. Eiben AE, Smith JE (2003) Introduction to evolutionary computing Berlin:

Springer.

61. Bongard JC, Lipson H (2005) Nonlinear system identification using coevolution

of models and tests. IEEE Trans Evolut Comput 9: 361–384.

62. Bongard J, Lipson H (2007) Automated reverse engineering of nonlinear
dynamical systems. Proc Natl Acad Sci U S A 104: 9943–9948.

63. Knowles J, Corne D, Deb K, editors (2008) Multiobjective problem solving

from nature: from concepts to applications. Heidelberg: Springer.

64. Garey M, Johnson D (1979) Computers and intractability: a guide to the theory
of NP-completeness. San Francisco: Freeman.

65. Pierce NA, Winfree E (2002) Protein design is NP-hard. Protein Eng 15: 779–

782.

66. Dasgupta P, Chakrabarti PP, DeSarkar SC (1999) Multiobjective heuristic

search. Braunschweig: Vieweg.

67. Michalewicz Z, Fogel DB (2000) How to solve it: modern heuristics.
Heidelberg: Springer-Verlag.

68. Mendes P, Kell DB (1998) Non-linear optimization of biochemical pathways:

applications to metabolic engineering and parameter estimation. Bioinfor-
matics 14: 869–883.

69. King RD, Whelan KE, Jones FM, Reiser PGK, Bryant CH, et al. (2004)

Functional genomic hypothesis generation and experimentation by a robot

scientist. Nature 427: 247–252.

70. King RD, Rowland J, Oliver SG, Young M, Aubrey W, et al. (2009) The
automation of science. Science 324: 85–89.

71. King RD, Rowland J, Aubrey W, Liakata M, Markham M, et al. (2009) The

Robot Scientist Adam. Computer 42: 46–54.

72. O’Hagan S, Dunn WB, Brown M, Knowles JD, Kell DB (2005) Closed-loop,
multiobjective optimisation of analytical instrumentation: gas-chromatography-

time-of-flight mass spectrometry of the metabolomes of human serum and of

yeast fermentations. Anal Chem 77: 290–303.

73. Knowles J (2009) Closed-Loop Evolutionary Multiobjective Optimization.
IEEE Computational Intelligence Magazine 4: 77–91.

74. Mühlenbein H, Schlierkamp-Voosen D (1993) Predictive models for the

breeder genetic algorithm. 1. Continuous parameter optimization. Evolution-
ary Computation 1: 25–49.

75. Radcliffe NJ, Surry PD (1995) Fundamental limitations on search algorithms:

evolutionary computing in perspective. Computer Science Today 1995: 275–

291.

76. Wolpert DH, Macready WG (1997) No Free Lunch theorems for optimization.
IEEE Trans Evol Comput 1: 67–82.

77. Corne D, Knowles J (2003) No free lunch and free leftovers theorems for

multiobjecitve optimisation problems. In: Fonseca C, et al., editor. Evolution-
ary Multi-criterion Optimization (EMO 2003), LNCS 2632. Berlin: Springer.

327–341.

78. Emmerich M, Giotis A, Ozdemir M, Back T, Giannakoglou K (2002)
Metamodel-assisted evolution strategies. Parallel Problem Solving from Nature-

PPSN VII: 7th International Conference, Granada, Spain, September 7–11,
2002: Proceedings: 361.

79. Jin YC, Olhofer M, Sendhoff B (2002) A framework for evolutionary

optimization with approximate fitness functions. IEEE Trans Evol Comput

6: 481–494.

80. Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary

computation. Soft Computing – A Fusion of Foundations, Methodologies and
Applications 9: 3–12.

81. Knowles J, Nakayama H (2008) Meta-Modeling in Multiobjective Optimiza-

tion. Multiobjective Optimization: Interactive and Evolutionary Approaches

5252: 245–284.

82. Crary SB (2002) Design of computer experiments for metamodel generation.
Analog Integr Circ Sig Proc 32: 7–16.

83. Sasena MJ, Papalambros P, Goovaerts P (2002) Exploration of metamodeling
sampling criteria for constrained global optimization. Engineering Optimiza-

tion 34: 263–278.

84. Chen VCP, Tsui KL, Barton RR, Meckesheimer M (2006) A review on design,

modeling and applications of computer experiments. IIE Transactions 38: 273–
291.

