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Abstract 

Dielectric spectroscopy at radiofrequencies has been widely used for the on-line and real-time estimation of cellular biomass. 
However, the presence of substantial amounts of non-biomass insoluble solids, such as wheatgerm, may interfere with these 
measurements in certain industrial media. Dielectric spectroscopy was combined with artificial neural networks (ANNs) to provide an 
estimation of the cellular biomass present in suspensions of yeast that had been contaminated in some cases with much higher 
concentrations of wheatgerm, so as to deconvolute the dielectric properties of the mixtures. It was found that an ANN, trained by 
backpropagation on the dielectric spectra produced by suspensions of varying amounts of yeast and wheatgerm, was able successfully to 
predict both yeast and wheatgerm content from unseen mixture data. Multivariate statistical methods, such as partial least squares (PLS) 
and principal component regression (PCR), could also be used successfully to deconvolute such dielectric spectra. It is concluded that 
such methods provide a powerful adjunct to the conventional quantitative analyses of dielectric data. 

Keywords: Dielectric spectroscopy; Artificial neural networks; Biomass estimation; Chemometrics; Process control 

1. Dielectric spectroscopy and biomass estimation 

There is a continuing need for measurement methods 
which can enable the on-line and real-time estimation of 
microbial biomass [1-4]. Dielectric spectroscopy measures 
the passive or non-faradaic electrical properties of living 
cells [5-12], and within the /3-dispersion frequency range, 
mainly encompassing radiofrequencies in the region 0.1-10 
MHz, it is nowadays widely used to provide an on-line 
estimate of living biomass in cell suspensions and fermen- 
tations of industrial and laboratory interest [13-23]. Whilst 
every effort is made to stabilize the physical and chemical 
properties of such systems in order to obtain spectra of the 
highest possible quality, it is inevitable that fluctuations or 
noise in the data, produced by aeration and the presence of 
necromass and other insoluble solids, will tend to distort 
the spectra obtained. Some industrial media containing 
particular solid substrates, such as wheatgerm, have been 
known to cause interferences [24]. Despite this, and a 
small degree of artifactual distortion which may occasion- 
ally be caused by lead inductances at high frequencies and 
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electrode polarization impedance at the low end of the 
frequency range, the method is normally sufficiently robust 
to be able to produce reliable and accurate results. 

Fig. 1 shows a typical /3-dispersion such as that which 
may be obtained from a suspension of biological cells. The 
important point to note is that the fall in capacitance (AC) 
measured across the r-dispersion frequency range is di- 
rectly attributable to the area of electrically polarizable cell 
membrane present in the suspension and hence the amount 
of cellular biomass. The capacitance (C in farads) and 
conductance (G in siemens) of a cell suspension, as mea- 
sured by a particular dielectric spectrometer, are dependent 
on the electrode geometry [ 14], and it is therefore appropri- 
ate to normalize and convert capacitance to relative permit- 
tivity (E' which is dimensionless) (Eq. (1)) and conduc- 
tance to conductivity (or' in S m -  J) (Eq. (2)). Thus AC, 
when normalized, becomes A~' and is known as the 
dielectric increment 

E' = C K / E  o (1) 

,~'= cK (2) 
r = ~'/G (3) 
The cell constant K (in m - l )  (Eq. (3)) is dictated by the 
electrode geometry and E 0, a constant, is the permittivity 
of  free space (8.854× 10 -12 F m - l ) .  
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As explained above, it is the dielectric increment (Ae')  
of the /3-dispersion that is proportional to the concentration 
of biomass present in a cell suspension. However, for 
technical or other reasons, it may not be possible to 
measure the permittivity at frequencies that are very low or 
very high with respect to the characteristic frequency of 
the r-dispersion. One solution to this problem is to assume 
that the dielectric data of interest may be described accu- 
rately by the Cole-Cole equations [25], which model 
changes in the permittivity (Eq. (4)) and conductivity (Eq. 
(5)) as a function of frequency 

e' = Ae'(1 + (f/fc)l-'~sin(9Oa)) ] 
,o 1 + 2(f/fc)l-'~sin(9Oa) + (f/fc)2-2,~ 

+< 

(4) 

tr" [ --A°"(l +(f/fc)l-'~sin(9Oa)) ] 
= 1 + 2(f/fc)l-~'sin(9Oa) + ( f / f c )  2 - 2 a  

