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Abstract.: The ‘bi’ and ‘higher modal features’ are aspects of 
Evolutionary Algorithm (EA) behaviour which are revealed, for a wide 
range of conditions, when extensive parametric studies are done to 
explore convergence time over a wide range of mutation rates. The 
bimodal feature indicates optimal mutation rates in terms of convergence 
time, which often correspond to optimal mutation rates in terms of final 
solution quality. The significance of the bimodal feature lies in parameter 
setting issues, and it is of interest to see how it varies with parameters and 
EA designs. Previous work shows that it appears in a wide range of 
conditions, but attenuates (the local optimum in convergence time 
becomes less apparent) with larger population sizes and low selection 
pressure. This chapter extends exploration of the bimodal feature into 
EAs with much larger population sizes, and show that under sufficiently 
high selection pressure it ‘returns’. It is interesting to note that these 
observations apply directly in the emerging field of ‘Directed Evolution’ 
for novel bio-molecules, in which large parallel populations undergo 
evolutionary search, with solution quality and number of generations 
being vital to optimise. This has potentially highly significant 
consequences for setting of mutation rates in Directed Evolution and high 
selection pressure large-scale parallel EAs in general. 
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10.1 Introduction 

Much experimental and theoretical work has been done examining 
optimum parameter settings for Evolutionary Algorithms when applied 
to a very wide range of problems such as combinatorial and function 
optimisation, for example 4, 5, 10, 12, 15, 32, 18, 26. These parameters have 
included, amongst others, population size, selection pressure, mutation 
rate, crossover rate and crossover operator. Previous work by the authors 
has focussed on optimising the search process for an industrial 
application (such as automated web load balancing 20, 21, 27) with an 
emphasis on the repeatability, speed and accuracy of the search). In 
general this application was facilitated by the use of small, embedded 
controllers where sequential processing has been the norm and thus the 
inherent parallelisation of EAs to allow concurrent fitness evaluation has 
not been readily exploitable. This has provided results indicating that 
small populations running with steady state algorithms with Tournament 
6 style selection pressure and traditionally high mutation rates tend to 
produce good results in a minimum number of evaluations. However, in 
direct contrast to this, biological studies in ‘Directed Evolution’ 1, 29, 
where bacteriological samples are bred to improve a desired 
characteristic such as toxin immunity etc, are interested in getting 
reliable results in a minimum number of generations, and where the use 
of large populations with parallel evaluation is commonplace 2, 7, 36. 
Much work has also been done by others on parallel EAs, where fitness 
evaluation is carried out across a cluster of processors, utilised by a 
central (or sometimes distributed) Evolutionary Algorithm controller. 
These configurations lend themselves more naturally (though not 
exclusively) to Generational style EAs using a form of Elitist ‘Breeder’ 
17 style selection strategy.  
 
In support of a biological study utilising ‘Directed Evolution’ targeted at 
rapid, novel enzyme development the authors are part of a team now 
examining 8, 9, 27 the performance characteristics of some of these large 
population, minimum generation EAs to attempt to optimise the 
bacteriological and virological studies being carried out by the biologists. 
In these biological studies it is possible to have populations of several 

   



thousand members, derived from a considerably smaller elitist breeding 
pool, with parallel evaluation. Each generational evaluation cycle may 
take hours or days to complete regardless of the population size. To give 
an example of where Directed Evolution may be applied, consider the 
early development of an epidemic of a new strain of bacteriological or 
virological threat. Here infection rates typically rise exponentially, and 
thus it is crucial to cut the number of such evaluation cycles to a 
minimum in the search for an effective vaccine. Therefore it is critical to 
find control parameters which deliver good results in a minimum number 
of generations, with far less regard to the actual number of evaluations 
carried out. Perhaps not surprisingly, existing work in bacterial strain 
improvement traditionally uses mutation rates focussed around the 
reciprocal of the chromosome length ( 1 / L ), based on work commonly 
attributed to Baltz 7. This mutation rate is typically induced by exposure 
to radiation or specific chemicals, the latter of which can also be used for 
‘targetted mutation’ at particular loci and/or alleles. However emerging 
evidence from more recent studies suggests considerably higher mutation 
rates can prove more effective 3, 36. 
 