85. Rowe W, Wedge DC, Platt M, Kell DB, Knowles J (2010) Predictive models for
population performance on real biological fitness landscapes. Bioinformatics

26: 2125–2142.

86. Knowles JD, Hughes EJ (2005) Multiobjective optimization on a budget of 250

evaluations. Evolutionary Multi-Criterion Optimization (EMO 2005), LNCS
3410, 176–190 http://dbkchumistacuk/knowles/pubshtml.

87. Knowles J (2006) ParEGO: A hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization problems. IEEE

Trans Evol Comput 10: 50–66.

88. Rowe W, Platt M, Wedge D, Day PJ, Kell DB, et al. (2010) Analysis of a

complete DNA-protein affinity landscape. J R Soc Interface 7: 397–408.

89. Syswerda G. Uniform crossover in genetic algorithms. In: Schaffer J, editor;
1989. Morgan Kaufmann. 2–9.

90. Wedge D, Kell DB. Rapid prediction of optimum population size in genetic
programming using a novel genotype – fitness correlation. In: Ryan C, Keizer

M, editors; 2008; Atlanta, GA. ACM. 1315–1322.

91. Kell DB, Westerhoff HV (1986) Metabolic control theory: its role in

microbiology and biotechnology. FEMS Microbiol Rev 39: 305–320.

92. Fell DA (1996) Understanding the control of metabolism. London: Portland

Press.

93. Heinrich R, Schuster S (1996) The regulation of cellular systems. New York:
Chapman & Hall.

94. Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J, et al. (2003) Systematic
discovery of multicomponent therapeutics. Proc Natl Acad Sci U S A 100:

7977–7982.

95. Fan QW, Specht KM, Zhang C, Goldenberg DD, Shokat KM, et al. (2003)

Combinatorial efficacy achieved through two-point blockade within a signaling
pathway-a chemical genetic approach. Cancer Res 63: 8930–8938.

96. Ihekwaba AEC, Broomhead DS, Grimley R, Benson N, White MRH, et al.
(2005) Synergistic control of oscillations in the NF-kB signalling pathway. IEE

Systems Biology 152: 153–160.

97. Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for

networked systems. Nat Rev Drug Discov 4: 71–78.

98. Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design

promiscuous drugs? Curr Opin Struct Biol 16: 127–136.

99. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs:
the network approach might help drug design. Trends Pharmacol Sci 26: 178–

182.

100. Kell DB (2006) Metabolomics, modelling and machine learning in systems

biology: towards an understanding of the languages of cells. The 2005 Theodor

Bücher lecture. FEBS J 273: 873–894.

101. Kell DB (2006) Systems biology, metabolic modelling and metabolomics in
drug discovery and development. Drug Disc Today 11: 1085–1092.

102. Lehár J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, et al. (2007)
Chemical combination effects predict connectivity in biological systems. Mol

Syst Biol 3: 80.

103. Zimmermann GR, Lehár J, Keith CT (2007) Multi-target therapeutics: when

the whole is greater than the sum of the parts. Drug Discov Today 12: 34–42.

104. Hopkins AL (2008) Network pharmacology: the next paradigm in drug

discovery. Nat Chem Biol 4: 682–690.

105. Lehár J, Krueger A, Zimmermann G, Borisy A (2008) High-order combination
effects and biological robustness. Molecular Systems Biology 4: 215.

106. Lehár J, Stockwell BR, Giaever G, Nislow C (2008) Combination chemical
genetics. Nat Chem Biol 4: 674–681.

107. Jia J, Zhu F, Ma X, Cao ZW, Li YX, et al. (2009) Mechanisms of drug
combinations: interaction and network perspectives. Nat Rev Drug Discov 8:

111–128.

108. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, et al. (2010) The

genetic landscape of a cell. Science 327: 425–431.

109. Pritchard L, Dufton MJ (2000) Do proteins learn to evolve? The Hopfield

network as a basis for the understanding of protein evolution. J Theoret Biol
202: 77–86.

110. Aita T, Hamamatsu N, Nomiya Y, Uchiyama H, Shibanaka Y, et al. (2002)

Surveying a local fitness landscape of a protein with epistatic sites for the study

of directed evolution. Biopolymers 64: 95–105.

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 13 November 2012 | Volume 7 | Issue 11 | e48862

111. Bershtein S, Segal M, Bekerman R, Tokuriki N, Tawfik DS (2006) Robustness-

epistasis link shapes the fitness landscape of a randomly drifting protein. Nature
444: 929–932.

