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Metabolomics seeks to measure potentially all the me-
tabolites in a biological sample, and consequently, we
need to develop and optimize methods to increase sig-
nificantly the number of metabolites we can detect. We
extended the closed-loop (iterative, automated) optimiza-
tion system that we had previously developed for one-
dimensional GC-TOF-MS (O’Hagan, S.; Dunn, W. B.;
Brown, M.; Knowles, J. D.; Kell, D. B. Anal. Chem.
2005, 77, 290-303) to comprehensive two-dimensional
(GC×GC) chromatography. The heuristic approach used
was a multiobjective version of the efficient global opti-
mization algorithm. In just 300 automated runs, we
improved the number of metabolites observable relative
to those in 1D GC by some 3-fold. The optimized condi-
tions allowed for the detection of over 4000 raw peaks,
of which some 1800 were considered to be real metabolite
peaks and not impurities or peaks with a signal/noise
ratio of less than 5. A variety of computational methods
served to explain the basis for the improvement. This
closed-loop optimization strategy is a generic and powerful
approach for the optimization of any analytical instrumen-
tation.

There is increasing interest in the measurement of nominally
“all” the metabolites in a sample, i.e., the metabolome.1-5 In
practice, the very wide chemical and physical nature of these
metabolites6,7 means that only a subset, a metabolic profile, is
determined using a given technique.8,9 Nevertheless, from the
philosophical point of view, in which we use these methods

principally for hypothesis generation rather than hypothesis
testing,10 we do seek methods that can measure as many of the
metabolites as possible to maximize the biological information
obtained.

Of methods currently in use,9,11,12 those that employ a separa-
tion step coupled to mass spectrometric detection are pre-eminent.
While advances in capillary electrophoresis13,14 and LC15,16 are
making them more technically competitive, both pioneering (e.g.,
refs 17-20) and more recent studies (e.g., refs 21 and 22) have
favored gas chromatography as being the most highly resolving
technique, and thus the separation method of choice.

Despite this long history, gas chromatographic separations
have been far from optimized. The reason for this is that a
comparatively large set (m) of instrumental parameters may be
varied, and the number of combinations varies exponentially with
m such that if each can take n values the number of possible
experiments is nm. For even modest values of n and m, exhaustive
search becomes impossible. Notwithstanding, it has long been
known that comparatively small changes in experimental condi-
tions can have rather substantial effects on chromatographic
performance, especially in liquid chromatography.23-25 The same
is also true for electrospray ionization mass spectrometry (e.g.,
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refs 26-28). Another issue, of course, is that we do not know the
numbers of metabolites that might be present in a given matrix,
although for serum we would argue that values for the number
of native metabolites in the decade 1-10 000 seem reasonable
based on a combination of our knowledge of the major metabolic
pathways (e.g., refs 29-32) and what has been observed in the
more modern experiments designed to explore this question (e.g.,
ref 33). We note too the potential contribution of the gut microflora
to the serum metabolome,34 which may be more pronounced in
urine.16

In recent work,35 inspired by the “Robot Scientist” idea,36 we
exploited a closed-loop method in which we automated and
iterated the entire process of parameter setting, performance of
the GC run, analysis of the data obtained (in terms of peak
number, run time, and a metric of signal/noise ratio), and
changing of the parameter set, with the result that with just 240
runs we could improve an already excellent method 3-fold in terms
of the number of peaks detected. A multiobjective evolutionary
algorithm, PESA-II ,35,37,38 was used as the heuristic for navigating
the search space of some 200 000 000 combinations.

Comprehensivetwo-dimensionalgaschromatography(GC×GC)39-44

describes a general method in which substances eluting from a
first column (typically nonpolar) over a certain time window are
focused and then released (via a process termed modulation) on
to a second (typically more polar) column where they are further
separated. The technique has the potential for increasing further

the number of peaks determined in metabolomics experiments
caused by a combined effect of increased peak capacities,
chromatographic resolution and signal-to-noise ratios.45 One
distinct advantage is that metabolites of the same volatility, and
hence the same retention time on column 1, can be resolved
chromatographically on column 2 if their polarities are different,
something that is not achievable with 1D GC and that, conse-
quently, decreases the reliance on deconvolution software. With
two columns, there are even more experimental parameters that
can be varied, and correspondingly, it has not been subjected to
extensive optimization, let alone the closed-loop optimization of
the type described above. It was therefore of interest to develop
a comprehensive two-dimensional GC×GC method that would
maximize the number of metabolites we could observe, this time
using human serum. This paper describes a successful imple-
mentation of closed-loop optimization in this system, leading to a
method that produces more than 4000 peaks corresponding to
almost 2000 different metabolite peaks.