This chapter presents some of the initial results from this new study 
showing that with very large population sizes and very high selection 
pressure, higher than traditional mutation rates deliver improved results 
on a range of standard test problems. The chapter begins with a 
background summary of relevant previous work leading to the 
experiments carried out to date. A discussion of these new results is 
provided together with initial conclusions and plans for future work. 

10.2 Background 

 
Figure 10.1 shows the mean performance profile (averaged over 50 runs) 
for a steady state, 3 way single tournament EA using uniform crossover 
30 and ‘New Random Allele’ mutation at a specified rate per gene on 
Watson’s H-IFF problem (described later).  The algorithm has a 
population size of 20 and each run is allowed 1,000,000 evaluations. The 
graph shows cyclical and phasic behaviour in the number of evaluations 

   



used to first find the best solution found, the standard deviation in this 
value and the fitness of the best solution found. This has been explained 
in 26, where it was shown that the performance of the algorithm over the 
range of mutation rates examined passes through 3 distinct phases, which 
repeat at least 3 times. In the first cycle of the first phase, the algorithm is 
starting to exploit the low level of mutation available to it, predominantly 
occurring as single point mutations. As mutation rates rise, these 
mutations occur with increasing frequency allowing the algorithm to 
utilise an increasing number of evaluations, until a point is reached 
where the usefulness of single point mutations is exhausted. As mutation 
rates increase, this point is reached earlier in the run, and hence the 
number of evaluation used falls. This is the second ‘phase’ of the 
performance profile and is further characterised by the flattening of the 
best found fitness plot and the reduction in the standard deviation of the 
number of evaluations used. At this point, mutation rates are still too low 
for the occurrence of 2 point mutations within the same chromosome to 
have any significant affect. However, as mutation rates increase, a point 
is reached where the likely occurrence of 2 point mutation becomes 
significant and this occasionally allows the algorithm to break though the 
‘fitness barrier’ 14 surrounding the local optimum it has become stuck in. 
Hence the number of evaluations used becomes erratic (shown by a 
sudden, marked increase in its standard deviation. This is now the third 
‘phase’ of performance behaviour. As mutation rates continue to 
increase, 2 point mutations become commonplace and the algorithm 
reverts back to its original phase behaviour exploiting increasing 
occurrences of these and the 3 phase cycle repeats until the usefulness of 
2 point mutations is exhausted. The cycle is shown to repeat at least one 
further time, before excessive mutation rates cause the algorithm to 
deteriorate into random search. This explanation is described and 
analysed in far more detail in 26 and is shown to exist in a range of multi-
modal problems in 24, 25. In mono-modal problems, only a single cycle of 
these 3 phases is usually observed as would be expected by such a 
hypothesis, as no ‘fitness barriers’ exist which require specific types of 
mutation to breach. 
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Figure 10.1 H-IFF 64 Performance Profile at 1 Million evaluations 
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Figure 10.2 Royal Stair 50-1 Performance Profile with 3 way Tournament selection 
Population Size 100 

   



Figure 10.2 shows the performance of a steady state Evolutionary 
algorithm on an instance of the Royal Staircase problem (length 50, 
block size 1), showing the co-incidence in troughs of minimum error, 
minimum evaluations used and minimum coefficient of variation 
(standard deviation divided by the mean ie a minimum in the normalised 
process variability). The results are again the average of 50 runs of the 
algorithm, each time with a population size of 100, uniform crossover at 
a probability of 1.0 and New Random Allele replacement mutation at the 
indicated rate per gene. Each run was allowed 20,000 evaluations, 
reporting the first evaluation number at which the best result in the run 
was first seen. The algorithm employed 3 way, single Tournament 
selection. As can be seen, in the trough of optimum performance (at 
mutation rate of around 2.5%), the algorithm requires around 5,000 
evaluations to find the global optimum. 
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Figure 10.3 Royal Stair 50-1 Performance Profile with 8 way Tournament selection, 
Population Size 100 
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Figure 10.4 Evaluations used, RS50-1, 50% Elitism  
 
The experiment was then repeated with the selection pressure increased 
to a single 8 way Tournament, where 8 members of the population are 
chosen at random and ranked. The first and second best are used as 
parents to produce a child which replaces the 8th ranked member of the 
Tournament back in the original population. This increased selection 
pressure can be seen in Figure 10.3 to have 3 predominant effects on the 
performance profile. Firstly, the number of evaluations used in the 
trough of optimum performance was seen to fall from around 5,000 
evaluations (3 way Tournament) to below 3,000 evaluations (8 way 
Tournament). Secondly, the average error of ‘best solutions found’ at 
low mutation rates was seen to deteriorate with higher selection pressure, 
and finally the average number of evaluations used at these mutation 
rates was seen to fall. Neither of these last two effects are surprising as 

