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1 The Role of Modeling in Systems Biology

Douglas B. Kell and Joshua D. Knowles

The use of models in biology is at once both familiar and arcane. It is familiar
because, as we shall argue, biologists presently and regularly use models as ab-
stractions of reality: diagrams, laws, graphs, plots, relationships, chemical formulae
and so on are all essentially models of some external reality that we are trying to
describe and understand (fig. 1.1). In the same way we use and speak of “model
organisms” such as baker’s yeast or Arabidopsis thaliana, whose role lies in being
similar to many organisms without being the same as any other one. Indeed, our
theories and hypotheses about biological objects and systems are in one sense also
just models (Vayttaden et al., 2004). Yet the use of models is for most biologists
arcane because familiarity with a subset of model types, especially quantitative
mathematical models, has lain outside the mainstream during the last 50 years of
the purposely reductionist and qualitative era of molecular biology. It is largely
these types of model that are an integral part of the “new” (and not-so-new) sys-
tems biology and on which much of the rest of this book concentrates. Since all
such models are developed for some kind of a purpose, our role in part is to explain
why this type of mathematical model is both useful and important, and will likely
become part of the standard armory of successful biologists.

1.1 Philosophical Overview

When one admits that nothing is certain one must, I think, also admit that some
things are much more nearly certain than others.

Bertrand Russell, Am I an Atheist or an Agnostic?

It is conventional to discriminate (as in fig. 1.2) (a) the world of ideas, thoughts,
or other mental constructs and (b) the world of observations or data, and most
scientists would recognize that they are linked in an iterative cycle, as drawn: we
improve our mental picture of the world by carrying out experiments that produce
data, and such data are used to inform the cogitations that feed into the next part
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Figure 1.1 Models in biology. Although we shall be concentrating here on a subset
of mathematical models, we would stress that the use of all sorts of models is entirely
commonplace in biology—examples include (a) diagrams (here a sequence of DNA bases
and the “central dogma”), (b) laws (the flux-control summation theorem of metabolic
control analysis), (c) graphs—in the mathematical sense of elements with nodes and edges
(a biochemical pathway), (d) plots (covariation of 2 metabolites in a series of experiments),
(e) relationships (a rule describing the use of the concentration of a metabolite in disease
diagnosis), (f) chemical formulae (tryptophan), and (g) images (of mammalian cells).

of the right-hand arc, that designs and performs the next set of experiments as
part of an experimental program. Such a cycle may be seen as a “chicken and egg”
cycle, but for any individual turn of the cycle there is a clear distinction between
the two essential starting points (ideas or data). This also occurs in scientific
funding circles—is the activity in question ideas- (that is, hypothesis-)driven or
is it data-driven? (Until recently, the latter, hypothesis-generating approach was
usually treated rather scornfully.)

From a philosophical point of view, then, the hypothetico-deductive analysis, in
which an idea is the starting point (however muddled or wrongheaded that idea
may be), has been seen as much more secure, since deductive reasoning is sound
in the sense that if an axiom is true (as it is supposed to be by definition) and
the observation is true, we can conclude that the facts are at least consistent with
the idea. If the hypothesis is “all swans are white” then the prediction is that a
measurement of the whiteness of known swans will give a positive response. By
contrast, it has been known since the time of Hume that inductive reasoning, by
which we seek to generalize from examples (“swan A is white, swan B is white,
swan C is white ... so I predict that all swans are white”) is insecure—and a
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Figure 1.2 The iterative relationship between the world of ideas/hypotheses/thoughts
and the world of data/observations. Note that these are linked in a cycle, in which one
arc is not simply the reverse of the other (Kell, 2002, 2005; Kell and Welch, 1991).

single black swan shows it. Nothing will ever change that, and the “problem of
induction” probably lies at the heart of Popper’s insistence (see Popper (1992)
and more readable commentators such as Medawar (1982)) that theories can only
be disproved. Note of course that it is equally true for the hypothetico-deductive
mode of reasoning that a single black swan will disprove the hypothesis. This said,
the ability of scientists to ignore any number of ugly facts that would otherwise
slay a beautiful hypothesis is well known (Gilbert and Mulkay, 1984), and in this
sense—given that there are no genuinely secure axioms (Hofstadter, 1979; Nagel and
Newman, 2002)—the deductive mode of reasoning is not truly much more secure
than is induction.

