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Abstract

Pyrolysis mass spectra were obtained from various mixtures containing known amounts of
glycogen and casamino acids. Feedforward neural networks were trained using the standard
backpropagation algorithm to predict the percentage of casamino acids in unseen mixtures from
their pyrolysis mass spectra. By scaling the input nodes individually, the variation between the
spectra could be maximised and the convergence rate (as judged by the RMS error on test sets)
inﬁ;nias;: by more than 100-fold compared with training runs in which the scaling was over the
whole dataset.

INTRODUCTION

There is a continuing need for more rapid, precise and accurate analyses of the chemical
composition of fermentor broths and the organisms which they contain. An ideal method would
permit the simultaneous estimation of multiple determinands, would have negligible reagent
costs, and would run under the control of a PC, to allow flexible operation of the sample
handling, instrument calibration, and data analysis and visualisation routines. Our present work is
directed towards the development of exactly such an instrument.

Pyrolysis is the thermal degradation of a material in an inert atmosphere, and leads to the
production of volatile fragments from non-volatile material such as microorganisms or other
biological samples (Irwin 1982). Curie-point pyrolysis is a particularly reproducible and
straightforward version of the technique, in which the sample, dried onto an appropriate
ferromagnetic metal or alloy, is rapidly heated (0.5s is typical) to the Curie point of the metal,
which may itself be chosen (358, 480, 510, 530, 610 and 770°C are common temperatures). The
volatile fragments (pyrolysate) resulting from the Curie-point pyrolysis may then be separated
and analysed in a mass spectrometer (Meuzelaar e af 1982), and the combined technique is then
known as pyrolysis mass spectrometry or PyMS.

Almost all biological materials will produce pyrolytic degradation products such as methane,
ammonia, water, methanol and H,S, whose mass:charge (m/z) ratio < 50, and fragments with m/z
> 200 are rarely analytically impdrtant in microbiology (Berkeley er al 1990) unless very special
conditions are employed (Smith & Snyder 1992). The analytically useful data are thus
constituted by a set of 150 intensities (normalised to the total ion count) versus m/z in the range
51-200.

Within microbiology and biotechnology, PyMS has been used as a taxonomic aid in the

identification and discrimination of different microorganisms (Gutteridge 1987). To this end, the
reduction of the multivariate data generated by the PyMS system (and indeed of those generated
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by other arrays of sensors; Gardner & Bartlett 1991) is normally carried out using principal
components analysis (PCA), whihe is a well-known technique for reducing the dimensionality of
multivariate data whilst preserving most of the variance. Whilst PCA does not take account of
any groupings in the data, neither does it require that the populations be normally distributed, i.c.
it is a non-parametric method. (In addition, it permits the loadings of each of the m/z ratios on the
princlipal components to be determined, and thus the extraction of at least some chemically
significant information.) The closely-related canonical variates analysis technigue then separates
the samples into groups on the basis of the principal components and some a priori knowledge of
the appropriate number of groupings (MacFie er af 1978). Provided that the data set contains
"standards" (i.e. type or centro-strains) it is evident that one can establish the closeness of any
unknown samples to a known organism, and thus effect the identification of the former. An
excellent example of the discriminatory power of the approach is the demonstration (Goodacre &
Berkeley 1990) that one can even use it to distinguish 4 strains of E. coli which differ only in the
presence or absence of single antibiotic-resistance plasmids.

More recently, we (Goodacre er af. 1992, 1993b, 1994a) and others (Chun er ai. 1993) have
exploited artificial neural networks (ANNs) in supervised leaming mode for the very successful
identification of a variety of biological samples from their pyrolysis mass spectra, training fully
interconnected multilayer perceptrons (MLPs) with one hicfdm layer on known standards using
binary-encoded outputs and the standard backpropagation algorithm, and testing on spectra from
unseen samples. We have also exploited Kohonen's self-organising feature map (Kohonen 1989)
succesfully to carry out unsupervised learning, and hence the classification of microorganisms,
from their pyrolysis mass spectra (Goodacre et al. 1994a).