   



the increased selection pressure is clearly causing earlier premature 
convergence from which the algorithm cannot escape due to lack of 
mutation. These results are a subset of previously published results in 22, 

23 wherein these effects are shown over a wider range of population sizes, 
problem instances and algorithm designs. 
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Figure 10.5 Errors, RS50-1, 50% Elitism 
 
These results show the aforementioned effects on a steady state 
algorithm, whilst Figures 10.4, 10.5, 10.6 and 10.7 show similar effects 
on Generational Breeder style algorithms incorporating 50% at 10% 
elitism respectively. Here the algorithm ranks the entire population and 
then discards the lower performing half (or 90%). The surviving 
members of the population are then randomly selected in pairs as parents 
(using uniform crossover at probability 1.0 followed by per gene 
mutation) to restore the population to original size. 
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Figure 10.6 Evaluations used, RS50-1, 10% Elitism  
 
Population sizes from 10 through to 500 (in steps of 10) have been 
trialled with mutation rates ranging from 1 E-7 to 0.83 per gene. In all 
cases the results are the average of 50 runs each of which is allowed 
20,000 evaluations. What can clearly be seen from a baseline in Figure 
10.4 is that whilst the bimodal performance profile is clearly apparent at 
low population sizes, it is attenuated by increased population size. Figure 
10.5 shows that at low population sizes, only a specific sub-range of 
mutation rates can deliver good performance (zero error from the 
optimum fitness value), whilst as population size increases, performance 
at these lower mutation rates improves, until by a population size of 500, 
adequate performance is just beginning to be delivered. Figure 10.6 
shows the contrast where selection pressure is increased by only allowing 
the top 10% of each generation to breed. Here, as in the case of the 

   



steady state algorithm, the 3 effects of increased selection pressure can 
clearly be seen : reduced evaluations needed at optimum mutation rates; 
more rapid premature convergence at low mutation rates; with this 
convergence on poorer solutions. What is also important however, is the 
clear continuation of the bimodal performance profile into higher 
population sizes. Whilst at low population sizes the affect is attenuated 
with respect to the lower selection pressure case, the effect is still clear in 
the population size 500 case, which was not true for the low selection 
pressure example. 
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Figure 10.7 Errors, RS50-1, 10% Elitism 
 
Figures 10.8 and 10.9 contrast with Figures 10.4 and 10.5, showing 
results where selection pressure remains at 50%, however the probability 
of performing crossover is reduced to 0.75 (in the case of no crossover, a 

   



single parent is used with mutation only). Whereas in Figure 10.4 the 
first ridge of high evaluations is seen to be attenuated by increased 
population size, in Figure 10.8 this ridge remains high, but the trough of 
optimum performance is seen to rise. At a population size of 500 the 
bimodal profile is still just observable. Further experiments with the 
probability of crossover reduced to only 50% and 10% continue these 
trends and the 50% crossover results for ‘evaluations used’ and ‘errors’ 
are shown in Figures 10.10 and 10.11 respectively.. These results on the 
Royal Staircase problem are in direct support of earlier results in 21, 23 on 
the One Max problem 
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Figure 10.8 Evaluations used, RS50-1, 75% crossover 
 
Thus it has been clearly shown that there exist ranges of optimal 
mutation rates capable of delivering highly robust performance in a 

   



minimum of evaluations with a high degree of accuracy. These studies 
have shown that the bimodal effect, normally most prevalent at low 
population sizes, can be extended to affect algorithm performance at 
higher population sizes where high levels of selection pressure and 
reduced crossover are utilised. Further it can be seen that whilst this is 
generally at the expense of a greater number of evaluations required, it 
can also lead to a significant reduction in the number of generations 
required. 
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Figure 10.9 Errors, RS50-1, 75% crossover  

10.3 Experimental Method 

A natural extension of the above experiments is to investigate the 
performance of an algorithm with a very large population, derived via a 
highly elitist selection strategy, over a range a traditionally high mutation 