Happily, there is emerging a more balanced view of the world. This recognizes
that for working scientists the reductionist and ostensibly solely hypothesis-driven
agenda has not been as fruitful as had been expected. In large measure in biology
this realization has been driven by the recognition, following the systematic genome
sequencing programs, that the existence, let alone the function, of many or most
genes—even in well-worked model organisms—had not been recorded. This could be
seen in part as a failure of the reductionist agenda. In addition there are many areas
of scientific activity that have nothing to do with testing hypotheses but which are
exceptionally important (Kell and Oliver, 2004); perhaps chief among these is the
development of novel methods. In particular there are fields—functional genomics
not least among them (Kell and King, 2000), although this is very true for many
areas of medicine as well—that are data-rich but hypothesis-poor, and are best
attacked using methods that are data-driven and thus essentially inductive (Kell
and King, 2000).

A second feature that has emerged from a Popperian view of the world (or
at least from his attempt to find a means that would allow one to discriminate
“science”” from “pseudo-science” (Medawar, 1982; Popper, 1992)) is the intellectual
significance of prediction: if your hypothesis makes an experimentally testable (and
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thus falsifiable) prediction it counts as “science,” and if the experimental prediction
is consistent with the prediction then (confidence in) the “correctness” of your
hypothesis or worldview is bolstered (see also Lipton (2005)).

1.2 Historical Context

The history of science demonstrates that both inductive and deductive reasoning
occur at different stages in the development of ideas. In some cases, such as in the
history of chemistry, a period of almost purely inductive reasoning (stamp-collecting
and classification) is followed by the development of more powerful theories that
seek to explain and predict many phenomena from more general principles. Often
these theories are reductionist, that is to say, complicated phenomena that seem
to elude coherent explanation are understood by some form of breaking down into
constituent parts, the consideration of which yields the required explanation of
the more complicated system. A prime example of the reductionist mode is the
explanation of the macroscopic properties of solids, liquids, and gases—such as
their temperature, pressure, and heat— by considering the average effect of a
large number of microscopic interactions between particles, governed by Newtonian
mechanics. For the first time, accurate, quantitative predictions with accompanying,
plausible explanations were possible, and unified much of our basic understanding
of the physical properties of matter.

The success of early reductionist models in physics, and later those in chemistry,
led in 1847 to a program to analyze (biological) processes, such as urine secretion
or nerve conduction, in physico-chemical terms proposed by Ludwig, Helmholtz,
Brucke, and du Bois-Reymond (Bynum et al., 1981). However, although reduction-
ism has been successful in large part in the development of physics and chemistry,
and to a great extent in acquiring the parts list for modern biology—consider the
gene—the properties of many systems resist a reductionist explanation (Solé¢ and
Goodwin, 2000). This ultimate failure of reductionism in biology, as in other dis-
ciplines, is due to a number of factors, principal among them being the fact that
biological systems are inherently complex.

Although complexity is a phenomenon about which little agreement has been
reached, and certainly for which no all-encompassing measure has been established,
the concept is understood to pertain to systems of interacting parts. Having many
parts is not necessary: it is sufficient that they are coupled in some way, so that the
state of one of them affects the state of one or more others. Often the interactions are
nonlinear so, unlike systems which can be modeled by considering averaged effects,
it is not possible to reduce the system’s behavior to the sum of its parts (Davey
and Kell, 1996). Common interactions in these systems are feedback loops, in which,
as the name suggests, information from the output of a system transformation is
sent back to the input of the system. If the new input facilitates and accelerates
the transformation in the same direction as the preceding output, they are positive
feedback —their effects are cumulative. If the new data produce an output in the
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opposite direction to previous outputs, they are negative feedback—their effects
stabilize the system. In the first case there is exponential growth or decline; in the
second there is maintenance of the equilibrium. These loops have been studied in
a variety of fields, including control engineering, cybernetics, and economics. An
understanding of them and their effects is central to building and understanding
models of complex systems (Kell, 2004, 2005; Milo et al., 2002).