Of perhaps more general chemical interest is the ability to use PyMS and ANNS for the
quantification of substances in complex biological samples. The strategy is to obtain pyrolysis
mass spectra from appropriate samples of interest and train ANNSs to recognise the relative
concentration of a chemical substance (as measured by wet chemistry) from the PyMS, We again
demonstrated for the first time that ANNs could indeed be trained to give accurate values for the
concentration of indole in Escherichia coli cultures {(Goodacre & Kell 1993), and for the
concentrations of individual compunds in a vardety of binary, ternary and more complex mixtures
(c.g. Goodacre ef al. 1993a, 1994b).

Given that any non-volatile biological material can be pyrolysed, and that it has been
established that MLPs with sigmoidal activation functions and at least one hidden layer of
arbitrary size can effect any nonlinear mapping of a continuous function to an arbitrary degree of
accuracy (e.g. Homik et al. 1989), our interest is focussed on improving both the leamning speed
and the ability to generalise of ANNs trained on pyrolysis mass spectral data. In the case of
PyMS data, each input is of a similar character (in that they are all chemical fragments), but
some inputs may contain more noise than others (in that lower ion counts will have a greater
percentage of electronic noise); in the worst case the lowest inputs may simply be noise, whose

sence would both harm learning and without a rather robust cross-validation method would
ikely lead to overtraining. Since the data are normalised to the total ion count, any increase in a
given mass is necessarily accompanied by a concomitant decrease in all of the others. However,
it is known from the statistical literature (as the 'parsimony principle’) that much better
predictions can often be obtained when only the most relevant input variables are considered
(e.g. Rawlings 1988, Miller 1990, Seasholtz & Kowalski 1993), it was therefore of interest to
analyse the effects of varying the methods of scaling the input variables on the performance of
our ANNs.
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There are of course within the connectionist literature a multitude of articles which describe
optimal growth or pruning of feedforward networks, designed to effect a sparse representation of
the inpui-to-output mapping and thence improve generalisation (see e.g. LeCun er al. 1989,
Mozer & Smolensky 1989, Fahlman & Lebiere 1990, Weigend er al, 1991, Finoff er al. 1993,
Hassibi & Stork 1993). However, most of these growth/ skeletonisation algorithms have been
devised to work on the creation or destruction of individual weighis, particularly those to and
from the hidden layer(s), and at all events make no attempt to distinguish the physically
meaningful inputs from the latent variables represented by the nodes in the hidden layers (ef.
Moody 1992). Since obtaining extra variables not only tends to cause overfitting but also
normally costs more, it is more generally desirable to minimise the number of inputs used in the
formation of the connectionist representation. The present study therefore addresses, and serves
to illustrate, the substantial importance of optimal scaling of the inputs for the speed of learning
and, o some extent, the ability to generalise,

EXPERIMENTAL SYSTEM

The experimental system studied consisted of mixtures of easamino acids and glycogen, as a
model for the complex proteins and carbohydrates to be found in typical biological samples.
Mixtures containing different percentages of each component were made up gravimetrically, and
pyrolysed at 530°C as described (Goodacre ef al 1993a), Typical pyrolysis mass spectra are
shown in Fig 1, where it can be seen that they are not easy to distinguish by eye, and one may
construe that such data constitute ideal material for analysis via computer/Al/neural methods,
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Fig 1. Normalised pyrolysis mass spectra of (A) 20 pg glycogen plus 100 pg casmino acids, and
(B) 20 pg glycogen plus 90 pg casmino acids

The training set consisted of normalised spectra from mixtures containing 20 pg glycogen plus
10, 20, 30...100 pg casmino acids whilst the test set were spectra from mixtures containing 20 pg
glycogen plus 5, 10, 15, 20, 25...100 pg casmino acids. To avoid the well-known problem of the
sensitivity of backpropagation to initial conditions (Kolen & Pollack 1990), each run was done in
sextuplicate and the data median-averaged. All neural networks were of the fully interconnected
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feedforward MLP type with a 150-8-1 architecture, and trained using the standard
backpropagation algorithm with a logistic activation function, a leaming rate of 0.1 and a
momentum term of 0.9. Inputs were scaled as described in the text, whilst outputs were scaled
between 0.1 and 0.9.