   



rates. This models the situation when Directed Evolution is applied. In 
this section we present results from a range of initial experiments using 
such an algorithm utilising a population size of 10,000 members (initially 
randomly generated), where the next generation is entirely derived from 
the single fittest member of the population subjected to ‘per gene’ 
mutation at a specified rate. ‘New Random Allele’ rates of mutation from 
1.024 E-4 to 0.838 have been trialled on an exponential scale where the 
mutation rate doubles between each experiment in the 14 case set. In 
each case, the algorithm is allowed 50 generations (ie 500,000 
evaluations), reporting the fitness of the best solution found, and the 
generation number this was first found at. Each experiment is then 
repeated 50 times and results plotted show the mean results of these 50 
runs, and the standard deviation of the number of generations used across 
the 50 runs.  
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Figure 10.10 Evaluations used, RS50-1, 50% crossover 

   



Experiments have been carried out on a range of standard test problems 
(Max Ones, Royal Staircase 19, Kauffman NK 15, H-IFF 33 etc) with only 
a representative sample given here for space reasons. The tunable Royal 
Staircase problem in this instance is a mono-modal problem with 
significant regions of neutral fitness plateaux. Fitness is derived by 
counting the number of consecutive blocks of all 1s in the chromosome 
starting from the left-hand side and has been extensively researched by 
Crutchfield and Van Nimwegen 19. With this problem, with a block size 
set at 5, a string of 12 1’s followed by any (non zero) number of 0’s 
followed by any combination of 1’s and 0’s delivers a fitness of 2 out a 
possible global optimum of 10. A string containing 49 1’s preceded by a 
single 0 delivers a fitness of 0. A chromosome length of 50 was used in 
these experiments with block sizes set to 1, 2, 5 and 10. 
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Figure 10.11 Errors, RS50-1, 50% Crossover 
 

   



The tunable Kauffman NK 15 problem allows varying levels of epistatic 
and positional linkage to explored. In this implementation with a 
chromosome length of 50 and maximum block size of 6, a randomly 
generated look up table is generated containing 50 rows by 64 columns. 
For a given block size of 1, fitness is simply derived by taking each gene 
individually and summing either the first or second column entry, 
determined by allele, over the 50 genes in the chromosome (whose locus 
determines the row). This is in effect a form of ‘max ones’ mono-modal 
function. However for larger block sizes, consecutive sequences of genes 
are used as a binary word to derive a column index into the table. Thus 
for a block size of 3, each gene takes part in 3 table retrievals over the 50 
needed to derive overall fitness of a chromosome. Therefore any single 
point mutation will affect multiple aspects of the overall fitness 
calculation. This creates an ever ruggedised search space deteriorating to 
a random field as block sizes approach the length of the chromosome. 
Block sizes of 1, through 6 have currently been investigated. 
 
Watson’s Hierarchical If and only If problem (H-IFF) 33 has been widely 
investigated by the author and others, and although first derived to 
explore the effects of crossover and schemata development, was 
critically instrumental in helping demonstrate the emergence and 
explanation of multi-modal algorithmic performance when subjected to 
varying rates of mutation. The fitness of a potential solution to this 
problem is the sum of weighted, aligned, decomposable blocks of either 
contiguous 1’s or 0’s. This produces a search landscape in which 2 
global optima exist. one as a string of all 1’s, the other of all 0’s. 
However a single mutation away form either of these positions produces 
a much lower fitness. Secondary optima exist at strings of 32 contiguous 
0’s followed by 32 contiguous 1’s (for a chromosome length of 64) and 
vice versa. Not surprisingly, Watson showed that hill-climbing performs 
extremely badly on this problem 34. 
 
Together, these test problems provide an informative and diverse set to 
explore many aspects of algorithm performance on combinatorial 
optimisation problems with low allelic range. 

   



10.4 Results 

Figure 10.12 shows the performance of the highly elite algorithm on the 
Royal Staircase problem with a chromosome length of 50 and block size 
of 1. Here it can clearly be seen that once sufficient mutation is available 
to the algorithm, the global optimum can be achieved 50 times out of 50 
in less than 30 generations. As mutation rates increase, this number of 
generations required is seen to fall to a minimum of 9 at a per gene 
mutation rate of around 10%. Above this rate of mutation algorithm 
performance starts to deteriorate with a marked increase in error, number 
of generations needed and process unrepeatability. As the block size is 
increased to 2 (25 blocks thereof), this range of good mutation rates is 
seen to narrow (Figure 10.13), with the lower end rates no longer 
delivering adequate performance. By the time the block size is increased 
to 5, the algorithm is failing to consistently find the global optimum 
solution and the number of generations used is seen to be high. A slight 
dip is observable at the now optimum mutation rate of 20% (Figure 
10.14). 
 