112. Hayashi Y, Aita T, Toyota H, Husimi Y, Urabe I, et al. (2006) Experimental

rugged fitness landscape in protein sequence space. PLoS One 1: e96.

113. Bloom JD, Arnold FH, Wilke CO (2007) Breaking proteins with mutations:

threads and thresholds in evolution. Mol Syst Biol 3: 76.

114. Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed

evolution. Nat Rev Mol Cell Biol 10: 866–876.

115. Østman B, Hintze A, Adami C (2011) Impact of epistasis and pleiotropy on
evolutionary adaptation. Proc Roy Soc B 279: 247–256.

116. Herrgård MJ, Swainston N, Dobson P, Dunn WB, Arga KY, et al. (2008) A
consensus yeast metabolic network obtained from a community approach to

systems biology. Nature Biotechnol 26: 1155–1160.

117. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-
scale metabolic reconstruction. Nat Protoc 5: 93–121.

118. Patil KR, Rocha I, Förster J, Nielsen J (2005) Evolutionary programming as a
platform for in silico metabolic engineering. BMC Bioinformatics 6: 308.

119. Park JH, Lee SY, Kim TY, Kim HU (2008) Application of systems biology for

bioprocess development. Trends Biotechnol 26: 404–412.

120. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to

hero–design-based systems metabolic engineering of Corynebacterium glutamicum

for L-lysine production. Metab Eng 13: 159–168.

121. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, et al. (2011)
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.

Nat Chem Biol 7: 445–452.

122. Kauffman SA, Weinberger ED (1989) The NK model of rugged fitness
landscapes and its application to maturation of the immune response. J Theor

Biol 141: 211–245.

123. Fox R, Roy A, Govindarajan S, Minshull J, Gustafsson C, et al. (2003)

Optimizing the search algorithm for protein engineering by directed evolution.

Protein Eng 16: 589–597.

124. Heinemann M, Panke S (2006) Synthetic biology–putting engineering into

biology. Bioinformatics 22: 2790–2799.

125. Leonard E, Nielsen D, Solomon K, Prather KJ (2008) Engineering microbes

with synthetic biology frameworks. Trends Biotechnol 26: 674–681.

126. Baker M (2011) The next step for the synthetic genome. Nature 473: 403, 405–
408.

127. Merali Z (2010)...Error. Nature 467: 775–777.

128. Holland JH (1992) Adaption in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence: MIT

Press.

129. Collins RJ, Jefferson DR (1991) Selection in massively parallel genetic

algorithms. In: Belew RK, Booker LB, editors. Morgan Kaufmann. 249–256.

130. Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for

multimodal function optimization. Lawrence Erlbaum. 41–49.

131. Michalski RS (2000) Learnable evolution model: Evolutionary processes guided
by machine learning. Machine Learning 38: 9–40.

132. Llorà X, Goldberg DE (2003) Wise Breeding GA via Machine Learning
Techniques for Function Optimization. Proc GECCO: 1172–1183.

133. Wojtusiak J, Michalski RS, Kaufman KA, Pietrzykowski J (2006) The AQ21

natural induction program for pattern discovery: initial version and its novel
features. Proc International Conference on Tools with Artificial Intelligence

(ICTAI’06) 523–526.

134. Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, et al.

(2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis

thaliana. Science 327: 92–94.

135. Conover WJ (1980) Practical Nonparametric Statistics. New York: Wiley.

136. Broadhurst D, Kell DB (2006) Statistical strategies for avoiding false discoveries
in metabolomics and related experiments. Metabolomics 2: 171–196.

137. Shannon CE, Weaver W (1949) The mathematical theory of communication.
Urbana, IL.: University of Illinois Press.

138. Goldberg DE (1989) Genetic algorithms in search, optimization and machine

learning: Addison-Wesley.

139. Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, et al. (2007)

Improving catalytic function by ProSAR-driven enzyme evolution. Nat
Biotechnol 25: 338–344.

140. Fox R (2005) Directed molecular evolution by machine learning and the

influence of nonlinear interactions. J Theor Biol 234: 187–199.
141. Wold S, Trygg J, Berglund A, Antti H (2001) Some recent developments in

PLS modeling. Chemometr Intell Lab Syst 58: 131–150.