EXPERIMENTAL SECTION
Biological Information. Sample Preparation. Deprotein-

ization of human serum (pooled serum from 17 individuals
therefore representing the optimal metabolome expected; Sigma-
Aldrich, Gillingham, UK) was performed by addition of 600 µL of
methanol (AR Grade, Sigma-Aldrich, Gillingham, UK) to 200 µL
of serum followed by vortex mixing (15 s), centrifugation (15 min,
13385g), and lyophiliation of the supernatant (HETO VR MAXI
vacuum centrifuge attached to a HETO CT/DW 60E cooling trap;
Thermo Life Sciences, Basingstoke, UK). A two-stage chemical
derivatization procedure was performed. A 50-µL aliquot of 20 mg/
mL O-methylhydroxylamine solution was added and heated at 40
°C for 80 min followed by addition of 50 µL of N-acetyl-N-
(trimethylsilyl)trifluoroacetamide and heating at 40 °C for 80 min.
All sample solutions were analyzed within 36 h of derivatization.

Optimization. The GC×GC-MS instrument (Agilent 6890N
gas chromatograph (Agilent Technologies, Stockport, UK) and
Gerstel MPS2L autosampler (Gerstel, Baltimore, MD) coupled
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Figure 1. Closed-loop control of GC×GC-MS parameters using the
ParEGO algorithm.
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to a Leco Pegasus IV time-of-flight (TOF) mass spectrometer
(Leco Corp., St. Joseph, MO)) that we used exploit a four-jet
nitrogen-based cryogenic modulation system. Columns 1 and 2
were, respectively, DB-1 (30 m × 250 µm × 0.25 µm; Agilent J&W
Scientific) and BPX-50 (1.5 m × 100 µm × 0.1 µm; SGE, Milton
Keynes). The Windows-based ChromaTof v2.25 software was
obtained from the manufacturer and ran on an IBM-compatible
PC. It was employed for instrument control and raw data
processing, including chromatographic deconvolution, but does
not have a suitable application programming interface by which
an external control program could be used to automate acquisition
and processing of GC×GC-MS data. Thus, to automate this
process, we are required to “mimic” manual operator input. To
achieve this, a Windows macro recorder, Eventcorder (http://
www.eventcorder.com/), was used to capture and play back
manual keyboard/mouse movements. As well as its own scripting
environment, Eventcorder itself has its own ActiveX API and
therefore playback can be controlled via any ActiveX aware
programming language, such as Visual Basic, Delphi, etc. This
enables playback of recorded scripts under program control with
variable text (keystrokes) sent to the client program, as well as
access to the full suite of features provided by the programming
language.

To control Eventcorder (and hence the LECO software), we
(S.O’H.) developed a Microsoft VB6 Program, GCTofControl V1.8;
this software also acted as the interface to the heuristic algorithm
(WinParEGO) used for choosing the parameters, read in the Leco

peak list exported data files (as ASCII CSV format) and calculated
fitness values from these.

The algorithm used, WinParEGO, is a C/C++ dynamic link
library based on the command line ParEGO implementation
developed by J.D.K. and ported from Linux to Windows. The
ParEGO algorithm46 is a multiobjective version of the efficient
global optimization (EGO) algorithm of Jones and colleagues .47

It uses a design and analysis of computer experiment (DACE)48-50

approach to model the fitness landscape(s), based on an initial
“Latin hypercube” sampling of the parameter space. Subsequently,
the model is used to suggest the next experiment (set of
instrumentation parameter values), such that the “expected
improvement” in the fitness function is maximized. The notion of
expected improvement implicitly ensures that ParEGO balances
exploration of new parameter combinations with exploitation and
fine-tuning of parameter values that have led to good “fitnesses”
in previous experiments. The DACE model is updated after each
fitness evaluation. The overall arrangement is given in Figure 1.

Instrument Parameters. The instrument parameters that
were chosen for optimization are listed in Table 1; the oven 1
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Table 1. Instrument Parameters for Optimization Showing Final Ranges Useda

variable parameters units min max inc step

sample volume µL 1.0 5 1.0 (0.1) 5 (45)
corrected column flow mL/min 0.8 2 0.2 (0.1) 7 (12)
split ratio - 1:10 1:80 5 (0.1) 15 (700)
inlet temperature °C 200 280 10 (1) 9 (40)
oven 1 start hold time min 3 8 1 (0.01) 6 (500)
oven 1 ramp rate °C/min 5 26 3 (0.1) 8 (95)
oven 1 final temperature °C 260 300 10 (1) 5 (40)
oven 1 final hold time min 0 5 1 (0.01) 6 (400)
oven 2 start temperature °C 55 75 4 (0.01) 6 (2000)
transfer line temperature °C 220 280 20 (1) 4 (60)
modulator temperature offset °C 15 55 10 (1) 5 (40)
second dimension time min 4 7 1 (0.0001) 4 (30000)
hot pulse time sec 0.2 0.5 0.1 (0.01) 4 (30)
acquisition rate Hz 30 160 10 (1) 14 (440)
ion source temperature °C 220 280 20 (1) 4 (60)