The results for the Max Ones problem with a chromosome length of 50 
are presented in Figure 10.15 and can be seen to be very similar to the 
block size 1 Royal Staircase results. The Max Ones problem is also 
representative of the Kauffman NK problem with a block size of only 1. 
Figure 10.16 shows results for the Kauffman NK problem with a block 
size of 2, now a multi-modal problem. Again we see the inability of low 
mutation rates to deliver good solutions, and an optimum performance at 
a mutation rate of around 10%. A dip is also seen in the number of 
evaluations used at a mutation rate of around 1.3%, but not accompanied 
by a similar dip in the fitness error. This is likely to be an effect similar 
to that seen at the beginning of this paper on the highly structured multi-
modal H-IFF problem. Here we see the effect of predominant one point 
mutation finding certain local optima, but with insufficient 2 point 
mutations available, the algorithm gets trapped in these solutions. As 2 
point mutations become more prevalent, at higher mutation rates, so the 
fitness wells surrounding these local optima can be breached and the 
algorithm can exploit more evaluations. 
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Figure 10.12 Performance Profile for highly Elite algorithm on Royal Staircase problem, 
block size 1 
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Figure 10.13 Performance Profile for highly Elite algorithm on Royal Staircase problem, 
block size 2 
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Figure 10.14 Performance Profile for highly Elite algorithm on Royal Staircase problem, 
block size 5 
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Figure 10.15 Performance Profile for highly Elite algorithm on Max Ones length 50 
problem 
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Figure 10.16 Performance Profile for highly Elite algorithm on NK50 problem, block 
size 2 
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Figure 10.17 Performance Profile for highly Elite algorithm on NK50 problem, block 
size 3 
 

   



Figure 10.17 shows results for the NK problem with a block size of 3. 
Again an optimum mutation rate is seen in terms of fitness error, with a 
local minimum in the number of generations used. The preceding multi-
phasic behaviour is not apparent, but this is probably due to the small 
number of mutation rates sampled. Figure 10.18 shows similar results 
with a block size of 4, whilst Figure 10.19 shows results with a block 
size of 5. By this time, the algorithm is showing clear signs of 
insufficient generations being allowed. The multi-modal profile is 
severely attenuated, however there is still a clear minimum in the fitness 
error plot. The fact that the number of generations required is now 
relatively high is typical of results published for serial algorithms using 
both steady state and generational techniques, where the number of 
evaluations required is severely limited 21.  
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Figure 10.18 Performance Profile for highly Elite algorithm on NK50 problem, block 
size 4 
 
Figure 10.20 shows the results for the highly structured multi-modal H-
IFF problem with a chromosome length of 64. Here we again see a dip in 

   



the fitness error, but accompanied by increasing numbers of generations 
used. This is an extension of the effect described immediately above. 
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Figure 10.19 Performance Profile for highly Elite algorithm on NK50 problem, block 
size 5 
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Figure 10.20 Performance Profile for highly Elite algorithm on H-IFF 64 problem 

   



10.5 Discussion 

Contrasting the behaviour of these somewhat extreme algorithms to 
results with more conventional parameters shows that these results are 
obtained at a price. Whilst the number of generations required has been 
seen to be small, the number of evaluations required is considerably 
higher than that of an algorithm tuned for sequential use. Table 1 gives 
comparisons between the number of evaluations and generations needed 
by the highly elitist algorithm described in this paper with experiments 
with a 50% elitist Breeder algorithm using population sizes of 100 and 
500 respectively each allowed up to 20,000 evaluations. The results for 
each algorithm are the average over 50 runs at optimum mutation rates 
targeted for optimum fitness followed by minimum evaluations . As can 
clearly be seen, the number of evaluations is typically more than an order 
of magnitude greater, but the number of generations required is much 
reduced (typically by a factor of 3 or 4 between the Elite algorithm and 
the Population Size 500 algorithm, and by a similar factor again against 
the Population size 100 algorithm). This trade-off would be difficult to 
justify in terms of the massively parallel processing environment it 
would require for a typical EA combinatorial optimisation problem, but 
is a relatively insignificant price to pay in biological assay evaluations.  
It is also worth noting that on the NK 50-2, 50-3, 50-5 and 50-6 
problems, the average fitness of best found solutions was better for the 
Elite algorithm than for either of the 50% Breeder algorithms. For the RS 
50-1, RS 25-2 and Max 1s problems, the global optimum was 
consistently found by all 3 algorithms and for the RS 10-5, and NK 50-3 
problems the elite algorithm average best found fitness was marginally 
worse. For the highly structured H-IFF problem, as would be expected 
with no population crossover, the elite algorithm consistently under-
performed, in terms of best found fitness, relative to the other two 
algorithms.  
 