Negative feedback loops are typically responsible for regulation, and they are
obviously central to homeostasis in biological systems. In control engineering,
such systems are conveniently described using Laplace transforms—a means of
simplifying the combination and manipulation of ordinary differential equations
(ODEs), and closely related to the Fourier transform (Ogata, 2001); Laplace
transforms for a large variety of different standard feedback loops are known and
well-understood, though analysis and understanding of non-linear feedback remains
difficult (see chapter 12 for details). Classical negative feedback loops are considered
to provide stability (as indeed they do when in simple systems in which the feedback
is fast and effective), though we note that negative feedback systems incorporating
delays can generate oscillations (for example (Nelson et al., 2004)).

Positive feedback is a rather less appreciated concept for most people and, until
recently, it could be all but passed over in even a control engineer’s education. This
is perhaps because it is often equated with undesired instability in a system, so it
is just seen as a nuisance; something which should be reduced as much as possible.
However, positive feedback should not really be viewed in this way, particularly from
a modeling perspective, because it is an important factor in the dynamics of many
complex systems and does lead to very familiar behavior. One very simple model
system of positive feedback is the Polya urn (Arthur, 1963; Barabasi and Albert,
1999; Johnson and Kotz, 1977). In this, one begins with a large urn containing two
balls, one red and one black. One of these is removed. It is then replaced in the
urn, together with another ball of the same color. This process is repeated until
the urn is filled up. The system exhibits a number of important characteristics
with respect to the distribution of the two colors of balls in the full urn: early,
essentially random events can have a very large effect on the outcome; there is a
lock-in effect where later in the process, it becomes increasingly unlikely that the
path of choices will shift from one to another (notice that this is in contrast to the
“positive feedback causes instability” view); and accidental events early on do not
cancel each other out. The Polya urn is a model for such things as genetic drift in
evolution, preferential attachment in explaining the growth of scale-free networks
(Barabasi and Albert, 1999), and the phenomenon whereby one of a variety of
competing technologies (all but) takes over in a market where there is a tendency for
purchasers to prefer the leading technology, despite equal, or even inferior, quality
compared with the others (for example QWERTY keyboards and Betamax versus
VHS video). (See also Goldberg (2002) and Kauffman et al. (2000) for the adoption
of technologies as an evolutionary process.)

Positive feedback in a resource-limited environment also leads to familiar be-
havior. The fluctuations seen in stock prices, the variety of sizes of sandpiles, and
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cycles of population growth and collapse in food-chains all result from this kind of
feedback. There is a tendency to reinforce the growth of a variable until it reaches
a value that cannot be sustained. This leads to a crash which “corrects” the value
again, making way for another rise. Such cyclic behavior can be predictably peri-
odic but in many cases the period of the cycle is chaotic—that is, deterministic but
essentially unpredictable. All chaotic systems involve nonlinearity, and this is most
frequently the result of some form of positive feedback, usually mixed with negative
feedback (Glendinning, 1994; Tufillaro et al., 1992; Strogatz, 2000).

Behavior involving oscillatory patterns may also be important in biological
signaling (Lahav et al., 2004; Nelson et al., 2004), where the downstream detection
may be in the frequency rather than the amplitude (that is, simply concentration)
domain (Kell, 2005). All of this said, despite encouraging progress (for example
(Tyson et al., 2003; Wolf and Arkin, 2003; Yeger-Lotem et al., 2004)), we are far
from having a full understanding of the behavior of concatenations of these simple
motifs and loops. Thus, the Elowitz and Leibler oscillator (Elowitz and Leibler,
2000) is based solely on negative feedback loops but is unstable. However, this
system could be made comparatively stable and robust by incorporating positive
feedback loops, which led to some interesting work by Ferrell on the cell cycle
(Angeli et al., 2004; Pomerening et al., 2003).

It is now believed that most systems involving interacting elements have both
chaotic and stable regions or phases, with islands of chaos existing within stable
regions, and vice versa (for a biological example, see (Davey and Kell, 1996)).
Chaotic behavior has now been observed even in the archetypal, clockwork system
of planetary motion, whereas the eye at the heart of a storm is an example of
stability occurring within a wildly unpredictable whole.