fixed parameters units default
oven 1 start temperature °C 50
initial detector voltage V 1700

a Increments and steps for experiments 1-217 are shown wihout parentheses, and for experiments 218 and higher are shown in parentheses.
Oven 2 start hold time, ramp speed, final temperature, and final temperature hold time were identical to oven 1 parameters. It will be noted that
the final search space, which is the product of the numbers in the right-hand column of the variable parameters, was 7.32 × 109 for the initial
search (and ∼9.8 × 1032 for the quasi-continuous search).

Table 2. Objectives or Fitness Functions Used.

objective description
optimization

direction

PeakCount peak count after adjustment for noise and duplicates maximize
RTM run time minimize
ANND average nearest peakspeak neighbor distance of 25% worst peaks maximize
ASN average signal-to-noise of 10% worst peaks maximize
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start temperature and the detector voltage were fixed for the
optimization runs we carried out, but could also be set from within
the GCTofControl control program. The initial oven temperature
was chosen, in a preoptimization experiment to ensure that
metabolites of greatest volatility were detected, since too high a
temperature would mean that such metabolites will elute in the
solvent front (where data are not collected to increase filament
and detector lifetimes). The detector voltage was set at 1700 V,
initially and an equivalent sensitivity throughout the optimization
experiment was ensured by determination of the S/N for mass
69 of a calibrant gas (PFTBA) on a daily basis and adjustment of
the detector voltage to maintain a similar S/N and sensitivity (4
adjustments were performed).

In the initial set of 50 experiments, parameters were allocated
using the Latin hypercube approach, which attempts to distribute
the parameter values across the parameter space (as in standard
design of experiments strategies51,52). Subsequently, experimental
parameters were generated using the ParEGO genetic algorithm’s
DACE model. The set of 50 hypercube-generated experiments
gives the ParEGO algorithm sufficient data upon which to build
its initial DACE model.

For experiments up to number 217, a somewhat coarser
discretization of parameter ranges was used (Table 1). However,
for experiments 218-246, the parameter increments were de-
creased to the lowest limit that would remain as acceptable inputs
to the Leco software in an attempt to make the parameters
approximate more nearly continuous functions. This was done
because there are theoretical grounds for believing that the DACE
model of the ParEGO algorithm would operate more efficiently
with (more nearly) continuous values. After experiment 246, an
optimal set of conditions was being approached as shown by the
same parameter values being employed for consecutive experi-
ments. The data were surveyed to describe the optimal conditions
for each parameter. After optimal conditions were determined, a

more targeted set of experiments were designed (by W.B.D.) to
explore the local search space around these optimal conditions
more systematically by experimentally varying one parameter
while maintaining the other parameters at a constant level
(experiments 250-300).

Fitness (Objective) Functions. In many areas of bioanalysis,
it is not possible to know a priori the nature of the compounds of
interest.53 In metabolomics in particular, where it is desired to
obtain information on as many (perhaps previously unknown)
metabolites as possible, it is not feasible to use a targeted
compound approach to analysis. Also, it is becoming important
to construct experiments such that the data obtained (and the
metadata54,55) may be reused at a future datesperhaps for an
entirely unforeseen application. It is therefore prudent to capture
as much analytical information as possible. For this reason, our
primary “fitness function” or objective was chosen to be the
number of peaks detected in the chromatogramsincluding ap-
propriate filtering56 of noise and potential duplicate peaks (see
below: Data Preprocessing).

In a typical metabolomic experiment, it is likely that many
hundreds if not thousands of samples will need to be analyzed,
so the overall time taken to do each analysis becomes critical to
the practicality of the experiment. The analytical run time was
chosen as the next most important objective.

In GC×GC, the elution time chromatogram is characterized
by two time dimensions, corresponding to the retention time on
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Figure 2. Auxiliary fitness function GMax. A GMax-bio model of an analyst’s classification of the run quality; although not used during optimization,
this provided a useful aid for subsequent analysis.
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the first column and the retention time on the second column. A
good interpretation of the resolution between two peaks, which
takes into account both time dimensions, would be the diagonal
distance between them on the 2D plane; the closest peak to any
given peak will then be its nearest neighbor. For each peak, we
calculated the nearest-neighbor distance after removal of noise
and duplicate peaks. Ignoring the fact that each pair of peaks
would be represented twice, we used the average of the lowest
25% nearest-neighbor distances as our third fitness function. In
practice, because the interval between peaks on the first column
is always larger than the interval between peaks on the second
column, when there is more than one peak at a given first column
elution time (as will happen most of the time), this fitness measure
reduces to the time separation on the second column.