+(a~'+ ~ )  (5) 
The terms used in Eqs. (4) and (5) are as defined above, 

together with the conductivity terms Atr' and try. which 
are analogous to the permittivity terms AE' and ~ .  To 
obtain the parameters of the Cole-Cole equation from a 
measured set of dielectric data, it is usual to fit a spectrum 
using an iterative process known as "curve fitting" 
[5,16,26-29];. The curve-fitting process is usually carried 
out by computer programs, typically using the Levenberg/ 
Marquardt algorithm for non-linear, least-squares fitting 
[5,26,27,30,31 ]. Such curve fitting is initialized by provid- 
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Fig. I. A typical r-dispersion such as that which may be obtained from a 
suspension of yeast cells. The high-capacitance, low-frequency plateau, 
equal to AC + C~, is the point at which cell plasma membranes retain the 
greatest electrical charge. The high-frequency, low-capacitance plateau is 
the point at which cell polarization and capacitance reach their lowest 
value C~, and any residual capacitance measured here is produced mainly 
by dipoles of water and other small molecules. This decrease in cell 
polarization between AC + C~ and C~ produces an inverted sigmoidal 
capacitance curve which is characteristic of the /3-dispersion, The Cole- 
Cole a is a measure of how steeply the capacitance or conductance rises 
with respect to frequency. The characteristic frequency (fc) of a particu- 
lar dispersion occurs at the midpoint between AC and C~, i.e. the 
frequency at which the capacitance is equal to ( A C/ 2 ) +  C~. It is the size 
of AC (pF) which, when normalized and convened to relative permittiv- 
ity, becomes A~', known as the dielectric increment, that is directly 
proportional to the area of charged cell membrane and hence to the 
amount of living biomass present. 
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Fig. 2. The dielectric properties of yeast and wheatgerm suspensions. 
Capacitance measurements were made using a dielectric BM at the 
frequencies and with the concentrations of yeast and wheatgerm indi- 
cated. The cell constant was 0.6 cm -~ . When no yeast cells or wheat- 
germ are present, the apparent increase in capacitance measured at the 
lower frequencies over that at the higher frequencies is an artifact of the 
system produced by electrode polarization. Wheatgerm alone exhibits a 
dielectric dispersion in this frequency range, even though it has no intact 
cellular membranes and is incapable of producing a classical r-disper- 
sion, so it is apparent that accurate estimations of the yeast cell biomass 
in this frequency range could be substantially interfered with by the 
presence of wheatgerrn. 

ing estimates of the equation parameters AE', fc, e~ and 
the Cole-Cole a and a set of permittivity or conductivity 
data, after which the algorithm is iterated until the curve 
plotted fits the data with minimum error. So-called "robust 
weighting" [32,33] is used to minimize the contribution of 
outlying cases. 

Dielectric spectra obtained under normal conditions are 
generally noise free, and curve fitting is able to produce 
reliable results (see, for example, Ref. [31]). However, we 
have noticed special conditions in which interference in 
the estimation of the radiofrequency dielectric increment 
of a suspension may occur as a result of the presence of 
substances which have a substantial a-dispersion that 
merges with the /3-dispersion of interest. Electrode polar- 
ization may also contribute problems of this type. Figs. 2 
and 3 show some dielectric data that exhibit this general 
problem. Under these conditions, where there is no known 
goveming equation, non-linear, least-squares fitting can 
evidently not be applied. 