Closely related to the vocabulary of complexity and of chaos theory is the slippery
new (or not so new?) concept of emergence (Davies, 2004; Holland, 1998; Johnson,
2001; Kauffman, 2000; Morowitz, 2002). Emergence is generally taken to mean
simply that the whole is more than (and maybe qualitatively different from) the
sum of its parts, or that system-level characteristics are not easily derivable from the
“local” properties of their constituents. The label of emergent phenomenon is being
applied more and more in biological processes at many different levels, from how
proteins can fold to how whole ecosystems evolve over time. A central question that
the use of the term emergence forces us to consider is whether it is only a convenient
way of saying that the behavior of the whole system is difficult to understand
in terms of basic laws and the initial conditions of the system elements (weak
emergence), or whether, in contrast, the whole cannot be understood by the analysis
of the parts, and current laws of physics, even in principle (strong emergence). The
latter view would imply that high level phenomena are not reducible to physical
laws (but may be consistent with them) (Davies, 2004). If this were true, then the
modeling of (at least) some biological processes should not follow solely a bottom-
up approach, hoping to go from simple laws to the desired phenomenon, but might
eventually need us to posit high-level organizing principles and even downward
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causality. Such a worldview is completely antithetical to materialism and remains
as yet on the fringes of scientific thought.

In summary, reductionism has been highly successful in explaining some macro-
scopic phenomena, purely in terms of the behavior of constituent parts. However,
this was predicated (implicitly) on the assumption that there were few parts (for ex-
ample, the planets) and that their interactions were simple, or that there were many
parts but their interactions could be neglected (for example, molecules in a gas).
However, the scope of a reductionist approach is limited because these assumptions
are not true in many systems of interest (Kell and Welch, 1991; Solé and Good-
win, 2000). The advent of computers and computer simulations led to the insight
that even relatively small systems of interacting parts (such as the Lorenz model)
could exhibit very complex (even chaotic) behavior. Although the behavior may be
deterministic, complex systems are hard to analyze using traditional mathematical
and analytical methods. Prediction, control, and understanding arise mainly from
modeling these systems using iterated computer simulations. Biological systems,
which are inherently complex, must be modeled and studied in this way if we are
to continue to make strides in our understanding of these phenomena.

1.3 The Purposes and Implications of Modeling

We take it as essentially axiomatic that the purposes of academic biological research
are to allow us to understand more than we presently do about the behavior and
workings of biological systems (see also Klipp et al. (2005)) (and in due time to
exploit that knowledge for agricultural, medical, commercial, or other purposes).
We consider that there are several main reasons why one would wish to make models
of biological systems and processes, and we consider each in turn. In summary, they
can all be characterized as variations of simulation and prediction. By simulation
we mean the production of a mathematical or computational model of a system or
subsystem that seeks to represent or reproduce some properties that that system
displays. Although often portrayed as substantially different (though we consider
that it is not), prediction involves the production of a similar type of mathematical
model that simulates (and then predicts) the behavior of a system related to the
starting system described above. Clearly simulation and prediction are thus related
to each other, and the important concept of generalization describes the ability of
a model derived for one purpose to predict the properties of a related system under
a separate set of conditions. Thus some of the broad reasons—indeed probably the
main reasons—why one would wish to model a (biological) system include:

= Testing whether the model is accurate, in the sense that it reflects—or can be
made to reflect—known experimental facts

= Analyzing the model to understand which parts of the system contribute most to
some desired properties of interest
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= Hypothesis generation and testing, allowing one rapidly to analyze the effects
of manipulating experimental conditions in the model without having to perform
complex and costly experiments (or to restrict the number that are performed)

= Testing what changes in the model would improve the consistency of its behavior
with experimental observations

Our view of the basic bottom-up systems biology agenda is given in fig. 1.3.
1.3.1 Testing Whether the Model Is Accurate

A significant milestone in a modeling program is the successful representation of the
behavior of the “real” system by a model. This does not, of course, mean that the
model is accurate, but it does mean that it might be. Thus the dynamical behavior
of variables such as concentrations and fluxes is governed by the parameters of the
systems such as the equations describing the local properties and the parameters
of those equations. This of itself is not sufficient, since generalized equations (for
example, power laws, polynomials, perceptrons with nonlinear properties) with
no mechanistic or biological meaning can sometimes reproduce well the kinetic
behavior of complex systems without giving the desired insight into the true
constitution of the system.