For the final fitness function, we chose to measure the average
signal-to-noise ratio of the peaks in the run. However, as nearly
all peaks had very good signal-to-noise, we limited the calculation
to the average of the worst 10% of peaks, so that the fitness
function would reflect improvements (if any) in the worst peaks
observedseither through the reduction in noise peaks or im-
provement in intensity of “true” peaks. These objectives are set
out in Table 2.

Data Preprocessing. The Leco software exports a text file
containing a 2D peak list, that is 2D in the sense that chromato-
graphic peaks are characterized by two retention time dimensions,
that of the first GC column and that of the second GC column.
Although each peak can be expanded into a full mass spectrum,
and the data are therefore multidimensional, we only utilized the

Figure 3. Typical GC×GC-TOF-MS 3D chromatograms from (a) experiment 7, one of the better runs during the first 50 experiments, and (b)
from the final optimized set of conditions.
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peak area of the quantification ion identified by the peak decon-
volution software for our analysis. (Note: due to the nature of
the deconvolution algorithm, there is no guarantee that, for a given
peak, the same quantification ion will be chosen from run to run,
so this may introduce some bias; however, this is unavoidable as
we have little or no control over deconvolution parameters). Due

to the Leco peak detection algorithm and the way that GC “slices”
from the first column are trapped and fed into the second column,
there is a high potential for the occurrence of duplicate or multiplet
chromatographic peaks to be identifiedsi.e., multiple peaks in the
output file are in fact only one chemical entity. The match required
to combine was set at 500, a reasonable value to ensure modulated

Figure 4. Improvement in peak number during the closed-loop optimization of GC×GC-TOF-MS measurements of human serum. The size
of the symbol encodes the run time while the color (red low, blue high) encodes the nearest-neighbor distance defined above. The last 6
experiments in green represent validation replicates using the final chosen conditions. (a) Peaks vs experiment number. (b) Peaks vs run time.
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peaks of the same metabolite are combined. Another problem is
that the position of the initial solvent front changes with instrument
parameters (which the optimization algorithm alters from run to
run), so that using a fixed solvent delay runs the risk of either
losing genuine peaks if the solvent delay is too long or passing
unwanted solvent peaks if the solvent delay is too short in
comparison with the position of the solvent front. Both of these
effects would lead to an incorrect estimate in the peak number
fitness, and therefore, simple preprocessing steps were applied
prior to calculating fitness.

Initial noise removal involves removing all peaks from the peak
list with a peak area of <700. This equates to an approximate
S/N < 5, dependent on the quantification ion employed.

To overcome the occurrence of duplicate peaks, we utilized
the Leco software’s mass spectral library search facility (employing
NIST/EPA/NIH 02 mass spectral library and the publicly available
MPI-Golm library; http://csbdb.mpimp-golm.mpg.de/csbdb/
dload/dl_msri.html) to label each peak first with a tentative ID
based on mass spectrum similarity measures. Thus, the primary
list of duplicates constituted peaks that had been labeled with the
same name more than once. However, we then applied the
additional criterion that the peak separation on the first and second
dimensions be within (1.5 × the second dimension time window)
and 0.25 s, respectively. For the list of peaks meeting these criteria,
the most intense peak was retained and the remainder were

rejected as “duplicates”. (Note: the fact that these two libraries
provide different text identifications for the same chemical entity
results in compounds identified by the two different libraries at
different peak positions not being detected as a duplicate peak.)
Also the match with the highest similarity was used for filtering,
which in our experience is not necessarily the correct identification
and a metabolite with a lower similarity match may be the correct
metabolite identification. This may provide some bias to the
results.

To set an appropriate solvent delay, prior to the main run, we
carried out 50 experiments with varying parameters; an analyst
then determined the position of the solvent front in each run. The
genetic programming application GMax-Bio V2.8 (http://www.
thegmax.com/) was then used to model the position of the solvent
front as a function of the parameters. A reasonable model of the
solvent front position in terms of the initial hold time, ramp, and
gas flow rate was found. This model was incorporated into
GCTofControl V1.8 as a means of setting an appropriate solvent
delay. No large solvent peak, which is detrimental to filament and
detector lifetime, was observed in any experiment.

Auxiliary Fitness Functions. In addition to the fitness
function used during optimization, we calculated several auxiliary
fitness functions that were not fed into ParEGO for optimization.
These were implemented to assess potential fitness functions for
future use and as a means of providing additional “figures of merit”
that could be used during the analysis of the data.

All of the auxiliary fitness functions used just the peak data
for the elution time on the second dimension. All except “GMax”
were designed to measure the evenness of the distribution of
peaks over the second dimension.