The major virtue of the Cole-Cole equations is that an 
entire dielectric spectrum may be predicted from data 
collected over a limited frequency range, although this 
calculation may be computationally rather intensive [22]. 
Artificial neural networks (ANNs) can be trained to learn 
the more significant parameters of the Cole-Cole equation 
from small sets of simulated dielectric data, and thereby 
can successfully predict dielectric spectra from sets of 
unseen data [29]. In the work presented here, ANNs were 
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Fig. 3. The dielectric properties of  yeast and wheatgerm suspensions. 
Conductance measurements were made using a dielectric BM at the 
frequencies and with the concentrations of yeast and wheatgerm indi- 
cated. The cell constant was 0.6 c m -  ~. With wheatgerm only and when 
no yeast cells or wheatgerm are present, there is no significant dielectric 
dispersion at the lower frequencies (which if present would be apparent 
as a decrease in conductance over that at the higher frequencies), whereas 
yeast cell biomass does exhibit a dispersion in conductivity over this 
frequency range, especially noticeable between I and 4 MHz. The tip 
down in conductance at the high end of the frequency range is an artifact 
caused by inductance. 

trained with experimental dielectric data. We show that 
ANNs, and other multivariate statistical methods, are able 
to deconvolute yeast spectra from interferences produced 
by the presence of an insoluble solid, wheatgerm, so as to 
provide accurate dry weight estimates of both yeast and 
wheatgerm content. 

2. Artificial neural networks 

Fig. 4 illustrates the architecture of a typical feed-for- 
ward ANN or multilayer Perceptron (MLP) [34]. The MLP 
architecture was inspired by that of biological neurons and 
consists of a number of neurons or processing units ar- 
ranged in discrete layers. Each layer of units is connected 
to the subsequent layer by synaptic connections or weights 
and it is the adaptation or training of these weights, in 
accordance with an appropriate training algorithm, which 
enables the network to " learn" .  Learning is defined here 
as the ability to recognize or correctly to classify unseen 
patterns after a period of training. Activation spreads across 
the network from the input layer, via the hidden layer, to 
the output layer, hence the term "feed-forward" network. 
The hidden layer is so called because its inputs and outputs 
do not communicate with sources outside the network. 
Each neuron calculates the weighted sum of its inputs and 
passes the result through a threshold or activation function 
as described in Fig. 4. The selection of the number of units 
in each layer, the nature of the activation function and the 
type of learning algorithm best suited to the task in hand 

must be determined empirically. There is a substantial 
literature which suggests that an MLP together with a 
supervised learning algorithm is likely to yield good re- 
suits in this type of quantitative analysis task, since it is 
known that MLPs of this type can effect the non-linear 
mapping of arbitrary inputs to arbitrary outputs. In chemi- 
cal analyses, ANNs have been applied to a variety of 
problems [35-41], including the deconvolution of pyroly- 
sis mass spectra [42-45]. An overview of the use of ANNs 
for quantitative chemical analysis, together with the use of 
multivariate statistical methods may be found in Ref. [46], 
whilst neural and statistical methods are compared more 
generally in Refs. [47-50]. Finally, Refs. [51] and [52] 
provide excellent entrres to the literature on statistical, 
neural and other machine learning methods. 