Such models may also be used when one has no experimental data, with a
view to establishing whether a particular design is sensible or whether a particular
experiment is worth doing. In the former case, of engineering design, it is nowadays
commonplace to design complex structures such as electronic circuits and chips,
buildings, cars, or aeroplanes entirely inside a computer before committing them
to reality. Famously, the Boeing 777 was designed entirely in silico before being
tested first in a wind tunnel and then with a human pilot. It is especially this kind
of attitude and experience in the various fields of engineering that differs from the
current status of work in biology that is leading many to wish to bring numerical
modeling into the biological mainstream. Another example is the development of
“virtual” screening, in which the ability of drugs to bind to proteins is tested in silico
using structural models and appropriate force fields to calculate the free energy of
binding to the target protein of interest of ligands in different conformations (Bohm
and Schneider, 2000; Klebe, 2000; Langer and Hoffmann, 2001; Shen et al., 2003;
Zanders et al., 2002), the most promising of which may then be synthesized and
tested. The attraction, of course, is the enormous speed and favorable economics
(and scalability) of the virtual over the actual “wet” screen.

1.3.2 Analyzing Subsystem Contributions

Having a model allows one to analyze it in a variety of ways, but a chief one is
to establish those parts of the model that are most important for determining the
behavior in which one is particularly interested. This is because simple inspection
of models with complex (or even simple) feedback loops just does not allow one
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time series to those generated by the model
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Figure 1.3 The role of modeling in the basic systems biology agenda, (a) stressing the
bottom-up element while showing the iterative and complementary top-down analyses.
(b) The development of a model from qualitative (structural) to quantitative, and (c) its
integration with (“wet”) experimentation.

to understand them (Westerhoff and Kell, 1987). Techniques such as sensitivity
analysis (see below) are designed for this, and thus indicate to the experimenter
which parameters must be known with the highest precision and should be the focus

of experimental en

deavor. This is often the focus of so-called top-down analyses

in which we seek to analyze systems in comparatively general or high-level terms,
lumping together subsystems in order to make the systems easier to understand. The
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equivalent in pharmacophore screening is the QSAR (quantitative structure-activity
relationship) type of analysis, from which one seeks to analyze those features of a
candidate binding molecule that best account for successful binding, with a view
to developing yet more selective binding agents.

1.3.3 Hypothesis Generation and Testing

Related to the above is the ability to vary, for example, parameters of the model, and
thereby establish combinations or areas of the model’s space that show particular
properties in which one might be interested (Pritchard and Kell, 2002), and then
to perform that small subset of possible experiments that it is predicted will
show such interesting behavior. An example here might be the analysis of which
multiple modulations of enzymatic properties are best performed for the purposes
of metabolic engineering (Cascante et al., 2002; Cornish-Bowden, 1999; Fell, 1998).
We note also that when modeling can be applied effectively it is far cheaper than
wet biology and, as well as its use in metabolic engineering, can reduce the reliance
on in vivo animal /human experimentation (a factor of significant importance in the
pharmaceutical industry).

1.3.4 Improving Model Consistency

In a similar vein, we may have existing experimental data with which the model
is inconsistent, and it is desirable to explore different models to see which changes
to them might best reproduce the experimental data. In biology this might, for
example, allow the experimenter to test for the presence of an interaction or kinetic
property that might be proposed. In a more general or high-level sense, we may use
such models to seek evidence that existing hypotheses are wrong, that the model
is inadequate, that hidden variables need to be invoked (as in the Higgs Boson in
particle physics, or the invocation of the existence of Pluto following the registration
of anomalies in the orbit of Neptune), that existing data are inadequate, or that
new theories are needed (such as the invention of the quantum theory to explain or
at least get round the so-called “ultraviolet catastrophe”). In kinetic modeling this is
often the case with “inverse problems” in which one is seeking to find a (“forward”)
model that best explains a time series of experimental data (see below).

1.4 Different Kinds of Models

Most of the kinds of systems that are likely to be of interest to readers of this
book involve entities (metabolites, signaling molecules, etc.) that can be cast as
“nodes” interacting with each other via “edges” representing reactions that may be
catalyzed via other substances such as enzymes. These will also typically involve
feedback loops in which some of the nodes interact directly with the edges. We refer
to the basic constitution of this kind of representation as a structural model (not,
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of course, to be confused with a similar term used in the bioinformatic modeling of
protein molecular structures). A typical example of a structural model is shown in
fig. 1.4.