The extremely high level of selection pressure utilised by this algorithm 
(only the single fittest being used to produce all of the next generation) 
draws parallels with developments along the lines of Hill Climbers and 

   



other such, non-population based techniques. However such techniques 
tend to look only at single point mutations and as such contain no 
mechanism for escaping local or deceptive optima. The advantage of a 
high ‘per gene’ mutation rate is that over the 10,000 derivatives of the 
elite parent, a wide variety of differing mutation schedules is produced. 
Some variants will suffer only single point mutation, others 2 point, 
whilst potentially some could have all genes replaced by random alleles 
(no mutations is also a distinct, but wasted possibility). The higher the 
‘per gene’ mutation rate, the more that multi-point mutations will 
dominate this distribution. During different stages of the optimisation, 
different types of mutation are likely to be of most use. Given the 
random generation of the first 10,000 evaluations, a relatively wide 
coverage of the search space is examined and thus low rates of mutation 
will allow local exploration to find a local optimum in the next 
generation. However, once found, in a multi-modal or deceptive search 
space, a considerably more disruptive mutation rate will be required to 
allow the search to break free of this optimum in the search for ever 
better optima. 

10.6 Conclusions 

The mutation rates seen to be effective under these circumstances on 
these problems appear well in excess of those traditionally used within 
the EA community, even higher than the now generally accepted optimal 
rates (1/L and k/L) demonstrated by Mühlenbein 18. However the absence 
of crossover and the extreme selection pressure used effectively 
invalidate such comparisons. This algorithm is indeed far closer to a 
traditional Evolutionary Strategy as developed by Rechenberg 28 than a 
standard Genetic Algorithm as developed by Holland 13 and Goldberg 11, 
but once again, mutation rates and offspring sizes are larger than would 
be typically used in even these algorithms. Initial population generation 
is also significantly different. Further work is clearly required with 
problems of wider allelic range and other population sizes, to see at what 
point the trade-off becomes marginalised. Relaxation of selection 
pressure also requires investigation allowing the possibility of 
reintroduction of crossover. 

   



On the assumption that directed evolution fitness landscapes 1 (in 
contrast to those of natural evolution 36) share similar properties to those 
problems investigated here, the reduction in number of generations 
required to obtain useful results becomes a highly significant advantage. 
This could lead, for example, to potential anti-toxins and vaccines being 
developed far earlier in the course of an epidemic leading to considerable 
reduction in suffering and potential reduction in loss of life. 
 
Table 1. Relative reduction in number of Generations required with increased Pop Size 
 
 50% BDR P 100 50% BDR P 500 Mono Elite P 10k 

          

 Evals Gens SD Evals Gens SD Evals Gens SD 

RS50-1 5050 99 23.6 14500 57 5.7 90K 9 0.80 

RS25-2 6300 125 37.8 14000 55 7.1 100K 10 0.85 

RS10-5 14200 283 80.7 17000 67 8.6 200K 20 6.8 

MAX 1s 1750 34 4.9 4750 18 1.7 50K 5 0.24 

NK50-2 6300 125 79.4 8750 34 6.4 130K 13 3.5 

NK50-3 8350 166 87.3 13750 54 12.7 130K 13 5.2 

NK50-4 9050 180 87.2 12250 48 10.4 210K 21 5.7 

NK50-5 10600 211 103.9 17250 68 7.8 190K 19 5.9 

NK50-6 11700 233 82.7 18000 71 7.2 240K 24 6.0 

H-IFF64 5150 102 54.1 14000 55 10.1 130K 13 7.1 
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