The biological inspiration which lay behind the early 
ANN research led to a belief that they should be imple- 
mented in a parallel rather than a serial fashion [53], and 
the term parallel distributed processing (PDP) was coined 
to describe this. In practice most ANNs are implemented 
on conventional serial machines and the speed of modern 
microprocessors is such that their efficiency is not greatly 
impaired for small problems. The major strength of the 
PDP programming style, albeit implemented in a serial 
environment, is its computational simplicity. Curve fitting 
is a lengthy process which can require much computational 
overhead, whereas an ANN, if given good training exam- 
ples, may learn rapidly and once trained yields results 
"instantaneously". To ensure good generalization (i.e. the 
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Fig. 4. The architecture of a classical feed-forward ANN. Each of the 
open circles represents a neuron or processing unit. The units are 
arranged in three layers: input, hidden and output. Each layer is linked to 
the next by synapses or weights W and each weight is modified during 
training until the desired output is achieved. When the network is 
interrogated, input is presented at the input layer and the activation of 
each of the units in the hidden and output layers is calculated. The 
activation x of a unit is defined as the weighted sum or dot-product of its 
inputs X i and weights W i (Eq. (6)) passed through an activation function, 
f ix)  = 1/[1 + e x p ( - ( x / g ) ) ] ,  which is usually sigmoidal and in which 
g, a gain term, is usually unity (as herein). The function of the bias unit is 
akin to that of a threshold in that it provides a continuous positive input 
which allows the hyperplane which the network's weights are represent- 
ing to move away from the origin. 
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ability to give correct results for data different from those 
used to train the network), the data used to train a network 
are separated into two groups known as the training and 
the test set. The learning algorithm used here is backpropa- 
gation (BACKPROP) which was developed independently 
by several research groups and individuals; a good descrip- 
tion of the algorithm may be found in Refs. [53] and [54] 
and the overview of Ref. [55]. BACKPROP is a supervised 
algorithm and this means that the training set comprises 
"training pairs", i.e. a training example and its known 
output, the training signal. Each training example is the 
vector of values representing the complete dielectric spec- 
trum at the frequencies used, and each training signal is the 
dry weight of yeast or wheatgerm present when that 
spectrum was obtained. An effective training set should 
comprise a representative sample of the whole input space 
so that the network is able correctly to classify all the 
unseen examples in the test set without the need for 
extrapolation. 

The training set, in the form of numerical data scaled 
between 0 and 1, is presented to the input layer and fed 
forward to the next so-called "hidden" layer via a set of 
connections. Each connection has an associated multiplica- 
tion factor or "weight"  (see Fig. 4). Input to each of the 
neurons in the hidden and output layer is determined by 
calculating the weighted sum or dot-product of the input 
vector multiplied by the weight vector (Eq. (6)) 

x = ~ WiX  i (6) 
i=1 

W i is the weight on the ith connection and X i is the input. 
Having calculated its input, each neuron then applies a 
transfer or threshold function, usually sigmoidal (Eq. (7)), 
to that input, the result of which is passed on to the next 
layer 

1 
°r = 1 + e - ( x / 8 )  ( 7 )  

oj is the output of the jth node, x is the input to that node 
and g is a gain term (generally unity). An additional input 
and associated weight known as a "b ias"  is also applied 
to the hidden and output layers. In order to be able to 
classify unseen data correctly, it is necessary for the 
network to form a multidimensional internal representation 
of the training data. This representation may be thought of 
as a hyperplane and the addition of the bias promotes the 
network's ability to move that hyperplane away from the 
origin. 

The network is initialized by setting the weights to 
small random numbers between 0 and 1, after which the 
training set is presented seriatim as training pairs, i.e. 
known input together with known output. Training is 
achieved by adjusting the weights in the network until it is 
able correctly to classify the training examples and gener- 
alize that classification to an unseen test set. One pass of 
the complete training set is known as an epoch. The 

backpropagation training algorithm works in two passes: 
the forward pass, in which an error signal, which is 
proportional to the difference between the actual and the 
desired output, is calculated at the output layer, and the 
backward pass in which the weights in both layers are 
adjusted to minimize that error. The error signal generated 
by the network may be envisaged as an "error surface" 
containing peaks and troughs, and the object of the training 
process is to find the global minimum on that surface, 
without becoming trapped in any of the local minima; this 
process is known as gradient descent. In an attempt to 
overcome the problem of becoming trapped in local min- 
ima, an extra gain term or momentum is included in the 
learning algorithm. The magnitude of the momentum term 
ensures that rapid changes in weights, which tend to occur 
in the early stages of training, are carried over to subse- 
quent epochs. The way in which the training data are 
presented to the network can also affect how easily the 
error reaches a true global minimum, and for this reason it 
is always better to present the training set members in 
random order at each epoch; this procedure is known as 
training by pattern. Training by pattern also helps to 
prevent oscillations in the error signal. 