The elements of a model always include the structural
relationships (such as shown), the “local” equations
describing the behaviour of each step (not shown) and
the values of their parameters (not shown)

........................
. .

. .
K

Figure 1.4 A structural model of a simple network involving nine enzymes (E1 to E9),
four external metabolites (A,J,K,L—whose concentration must be assumed to be fixed
if a steady state is to be attained), and eight internal metabolites (B,C,D,E,F,G,H,I). D
and E are effectively cofactors and are part of a ‘moiety-conserved cycle’ (Hofmeyr et al.,
1986) in that their sum is fixed and they cannot vary their concentrations independently
of each other.

The classical modeling strategy in biology (and in engineering), the ordinary
differential equation (ODE) approach (discussed in chapter 6) contains three initial
phases, and starts with this kind of structural model, in which the reactions and
effectors are known. The next level refers to the kinetic rate equations describing
the “local” properties of each edge (enzyme), for instance that relate the rate
of the reaction catalyzed by, say, E1 to the concentrations of its substrates; a
typical such equation (which assumes that the reaction is irreversible) is the
Henri-Michaelis-Menten equation v = V,,4..[S]/([S] + K;»). The third level involves
the parameterization of the model, in terms of providing values for the parameters
(in this case V4. and K. Armed with such knowledge, any number of software
packages can predict the time evolution of the variables (the concentrations and
fluxes of the metabolites) until they may reach a steady state. This is done
(internally) by recasting the system as a series of coupled ordinary differential
equations which are then solved numerically. We refer to this type of operation as
forward modeling, and provided that the structural model, equations, and values
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of the parameters are known, it is comparatively easy to produce such models
and compare them with an experimental reality. We have been involved with
the simulator Gepasi, written by Pedro Mendes (Mendes, 1997; Mendes and Kell,
1998, 2001), which allows one to do all of the above, and that in addition permits
automated variation of the parameters with which to satisfy an objective function
such as the attainment of a particular flux in the steady state (Mendes and Kell,
1998).

In such cases, however, the experimental data that are most readily available
do not include the parameters at all, and are simply measurements of the (time-
dependent) variables, of which fluxes and concentrations are the most common (see
chapter 10). Comparison of the data with the forward model is much more difficult,
as we have to solve an inverse modeling, reverse engineering or system identification
(Ljung, 1999b) problem (discussed in chapter 11). Direct solution of such problems
is essentially impossible, as they are normally hugely underdetermined and do
not have an analytical solution. The normal approach is thus an iterative one in
which a candidate set of parameters is proposed, the system run in the forward
direction, and on the basis of some metric of closeness to the desired output a new
set of parameters is tested. Eventually (assuming that the structural model and
the equations are adequate), a satisfactory set of parameters, and hence solutions,
will be found (see table 1.1). These methods are much more computer-intensive
than those required for simple forward modeling, as potentially many thousands or
even millions of candidate models must be tested. Modern approaches to inverse
modeling use approaches from heuristic optimization (Corne et al., 1999) to search
the model space efficiently. Recent advances in multiobjective optimization (Fonseca
and Fleming, 1996) are particularly promising in this regard, since the quality of
a model can usually be evaluated only by considering several, often conflicting
criteria. Evolutionary computation approaches (Deb, 2001) allow exploration of the
Pareto front, that is the different trade-offs (for example, between model simplicity
and accuracy) that can be achieved, enabling the modeler to make more informed
choices about preferred solutions.

We note, however, that there are a number of other modeling strategies and issues
that may lead one to wish to choose different types of model from that described.
First, the ODE model assumes that compartments are well stirred and that the
concentrations of the participants are sufficiently great as to permit fluctuations
to be ignored. If this is not the case then stochastic simulations (SS) are required
(Andrews and Bray, 2004) (which are topics of chapter 8 and chapter 16). If flow of
substances between many contiguous compartments is involved, and knowledge of
the spatial dynamics is required (as is common in computational fluid dynamics),
partial differential equations (PDEs) are necessary. SS and PDE models are again
much more computationally intensive, although in the latter case the designation
of a smaller subset of representative compartments may be effective (Mendes and
Kell, 2001).

If the equations and parameters are absent, it may prove fruitful to use qualitative
models (Hunt et al., 1993), in which only the direction of change (and maybe rate
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Table 1.1 10 Steps in (Inverse) Modeling.