During the initial runs, it became apparent that some runs were
quite poor in terms of their appearance and structure, and it was
discernible by both novice and experienced analysts alike that,
in fact, several of these runs appeared to have quite “abnormal”
appearance. Thus, it would have been desirable to reject such
runs, albeit that the fitness functions chosen did not appear to be
able to detect such runs.

To try to overcome this, we used GMax-bio to model a subset
of 123 runs, which had been categorized as “good”, “bad”, or
“anomalous”, although with the version of GMax-Bio we had
available at the time, we were only able to model the good/not-
good classification. The input parameters to the model were the
instrument parameters and the other fitness functions (including
the auxiliary fitness functions other than GMax). A reasonable

Table 3. Auxiliary Fitness Functions.

auxiliary fitness function description

IQR10 interquartile range of second dimension elution time,
after applying a threshold of 10 on signal-to-noise

IQR10/SDTW IQR10 as described above divided by the width
of the second dimension time window

LBc overlap of second dimension elution time peak-count
histogram with perfect rectangular distribution of
same total area

LBa overlap of second dimension elution time peak-area
histogram with perfect rectangular distribution of
same total area

GMax the virtual analyst: A GMax-Bio model based on
an analyst’s qualitative judgment of a subset of runs

Table 4. Set of Final Optimized Conditions after 300
Experiments.

variable parameters units
optimized

value

sample volume µL 3
corrected column flow mL/min 1
split ratio 01:15
inlet temperature °C 260
oven 1 start hold time min 5
oven 1 ramp rate °C/min 5
oven 1 final temperature °C 290
final temperature duration min 10
oven 2 start temperature °C 57
oven 2 start hold time min 5
oven 2 ramp rate °C/min 5
oven 2 final temperature °C 290
final temperature duration min 10
transfer line temperature °C 220
modulator temperature offset °C 25
second dimension time s 6
hot pulse time s 0.3
acquisition rate Hz 130
ion source temperature °C 240
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model was found to require only ASN, ANND, PeakCount, LBc,
and IQR10 and, thus, was a nonlinear transformation of some of
the other fitness functions and auxiliary fitness functions.

Although we did not carry out any further optimizations using
these auxiliary fitness functions directly, they did prove helpful
when choosing the final run parameters.

GMax-bio Genetic Programming Models. The protocol
adopted for all GMax-bio models was to use 50% of the data as a
holdout set for validation (Figure 2). This validation set was
scrutinized in order to guard against overfitting. Generally, 5-10
runs, each of 500 generations, were performed using all input
parameters. Parameter frequencies from these runs were then
pooled and used to select a subset of the most significant
parameters upon which a further set of runs were carried out
(usually until no further improvement in the fitness of the model
was observed for 100 generations or so). When overfitting was
observed, the model was trimmed to the simplest in terms of
model (tree) size, number of generations, or both to the point
that preserved the best model classification errors on both the
training data and the validation data.

RESULTS
Figure 3 shows typical GC×GC-TOF-MS 3D chromatograms

from (a) experiment 7, one of the better runs during the first 50
experiments, and (b) from the finally optimized set of conditions.
It is evident that a considerably larger number of peaks are present
when the optimized conditions are used and that some of this
improvement is due to improved separation in the second
dimension.

Figure 4a shows the evolution of the peak number during the
experimental progression. A number of features are apparent from
the data. First, the improvement in the median peak number is
considerable, from 469 to 3154 when the first 50 and last 50
optimization runs are compared. The final set of conditions (Table
4), carried out in sextuplicate, yield a mean of 4334 ( 155 peaks,
amounting to a CV of 3.6%. This variation is mainly due to peaks
with the lowest signal/noise ratio becoming differentially observ-
able at the limit of detection margin, with improved conditions
providing higher responses (or concentration in the final peak).
There is also a potential contribution via inaccurate identification
of peaks by library searching of mass spectra containing high
proportions of noise peaks, which influence mass spectral library
searches and results in duplicate peaks not being assigned as
duplicate peaks. That the separation in the second dimension
needs to be optimized rather than maximized is illustrated by the
fact that (above a threshold) it is in fact the lower nearest-neighbor
distances that are optimal (Figure 4), since when there is a
restricted overall time in the second dimension, methods that keep
the distances between peaks small allow more of the peaks to be
observed without overlap.