Having chosen a suitable training and test set and the 
appropriate learning algorithm, it is necessary to know 
when the network is trained. A plot of the error vs. the 
epoch number is known as a learning curve. Initially, 
during training, a rapid fall in error is recorded for both the 
training and test set examples until both error signals 
converge; after convergence the two signals remain at 
approximately the same level until the training set error 
decreases and the test set error increases. When this diver- 
gence takes place the network is said to be overtrained, 
and it is at an empirically determined point during the 
convergence period that most networks are able to make 
their most accurate predictions. A network is said to be 
trained when it is able to generalize successfully from the 
training set to the test set, i.e. from seen to unseen data. 
Fig. 5 shows the root mean square (RMS) error learning 
curves obtained from an ANN being trained to predict the 
concentration of yeast from dielectric data generated from 
the mixtures described in Table 1. The network used 50 
input units, 3 hidden units and 1 output unit (50-3-1 
architecture) and was trained with the standard BACK- 
PROP algorithm. This process of checking a network's 
performance on unseen test set data during training is a 
form of cross-validation. 

3. Materia ls  and m e t h o d s  

Stock suspensions contained Baker's yeast Saccha- 
romyces cerevisiae as the cell suspension, obtained locally 
as a paste, and wheatgerm ("natural" wheatgerm, W. 
Jordan Cereals, Biggleswade, UK) as the interfering non- 
cellular insoluble solid. The yeast was suspended in 10 
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Fig. 5. Learning curves from ANN training to predict yeast cell concen- 
trations from the dielectric data obtained on the mixtures described in 
Table 1. The network used a 50 -3 -1  architecture and was trained using 
standard BACKPROP. The inputs were the capacitance and conductance 
data at the 25 frequencies shown in Fig. 2. The recorded RMS error for 
both the training set (seen) and test set (unseen) data drops rapidly during 
the first 30 or so epochs of training until both error rates converge and 
remain superimposed one upon the other. The two error signals stay 
approximately equal for another 50 epochs whereupon they begin to 
diverge as the test set error increases and the training set error decreases. 
A network is said to be trained when it is able to generalize successfully 
from the training set to the test set, i.e. from seen to unseen data, and the 
process of  checking a network's performance on unseen data is a form of 
cross-validation. When the error plots begin to diverge and it is apparent 
that the network will only classify the training set correctly, the network 
is said to be overtrained. The software used was a commercial package 
(NeuDesk, Neural Computer Sciences, Unit 3, Lulworth Business Centre, 
Nutwood Way, Totton, Southampton, SO4 3WW, UK) running on a PC. 

mM KH2PO 4 (pH 6.5) buffer, washed twice by centrifuga- 
tion to remove any starch/packing material and then 
resuspended in the same buffer; the wheatgerm was also 

Table 1 
The concentrations of yeas tand wheatgerm used in the training and test 
sets 

Training set Test set 

Yeast Wheatgerm Yeast Wheatgerm 
(mgml  - I )  ( m g m l  - I )  ( m g m l  - j )  (mgml  - j )  

0.00 0.00 5.3 13.65 
0.00 27.30 5.3 40.95 
0.00 54.60 5.3 68.25 
0.00 81.90 5.3 95.55 
0.00 109.20 5.3 122.85 
0.00 136.50 15.9 13.65 