S ot b=

Get acquainted with the target system to be modeled
Identify important variable(s) that changes over time
Identify other key variables and their interconnections
Decide what to measure and collect data

Decide on the form of model and its architecture

Construct a model by specifying all parameters. Run the model
forward and measure behavior.

Compare model with measurements. If model is improving return
to 6. If model is not improving and not satisfactory, return to 3, 4,

10.

and 5.

Perform sensitivity analysis. Return to 6 and 7 if necessary.
Test the impact of control policies, initial conditions, etc.

Use multicriteria decision-making (MCDM) to analyze policy trade-

offs.
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of change) is recorded, in an attempt to constrain the otherwise huge search space
of possible structural models (see chapter 7). Similarly, models may invoke discrete
or continuous time, they may be macro or micro, and they may be at a single level
(such as metabolism, signaling) or at multiple levels (in which the concentrations
of metabolites affect gene expression and vice versa (ter Kuile and Westerhoff,
2001). Models may be top-down (involving large “blocks”) or bottom-up (based on
elementary reactions), and analyses beneficially use both strategies (fig. 1.3). Thus a
“middle-out” strategy is preferred by some authors (Noble, 2003a) (see chapter 14).
Table 1.2 sets out some of the issues in terms of choices which the modeler may

face in deciding which type of model may be best for particular purposes and on

the basis of the available amount of knowledge of the system.

Table 1.2: Different types of model, presented as choices facing the

experimenter when deciding which strategy or strategies may be

most appropriate for a given problem.

istic

or determin-

or statistical distributions
Deterministic: equations such as
ODEs

Dimension | Possible choices Comments
or Feature
Stochastic Stochastic: Monte Carlo methods | Phenomena are not of themselves either

stochastic or deterministic; large-scale,
linear systems can be modeled deter-
ministically, while a stochastic model
is often more appropriate when nonlin-
earity is present.

Discrete ver-
sus continu-
ous (in time)

Discrete: Discrete event simula-
tion, for example, Markov chains,
cellular automata, Boolean net-
works.

Continuous: Rate equations.

Discrete time is favored when variables
only change when specific events occur
(modeling queues). Continuous time is
favored when variables are in constant
flux.
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Table 1.2: Different types of model, presented as choices facing the

experimenter when deciding which strategy or strategies may be

most appropriate for a given problem.

Dimension
or Feature

Possible choices

Comments

multi-level

Macroscopic | Microscopic: Model individual | Are the individual particles or subsys-
versus mi- | particles in a system and compute | tems important to the evolution of the
croscopic averaged effects as necessary. system, or is it enough to approximate
Macroscopic: Model averaged ef- | them by statistical moments or ensem-
fects themselves, for example, con- | ble averages?
centrations, temperatures, etc.
Hierarchical Hierarchical: Fully modular net- | Can some processes/variables in the
versus works. system be hidden inside modules or ob-

Multi-level: connected

components.

Loosely

jects that interact with other modules,
or do all the variables interact, poten-
tially? This relates to reductionism ver-
sus holism.

Fully quan-
titative ver-
sus partially

Qualitative: Direction of change
modeled only, or on/off states
(Boolean network).

Reducing the quantitative accuracy
of the model can reduce complexity
greatly and many phenomena may still

cal behavior

quantita- Partially quantitative: Fuzzy mod- | be modeled adequately.

tive versus | els.

qualitative Fully quantitative: ODEs, PDEs,

microscopic particle models.

Predictive Predictive: Specify every variable | If a model is being used for precise pre-

versus that could affect outcome. diction or forecasting of a future event,

exploratory/ex- Exploratory: Only consider some | all variables need to be considered. The

planatory variables of interest. exploratory approach can be less pre-
cise but should be more flexible, for ex-
ample, allowing different control poli-
cies to be tested.

Estimating Rare events: Use importance sam- | Estimation of rare events, such as apop-

rare events | pling. tosis times in cells is time-consuming

versus typi- | Typical behavior: Importance | if standard Monte Carlo simulation is

sampling not needed.

used. Importance sampling can be used
to speed up the simulation.

Lumped or
spatially
segregated

Lumped: Treat cells or other com-
ponents/compartments as spa-
tially homogeneous.