The output data of the GCTofControl program give fitness
values for all experiments run, and the analyst is therefore able
to select appropriate tradeoffs between different fitnesses, taking
into account practical experimental considerations as well as the
importance of the various fitnesses for the final application.
Optimum parameter values are rounded taking into consideration
the spread of fitness values as well as the position of the chosen
optimum. The final set of optimized conditions is shown in Table

Figure 5. Effect of ramp speed (°C‚min-1) on the number of peaks observed during GC×GC-TOF-MS optimization. Other conditions as in
Figure 4.
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4. Note that, after the initial optimization of 300 experiments, a
small series of experiments was performed to ensure that late-
eluting peaks (on column 1 or 2) were indeed observed with the

optimized conditions. In these experiments, it was discovered that
cholesterol elutes late in both retention times 1 and 2 and therefore
the oven 1 and 2 final temperature duration was extended from

Figure 6. Effect of individual instrumental parameters on the number of peaks observed during the optimization of GC×GC-TOF MS. (a) Hot
pulse time, (b) flow rate, (c) split ratio, (d) inlet temperature, (e) transfer line temperature, (f) acquisition rate, (g) source temperature, and (h)
MT offset. Conditions and meaning of symbols as in Figures 4 and 5.
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the optimized value of 5 to 10 min and the second dimension time
of 6 s was maintained.

As previously for 1D GC-TOF-MS experiments,35 there is a
significant tendency of a lengthened run time to improve the
number of peaks (Figure 4a,b). The chief cause of this was the
lower temperature ramp speed in the longer runs (Figure 5). This
shows the greater requirement of chromatographic resolution of
metabolite peaks and that one should not rely on the instrument
vendor’s deconvolution software package for reliable and maximal
biologically relevant data to be produced.

An indication that the optimization had indeed been successful
was obtained by looking at the effect of individual parameters on
the number of peaks. Thus, Figure 6a shows the effect of the hot
pulse time (the time that hot nitrogen jets are in operation in each
modulation step) on the number of peaks, suggesting that the
more successful runs had indeed found an optimum within the
range studied and that the later runs were effectively optimizing
or effecting a local search. Similar statements are true for the other
instrumental parameters, of which another seven are illustrated

in Figure 6b-h. These parameters are of interest for understand-
ing the operation of GC×GC instrumentation for other applica-
tions. Sample volume is of interest as the thin film thickness of
column 2 requires a low sample volume to ensure the column
stationary phase is not overloaded and result in an increase in
peak width and therefore reduces chromatographic resolution.
In this optimization, a maximum on-column volume of 0.5 µL was
employed to ensure overloading of column 2 was not observed.
As for the GC-TOF-MS optimization previously reported,35 higher
sample volumes ensure that lower concentration metabolites are
still detected. Of interest is that low sample volume/low split ratios
are preferentially chosen to high sample volume/high split ratios,
even though similar on-column sample volumes are observed for
both.

The inlet and source temperatures are important to ensure that
metabolites, more specifically their oximated and trimethylsilyl
derivatives, are sufficiently volatile to traverse heated regions
within the analytical system while also ensuring that temperatures
are not too high as to degrade derivatized molecules thermally.

Figure 7. Normalized mutual information between the peak number and 10 conditions of the instrument’s configuration.

Table 5. Comparison of Peak Numbers Observed Using Optimized Versions of 1D35 and 2D (This Paper) GC-TOF-MSa

analytical raw peak count operator defined
metabolite peaks

detected in nonpooled

technique from deconvolution true peak count serum samples
GC-TOF-MS 1208 951 mean, 226
GC×GC-TOF-MS 4334 1787 mean, 694

a The raw peak count, for the optimized set of analytical conditions is the number of peaks reported by the Leco ChromaTof software, without
further data processing. The operator-defined true metabolite peaks are those peaks which a human expert (W.B.D.) believes to be real metabolite
peaks and not impurities or peaks of S/N < 5 but that are still reported. Metabolite peaks detected in nonpooled samples are the typical number
of peaks detected in individual serum samples for biomarker studies.

Analytical Chemistry, Vol. 79, No. 2, January 15, 2007 473



The inlet and source temperatures of 260 and 240 °C, respectively,
provide the transfer of the greatest number of metabolite peaks
will minimizing metabolite peak thermal degradation.

Of specific interest for GC×GC applications is the transfer line
temperature, especially as short column 2 lengths are used. The
percentage of column 2 that lies outside the column 2 oven is
much greater for GC×GC than for GC applications; in this
example, one-third of column 2 (50 cm) is located in the transfer
line and not in the oven, with both operating at different
temperatures (especially column 2 whose temperature is ramped
during an analytical run). It was found that a transfer line
temperature of 220 °C was optimal when compared to higher
temperatures, presumably because lower temperatures provide
better chromatographic resolution for column 2.

To give a further indication of the relationship between the
peak number and the settings of the instrument, the normalized
mutual information between peak number and each of the 10
conditions considered in Figures 4-6 has been calculated and is
displayed in Figure 7. The mutual information between two
variables X and Y is an information-theoretic measure of their
mutual dependence;57-59 it is a symmetric measure, which quanti-
fies the difference between the joint distribution of X and Y and
their marginal distributions. Here, we compute the normalized
mutual information from the data collected during the optimiza-
tion, using NMI ) [2MI(X,Y)/(H(X) + H(Y))]1/2, where MI(X,Y)-
is the mutual information of X and Y, given by MI(X,Y) )
∑n∑np(x ∧ y)log2p(x ∧ y)/p(x)p(y) and H(X) and H(Y) are the
entropy of X and Y, respectively. To compute the mutual informa-

tion and entropies, the data were binned into n ) 10 bins and the
sample probabilities of the X and Y variables falling into each bin
are calculated.