RESULTS AND DISCUSSION
Individual scaling of inputs

Whilst the usual backpropagation methods scale all inputs and outputs to lie between G and 1,
this leaves open the question of how the scaling is done throughout the {columns of the)
population of examples of interest. In particular, in the nt case, some input columns
contribute far more numerically to the inputs to the hi layer than others (Fig 1). It is
common in some other supervised multivariate calibration methods such as partial least squares
to normalise the inputs in proportion to the reciprocal of their standard deviations (see e.g.
Martens & Nes 1989). We therefore studied the effect of scaling the inputs on the basis of the
highest ion counts throughout the entire dataset versus scaling the inputs of each m/z
independently over the dataset. In the latter case, this means that the range of each input in the
population is made equal.

TRAINING SET | EPOCHS UNTIL CONVERGENCE TEST SET % RMS ERROR
% RMS ERROR TO STATED % RMS ERROR
Scaled Scaled on whole Scaled Scaled on whole
individually dataset individually dataset
2 a0 805 2.95 2.61
| 335 o770 2.44 2.02
0.50 725 84060 2.00 2.57
0.25 1470 217640 2.12 2.65
0.125 2240 >500000 2.08 -

“Table 1. Effect of scaling inputs individually on the speed of convergence of backpropagation
learning on an MLP,

It is evident from the data in Table 1 that individual scaling of the input nodes can effect a
dramatic speed-up, of more than 100-fold, in the convergence of a neural network learning
algorithm. This indicates that when all the scaled inputs to the net are of approximately the same
magnitude the error value from a single input is less likely to dominate the error value at a given
node, and therefore is less likely to swamp smaller error values associated with other connections
to that node. This allows the reduction of error values in many dimensions in the input space to
occur simultaneously. Put another way, by scaling the inputs individually in this way we are
maximising the variance in the training set data, which therefore makes the discriminating
features in the data easier (quicker) to learn.

From the data in Table 1 it is clear that although the convergence of the learning algorithm on
the training set data is much quicker, there is a slight reduction in the accuracy of the predictions
on the unseen data. This can however be improved by allowing the network to train to a slightly
lower RMS error on the training set. The trade-off is such that individual scaling is still markedly
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superior when the criterion of training is the RMS error on the fest data.
Pruning inpui variables

Given the dramatic speed-up that could be obtained by scaling the inputs individually, it was
also of interest to see whether generalisation could be affected by removing masses whose
numerical contribution to the total ion count over the population of samples was the lowest, The
results of such a study are shown in Table 2, where it may be seen that removal of the
numerically least significant masses had little effect on generalisation and a slightly unfavourable
effect on the number of epochs needed for convergence to a given RMS error on the test set, This
i5 consistent with the conclusion above that maximising the overall variance in the dataset leads
to faster learning.

NUMBER OF EPOCHS UNTIL STATED % RMS ERROR OF TRAINING SET
Training set % | Zero inputs | Remove m/zif | Remove m/z if | Remove m/z if
RMS error removed <0.025% <10.05% <0.1%
2 a0 125 90 95
1 335 280 345 460
0.5 725 850 950 1060
0.25 1470 1785 2105 2670
0.125 2240 2605 3250 4760
% RMS ERROR ON TEST SET
2 2.95 3.07 3.17 3.02
1 244 233 237 2,18
0.5 2 2.08 2.27 2.44
0.25 2.12 2.21 2.19 2.75
0.125 2.08 2.26 243 3.53

Table 2. Effect of removal of masses with the lowest contribution to the total ion count over the
population on the speed of lecarning and generalisation. Input nodes were scaled individually.

CONCLUSION

Individual scaling of the inputs of an artificial neural network maximises the variance in a
given dataset and can effect a dramatic speed-up in the rate of convergence to a given RMS error
on both training and test data. In the examples displayed, this speed-up could be more than 100-
fold.
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