10.60 0.00 15.9 40.95 
10.60 27.30 15.9 68.25 
10.60 54.60 15.9 95.55 
10.60 81.90 26.5 13.65 
10.60 109.20 26.5 40.95 
21.20 0.00 26.5 68.25 
21.20 27.30 37.1 13.65 
21.20 54.60 37.1 40.95 
21.20 81.90 47.7 13.65 
31.80 0.00 
31.80 27.30 
31.80 54.60 
42.40 0.00 
42.40 27.30 
53.00 0.00 

suspended in the same medium. Suspensions of different 
conductivities were obtained by the addition of a fixed 
quantity of concentrated KH 2 P O 4 ,  determined beforehand 
in a control experiment, to provide an increase of 2 mS 
cm-~ (per addition) when measured at 1 MHz. Increasing 
the conductivity of the suspending medium causes the 
characteristic frequency (fc, Fig. 1) of the fl-dispersion to 
rise and a decrease causes it to fall, as described in Ref. 
[21]. It should be noted that this movement of fc caused by 
changes in the conductivity of the suspending medium 
does not affect the magnitude of AE', the dielectric incre- 
ment, and hence the viability of dielectric biomass deter- 
mination. 

As described above, the ANN used here requires the 
construction of a training and test set (from dielectric data) 
such that the training set used completely covers the range 
to be quantified. Table 1 shows the dry weight (in mg 
ml-  1 ) of yeast and wheatgerm present for each member of 
the training and test sets. The dry weights were obtained 
by uniform sampling and drying overnight at 100 °C. The 
training set was obtained from dielectric measurements of 
21 different mixtures of the yeast and wheatgerm stock 
solutions and the test set from 15. Prior to mixing, the two 
stock solutions were kept agitated at a constant speed and 
temperature, it being particularly important to keep the 
wheatgerm in suspension and not to allow it to stick to the 
bottom or sides of the beaker. 

The dielectric spectrometer used here was a model 
214A biomass monitor (BM) manufactured by Aber Instru- 
ments Ltd., Science Park, Aberystwyth, SY23 3AH, UK, 
the data from which were logged by a PC running MINIS- 
CAN [56] software. An individual scan consisted of mea- 
surements of the capacitance (pF) and conductance (mS) 
made at each of 25 frequencies over the /3-dispersion 
frequency range of 0.2-10 MHz, whose order was ran- 
domly chosen. Ten replicate measurements were made at 
each of the 25 frequencies and the mean was calculated 
and recorded by the computer; replicates were made in 
order to compensate for any momentary fluctuations in 
capacitance/conductance which may have been produced 
by bubbles or the physical impact of particulate matter on 
the electrodes. The cell constant of the BM/electrode 
combination was 0.6 cm-~. 

4. Results and discussion 

We have demonstrated that it is possible to train an 
ANN with dielectric data collected on varying concentra- 
tions of yeast and an insoluble solid, wheatgerm. The 
dielectric data were the capacitance and conductance val- 
ues recorded at a number of frequencies within the /3-dis- 
persion frequency range of 0.2-10 MHz. Once trained, the 
ANN was able to predict the concentration of yeast and 
wheatgerm when interrogated with a novel set of dielectric 
data. The learning curves plotted for an ANN being trained 
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Fig. 6. Estimated yeast cell concentrations from the dielectric data of 
mixtures of yeast and wheatgerm as in Table 1. The training run was that 
shown in Fig. 5. after 1000 epochs. The line is the line of identity and the 
correlation coefficients of the estimates for the training set and the test set 
data to this line are 0.99 and 0.98 respectively. 
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Fig. 8. Estimated wheatgerm concentrations from the dielectric data of 
mixtures of yeast and wheatgerm as in Table 1. The training run was that 
shown in Fig. 7, after 1000 epochs. The line is the line of identity and the 
correlation coefficients of the estimates for the training set and the test set 
data are 0.95 and 0.82 respectively. 