Figure 7 shows that all 10 of the conditions considered have
an influence on the number of peaks and that run time, ramp,
and acquisition rate have a particularly large effect. This is of
particular importance, showing that all conditions do indeed have
a significant influence on the analytical result and therefore need
to be part of the heuristic search.

Overall, these peak numbers compare very favorably with
those seen in the 1D optimized GC-TOF (Table 5).

It is reasonable next to enquire as to where these extra peaks
come from. One reason for the greater number of peaks is the
improved S/N achievable with GC×GC, when compared to GC
strategies. Modulation provides narrow peak widths in the second
dimension (typically 0.2 s compared to 3 s for GC), which
improves S/N. Also metabolite peaks are chromatographically
separated from the chemical background (solvent and derivati-
zation peaks observed at low second dimension retention times),
which also improves S/N compared to GC applications. The
second possibility is that these “extra” peaks are essentially peaks
of low S/N that were incompletely deconvolved from (or com-
pletely hidden by) larger ones when the 1D separation was
inadequate to discriminate them. Given that the deconvolution
algorithm in the Leco software (and most other deconvolution
software packages) relies on features in the mass spectra, it
cannot, for completely overlapping peaks, discriminate small peaks
in terms of whether they come as less common fragments of a
more abundant peak rather than major fragments of a less
abundant peak. Complementary to Figure 3, Figure 8 gives an
indication of how more peaks do indeed appear in the second

(57) Shannon, C. E.; Weaver, W. The mathematical theory of communication;
University of Illinois Press: Urbana, IL, 1949.

(58) Battiti, R. IEEE Trans. Neural Networks 1994, 5, 537-550.
(59) Broomhead, D. S.; Sidorov, N. Nonlinearity 2004, 17, 2203-2223.

Figure 8. Illustration of the increase (and distribution) of the second dimensional separation as a function of run time. The symbols encode
the local density of peaks, while the color and symbol size encode the total peak number.
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dimension as the run number increases and thus must have been
“hidden” during the earlier runs.

It is also of interest to seek to understand the overall
optimization landscape, which in the case of the electrospray mass
spectrometry optimization26 appeared to be very epistatic indeed
(in the sense that the optimal value of one variable depended on
the values of other variables, although that for 1D GC-TOF was
much less so).35 It might be the case, for instance, that the extra
degrees of freedom offered by the second dimension could change
the landscape over that in 1D GC significantly, making it even
less epistatic. While an inspection of the data of Figure 6 could
be consistent with that view, we recognize that we used a different
algorithm here, and a straight comparison is inappropriate.
Nevertheless, we illustrate the landscape in Figure 9, using as
before the first two principal components of the variance of the
parameters to reduce their dimensionality for purposes of visu-
alization.

The plot of PC1 versus PC2 in Figure 9a clearly shows three
separate, almost orthogonal, clusters. The bottom left cluster
reflects the experimental conditions producing both the maximum
number of peaks and also the maximum run times. The top cluster
shows a good spread of peak detection, with a couple of reasonably
high values of peak number, while keeping the run time relatively
low. The third cluster (bottom right) contains mainly low peak
numbers combined with short run times. The cluster distribution
is further explained by the loadings plot (Figure 9b). Cluster 1 is
significantly influenced by time-based parameters (AcqRate, SD-
time, FinalHoldTime, HoldTime), while cluster 2 is significantly
influenced by temperature components and flow, and cluster 3 is
significantly influenced by ramp and HPtime. Together with the
earlier data, especially those in Figure 7, these plots illustrate not
only how the system improved but why.

DISCUSSION
The history of biochemistry is replete with important advances

that have been occasioned by the discovery of novel metabolites
that, as well as their intrinsic scientific interest, might also have
significance in applied work and in medicine. As with proteomics,60

the large dynamic range of the human serum metabolome61 means
that inadequate separations will cause substances present at low
concentrations to comigrate with components present in much
larger concentrations, thereby obscuring both their detection and
their identification. Even with mass spectral information this can
make their deconvolution extremely challenging. Consequently,
both prefractionation and improved separations are among the
better strategies for increasing the number of metabolites that
may be detected in metabolomics experiments. Our preference
where possible is for the latter, which is a more appropriate
strategy for the high-throughput approaches that are required (for
statistical reasons if no other62-65) in metabolomics.