142. Yonezawa K, Yamagata H (1977) Optimum mutation rate and optimum dose
for practical mutation breeding. Euphytica 26: 413–426.

143. Zaccolo M, Gherardi E (1999) The effect of high-frequency random
mutagenesis on in vitro protein evolution: A study on TEM-1 b-lactamase.

J Mol Biol 285: 775–783.

144. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev
Cancer 4: 143–153.

145. Barrett CL, Kim TY, Kim HU, Palsson BØ, Lee SY (2006) Systems biology as
a foundation for genome-scale synthetic biology. Curr Opin Biotechnol 17:

488–492.
146. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology:

new engineering rules for an emerging discipline. Mol Syst Biol 2: 2006 0028.

147. Purnick PE, Weiss R (2009) The second wave of synthetic biology: from
modules to systems. Nat Rev Mol Cell Biol 10: 410–422.

148. Mühlenbein H, Schlierkamp-Voosen D (1993) The science of breeding and its
application to the breeder genetic algorithm (BGA). Evolutionary Computation

1: 335–360.

149. Horn J, Nafpliotis N. Multiobjective optimisation using the niched Pareto
genetic algorithm; 1994; Piscataway. 82–87.

150. Mahfoud SW (1995) Niching methods for genetic algorithms. PhD thesis,
University of Illinois at Urbana-Champaign IlliGAL Report 95001.

151. Mengshoel OJ, Goldberg DE (2008) The crowding approach to niching in
genetic algorithms. Evol Comput 16: 315–354.

152. Tomassini M (2005) Spatially structured evolutionary algorithms. Heidelberg:

Springer.
153. Schlierkamp-Voosen D, Mühlenbein H (1994) Strategy adaptation by

competing subpopulations. Parallel Problem Solving from Nature (PPSN III):
199–208.

154. Wineberg M, Chen J (2004) The shifting balance genetic algorithm as more

than just another island model GA. Proc Genet Evol Comput Conf (GECCO
2004): 318–329.

155. Skolicki Z, de Jong K (2005) The influence of migration sizes and intervals on
island models. Proc Genetic Evol Comput Conf (GECCO 2005): 1295–1302.

156. Corne DW, Oates MJ, Kell DB (2003) Landscape State Machines: tools for
evolutionary algorithm performance analyses and landscape/algorithm map-

ping. In: Cagnoni S, Cardalda JRJ, Corne DW, Gottlieb J, Guillot A, et al.,

editors. Evoworkshops 2003. Berlin: Springer. 187–198.
157. Rowe W, Corne DW, Knowles J (2006) Predicting Stochastic Search

Algorithm Performance using Landscape State Machines. IEEE Congress on
Evolutionary Computation (CEC 2006): 9849–9856.

158. Hutter M (2001) Fitness uniform selection to preserve genetic diversity.

Technical Report IDSIA-01-01 ftp://ftpidsiach/pub/techrep/IDSIA-01-
01psgz.

159. Hutter M, Legg S (2006) Fitness Uniform Optimization. IEEE Trans Evol
Comput 10: 568–589.

160. Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D,
Dorigo M, Glover F, editors. New Ideas in Optimisation. London: McGraw-

Hill. 219–243.

161. Knowles JD, Corne DW (2004) Memetic algorithms for multiobjective
optimization: issues, methods and prospects. In: Krasnogor N, Smith JE, Hart

WE, editors. Recent Advances in Memetic Algorithms. Berlin: Springer. 313–
352.

162. Birattari M, Stützle T, Paquete L, Varrentrap K (2002) A racing algorithm for

configuring metaheuristics. Prof Genet Evol Comput Conf (GECCO 2002):
11–18.

163. Yuan B, Gallagher M (2004) Statistical racing techniques for improved
empirical evaluation of evolutionary algorithms 81,. Proc 8th Int Conf on

Parallel Problem Solving from Nature LNCS 3242.

164. Jourdan L, Corne D, Savic DA, Walters GA (2005) Preliminary investigation of
the ‘Learnable Evolution Model’ for faster/better multiobjective water systems

design. Proc Conf on Evolutionary Multiobjective Optimisation 2005: 841–
855.

165. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of
expensive black-box functions. J Global Opt 13: 455–492.

Evolutionary Computing for Molecular Breeding

PLOS ONE | www.plosone.org 14 November 2012 | Volume 7 | Issue 11 | e48862