Spatially segregated: Treat the
components as differentiated or
spatially heterogeneous.

If heterogeneous it may be necessary to
use the computationally intensive par-
tial differential equation, though other
solutions are possible (Mendes and
Kell, 2001)

1.5 Sensitivity Analysis

-Sensitivity analysis for modelers?
-Would you go to an orthopaedist who didn’t use X-ray?

Jean-Marie Furbringer

Sensitivity analysis (Saltelli et al., 2000) represents a cornerstone in our analysis of
complex systems. It asks the generalized question “what is the effect of changing
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something (a parameter P) in the model on the behavior of some variable element
M of the model?” To avoid the magnitude of the answer depending on the units used
we use fractional changes AP and observe their effects via fractional changes (AM)
in M. Thus the generalized sensitivity is (AM/M)/(AP/P) and in the limit of small
changes (where the sensitivity is then independent of the size of AP) the sensitivity
is (dM/M)/(dP/P) = d(InM)/d(InP). The sensitivities are thus conceptually and
numerically the same as the control coefficients of metabolic control analysis (MCA)
(see Fell (1996); Heinrich and Schuster (1996); and Kell and Westerhoff (1986)).
Reasons for doing sensitivity analysis include the ability to determine:

1. If a model resembles the system or process under study

2. Factors that may contribute to output variability and so need the most consid-
eration

3. The model parameters that can be eliminated if one wishes to simplify the model
without altering its behavior grossly

4. The region in the space of input variables for which model variation is maximum
5. The optimal region for use in a calibration study

6. If and which groups of factors interact with each other.

A Dbasic prescription for performing sensitivity analysis (adapted from (Saltelli
et al., 2000)) is:

1. Identify the purpose of the model and determine which variables should concern
the analysis.

2. Assign ranges of variation to each input variable.
3. Generate an input vector matrix through an appropriate design (DoE).
4. Evaluate the model, thus creating an output distribution or response.

5. Assess the influence of each variable or group of variables using correla-
tion/regression, Bayesian inference (chapter 4), machine learning, or other methods.

Two examples from our recent work illustrate some of these issues. In the first,
(Nelson et al., 2004; Thekwaba et al., 2004), we studied a refined version of a model
(Hoffmann et al., 2002) of the NF-xB pathway. This contained 64 reactions with
their attendant parameters, but sensitivity analysis showed that only 8-9 of them
exerted significant influence on the dynamics of the nuclear concentration of NF-
kB in this system, and that each of these reactions involved free IkBa and free
IKK. An entirely different study (White and Kell, 2004) asked whether comparative
genomics and experimental data could be used to rank candidate gene products in
terms of their utility as antimicrobial drug targets. The contribution of each of
the submetrics (such as essentiality, or existence only in pathogens and not hosts
or commensals) to the overall metric was analyzed by sensitivity analysis using 3
different weighting functions, with the top 3 targets— which were quite different
from those of traditional antibiotics—being similar in all cases. This gave much
confidence in the robustness of the conclusions drawn.
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1.6 Concluding Remarks

The purpose of this chapter was to give an overview of some of the reasons for
seeking to model complex cellular biological systems, and this we trust that we have
done. We have also given a very brief overview of some of the methods, but we have
not dwelt in detail on: their differences, the question of which modeling strategies to
exploit in particular cases, the problems of overdetermination (where many models
can fit the same data) and of model choice (which model one might then prefer and
why), nor on available models (for example, at http://www.biomodels.net/) and
model exchange using, for example, the systems biology markup language (SBML)
(http://www.sbml.org) (Finney and Hucka, 2003; Hucka et al., 2003; Shapiro et al.,
2004) or others (Lloyd et al., 2004). These issues are all covered well in the other
chapters of this book.

Finally, we note here that despite the many positive advantages of the modeling
approach, biologists are generally less comfortable with, and confident in, models
(and even theories) than are practitioners in some other fields where this is more
of a core activity, such as physics or engineering. Indeed, when Einstein was once
informed that an experimental result disagreed with his theory of relativity, he
famously and correctly remarked “Well, then, the experiment is wrong!” It is our
hope that trust will grow, not only from a growing number of successful modeling
endeavors, but also from a greater and clearer communication of models enabled
by new technologies such as Web services and the SBML.
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