Exhaustive search of the possible combinations of chromato-
graphic conditions that might be used is out of the question, and
so heuristic methods are appropriate. Even then, potentially
hundreds of experiments must still be performed, and automation
then becomes a very desirable approach. In the present work,
we extended our earlier closed-loop strategy35 to 2D GC, increas-
ing the number of “raw” peaks to over 4000 and the number of
discernible metabolites to ∼1800. In addition, we used a different
multiobjective optimization algorithm,46 which is considered highly
efficient for continuous functions.

The serum employed was a commercially available pooled
sample from 17 individuals. The variability of the human metabo-
lome has been recognized for a long time66 and previously detailed,
for instance, in terms of factors such as age,67 gender,68,69 diet

(60) Anderson, N. L.; Anderson, N. G. Mol. Cell. Proteomics 2002, 1, 845-867.
(61) Kell, D. B. Curr. Opin. Microbiol. 2004, 7, 296-307.
(62) Ioannidis, J. P.; Trikalinos, T. A.; Ntzani, E. E.; Contopoulos-Ioannidis,

D. G. Lancet 2003, 361, 567-571.
(63) Wacholder, S.; Chanock, S.; Garcia-Closas, M.; El, Ghormli, L.; Rothman,

N. J. Natl. Cancer Inst. 2004, 96, 434-442.
(64) Ioannidis, J. P. PLoS Med. 2005, 2, e124.
(65) Ein-Dor, L.; Zuk, O.; Domany, E. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,

5923-5928.
(66) Williams, R. J. Biochemical Individuality; John Wiley: New York, 1956.
(67) Williams, R. E.; Lenz, E. M.; Rantalainen, M.; Willson, I. D. Mol. Biosyst.

2006, 2, 193-202.
(68) Stanley, E. G.; Bailey, N. J. C.; Bollard, M. E.; Haselden, J. N.; Waterfield,

C. J.; Holmes, E.; Nicholson, J. K. Anal. Biochem. 2005, 343, 195-202.

Figure 9. “Landscape” of the GC×GC optimization, with the
landscape encoded as principal components of the variance of the
parameters for purposes of visualization. (a) Scores, showing the peak
numbers encoded by symbol size and the run time by color (low red,
high blue). (b) Loadings. The contribution of the each of the
parameters studied to the variance in the model.
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and culture,70 and health/disease status of the subject71,72 being
likely to influence the composition of a particular metabolome.
This has also been shown in studies within the authors’ laboratory,
where typically 500-800 metabolite peaks are detected in serum
obtained from specific individuals, compared to the 1800 detected
in pooled serum as employed in this optimization study. It can be
expected that as greater numbers of samples are studied more
novel metabolite peaks will be detected. The primary objective of
the HUSERMET project (http://www.husermet.org/) is to assess
the variability of the human metabolome, both in composition and
in concentration, by analysis of serum obtained from more than
5000 individuals. Currently, over 2600 metabolites have been
estimated by genome-scale reconstruction models (Palsson,
personal communication, cf. ref 73), while the study of other
biofluids such as urine will extend the library of metabolites
further, including those derived from gut microflora.34

Of the nearly 1800 metabolite peaks detected, we have
currently identified only 188 metabolites by mass spectral library
searches using the mass spectral libraries defined above (similarity
>750), showing the major need to identify these metabolite peaks
by running authentic standards and thereby including more known
(or estimated) metabolites in mass spectral libraries. It should
be noted that many metabolites produce multiple derivatization

products, and therefore, in this study more than 350 peaks have
been assigned an identification, and it is this that is equivalent to
188 metabolites. Current work is ongoing to identify metabolites
definitively in this way by the compilation of a mass spectral/
retention index library for the optimized set of conditions reported,
including those for metabolites not currently available in academic
or commercially available mass spectral libraries.

Based on the heuristic analysis of the separations landscape
in this system, it does not appear likely that major improvements
in the number of peaks will now come from improving the
chromatographic separations per se. However, we recognize that
much greater resolution in the mass spectral dimension is
possible, including the use of exact mass techniques,74 and this
is evidently an important strategy both for further improving the
number of metabolites that may be detected and for assisting their
identification. Another approach that we are pursuing is to seek
to identify in the 2D GC×GC-TOF-MS data all the metabolites
that we would expect from the known biochemistry to be present
in human serum. If the deconvolution problem is reduced to
deconvolving known coeluting substances from each other, this
will permit the application of different and more powerful chemo-
metric techniques (cf. refs 53 and 75-81).

In conclusion, by using an advanced, closed-loop optimization
method, we have demonstrated a substantial improvement in the
number of human serum metabolites that may be detected reliably
using GC×GC-TOF-MS. Understanding their nature and distribu-
tion between individuals under different conditions is now possible,
where the existence of a suitable data model and database55 will
make this task much easier.
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