to predict  yeast  concentra t ion  from dielectric data mea- 

sured on  the mixtures  in Table  1 are shown in Fig.  5. The 
ne twork  architecture comprised 50 input  uni ts ,  3 h idden 
units  and  1 output  unit.  The n u m b e r  of  ne twork  inputs  was 

dictated by the n u m b e r  of  f requencies  (25) at which  exper- 
imenta l  measurements  of  the capaci tance and conductance  
were made.  A single output  uni t  provided the quant i ty  of  
yeast  present.  The appropriate n u m b e r  of  h idden  units  was 
de termined exper imenta l ly  in the range 0 - 5 ,  three proving 
to be opt imal  as judged  by the RMS error on  the test set 
and the ne twork ' s  abil i ty to generalize.  The ne twork  per- 
formed well  (see Fig. 6) and clearly demonst ra ted  an 
abili ty to deconvolute  the yeast  signal f rom that o f  wheat-  
germ. An  A N N  with the same architecture, bu t  t rained for 
wheatgerm content ,  also performed well ,  a l though it 
learned somewhat  more  slowly,  g iv ing  the learn ing  curves 
shown in Fig.  7 and the results shown in Fig. 8. 

Figs. 9 - 1 2  show the learning curves and results for an 
A N N  with 2 5 - 3 - 1  architecture,  i.e. ne tworks  trained to 
predict  yeast  and wheatgerm content  with capaci tance data 
only.  The difference be tween  the correlat ion coeff icients  of  
the est imated and true va lues  for the test and  t ra ining sets 

for networks  trained on  capaci tance and conduc tance  data 
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Fig. 7. Learning curves from ANN training to predict wheatgerm concen- 
trations from the dielectric data obtained on the mixtures described in 
Table 1. The network used a 50-3-1 architecture and was trained using 
standard BACKPROP. 
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Fig. 9. Learning curves for ANN being trained to predict yeast concentra- 
tion from the dielectric data obtained on the mixtures described in Table 
1. The network used a 25-3-1 architecture and was trained using the 
standard BACKPROP algorithm. The experiment was the same as that in 
Fig. 5 except that only the capacitance (no conductance) data were used. 

and those trained with capaci tance data alone is not  very 
great; this leads to the conc lus ion  that under  the current 
exper imental  condi t ions  capaci tance data alone are suffi- 
cient  for the quant i f icat ion task in hand.  
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Fig. 10. Estimated yeast cell concentrations from the dielectric data of 
mixtures of yeast and wheatgerm as in Table 1. The neural net run was 
that shown in Fig. 9, and the values are those after 500 epochs. The 
experiment was the same as that in Fig. 5 except that only capacitance 
(no conductance) data were used. The line is the line of identity and the 
correlation coefficients of the training set and the test set data to this line 
are 0.96 and 0.84 respectively. 
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Fig. 11. Leaming curves for ANN being trained to predict the concentra- 
tion of wheatgerm from the dielectric data obtained on the mixtures 
described in Table 1. The network used a 25 -3 - l  architecture and was 
trained using the standard BACKPROP algorithm. The experiment was 
the same as that in Fig. 5 except that only capacitance (no conductance) 
data were used. 

In o rder  to c o m p a r e  the  A N N s  p e r f o r m a n c e  wi th  that  o f  

c o n v e n t i o n a l  mu l t i va r i a t e  s tat is t ical  r eg re s s ion  t echn iques ,  

we used  two  me thods :  par t ia l  leas t  squares  (PLS)  and  

pr inc ipa l  c o m p o n e n t  r eg re s s ion  ( P C R )  [57]. PL S  was  used  

to p red ic t  the dry w e i g h t  o f  yeas t  (Figs .  13 and  14) and  

w h e a t g e r m  (Figs .  15 and  16). P C R  p r o d u c e d  ve ry  s imi la r  

resul t s  (no t  shown) .  B o t h  o f  these  m e t h o d s  ut i l ize a cal i -  

b ra t ion  s tage to f o r m  a m o d e l  f r o m  a r ep resen ta t ive  sample  

of  the data  to b e  d e s c r i b e d  and  e m p l o y  c ross -va l ida t ion  as 

a measu re  o f  p e r f o r m a n c e .  T he  ca l ib ra t ion  and  cross-va l i -  

da t ion  p rocesses  used  w i th  P C R  and  P L S  m a y  be  cons id-  

ered  to be  e q u i v a l e n t  to  the  use,  wi th  an  A N N ,  o f  a 

supe rv i sed  l ea rn ing  a lgo r i thm,  such as B A C K P R O P ,  in 

con junc t i on  wi th  c ros s -va l ida t i on  b y  u n s e e n  test  da ta  as 

desc r ibed  in Sec t ion  2 (see  Ref .  [57] for  s tat is t ical  proce-  

dures  and  Ref .  [46] for  A N N  techn iques ) .  The  PLS ( and  

P C R )  p rocedure s  were  a lso  capab le  o f  p rov id ing  a robus t  

mode l  for  the  d e c o n v o l u t i o n  o f  d ie lec t r ic  spec t ra  and,  at  

leas t  at  these  c o n c e n t r a t i o n s  (cf. Ref.  [31]), the cont r ibu-  
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Fig. 13. Estimated yeast cell concentrations based on a PLS model 
formed using full leave-one-out cross-validation (the optimal model 
shown contained two PLS factors). Both capacitance and conductance 
data were employed as in Fig. 5 (dielectric data obtained on the mixtures 
described in Table 1). The line is the line of identity and the correlation 
coefficients for the training and test sets are both 0.99. The software used 
was a commercial package (Unscrambler II, manufactured by CAMO 
A/S,  Olav Tryggvasonsgt. 24, N-7011 Trondheim, Norway) running on a 
PC. 
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Fig. 14. Estimated yeast cell concentrations based on a PLS model 
formed using full leave-one-out cross-validation (the optimal model 
shown contained two PLS factors). Capacitance (not conductance) data 
were employed as in Fig. 9 (dielectric data obtained on the mixtures 
described in Table 1). The line is the line of identity and the correlation 
coefficients for the training and test sets are both 0.99. 
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Fig. 12. Estimated wheatgerm concentrations from the dielectric data of 
mixtures of yeast and wheatgerm as in Table 1. The neural net run was 
that shown in Fig. 11 and the values are those after 200 epochs. The 
experiment was the same as that in Fig. 5 except that only capacitance 
(no conductance) data were used. The line is the line of identity and the 
correlation coefficients for the training and test sets are 0.97 and 0.94 
respectively. 
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Fig. 15. Estimated wheatgerm concentrations based on a PLS model 
formed using full leave-one-out cross-validation (the optimal model 
shown contained two PLS factors). Both capacitance and conductance 
data were employed as in Fig. 5 (dielectric data obtained on the mixtures 
described in Table 1). The line is the line of identity and the correlation 
coefficients for the training and test sets are 0.99 and 0.97 respectively. 
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Fig. 16. Estimated wheatgerm concentrations based on a PLS model 
formed using full leave-one-out cross-validation (the optimal model 
shown contained two PLS factors). Capacitance (not conductance) data 
were employed as in Fig. 9 (dielectric data obtained on the mixtures 
described in Table 1). The line is the line of identity and the correlation 
coefficients for the training and test sets are 0.99 and 0.91 respectively. 

tions of yeast and wheatgerm to the dielectric spectra were 
linearly separable. Such linear multivariate techniques also 
have the advantage (relative to the non-linear ANN ap- 
proach) that they may more easily be interrogated so as to 
obtain information about the mechanism by which the 
model serves to fit the observable data. In particular, it is 
possible to establish from the so-called loadings plots [57] 
the relative significance of each of the input variables to 
the model formed. When this was done (data not shown) it 
transpired, as foreshadowed in the analysis presented ear- 
lier, and consistent with it, that the conductance data were 
indeed of little significance to the multivariate linear model 
formed in the PLS procedure. 

In conclusion, we have shown that the application of 
multivariate statistical procedures and ANNs allows the 
successful deconvolution of dielectric spectra for the esti- 
mation of microbial biomass under conditions in which 
substantial interferents are present and where a univariate, 
single or differential frequency measurement [17] would 
give highly inaccurate estimates. An ability to determine 
the concentration of an interferent, in cases where such 
substances are used as substrates and decrease during the 
course of a fermentation, could be of great benefit in 
process control. 
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