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Abstract 

Here we develop the use of artificial neural networks for solving the inverse metabolic problem, in other words, given 
a set of steady-state metabolite levels and fluxes in a pathway of known structure to obtain the parameters of the sys- 
tem, in this case the enzymatic limiting rate and Michaelis constants. This requires two main procedures: first the de- 
velopment of a computer program with which one can model metabolism in the forward direction (i.e. given the 
internal and parameters to determine the steady-state fluxes and metabolite concentrations), and second, given arrays 
of associated parameters and variables thereby obtained, to exploit artificial neural networks to form a model capable 
of obtaining the parameters from the variables. We studied 2-step pathways exhibiting first-order kinetics, 2-step 
pathways exhibiting reversible Michaelis-Menten kinetics and then 3-step pathways (again exhibiting reversible 
Michaelis-Menten kinetics), modelled using the program Gepasi. Whilst it was fairly easy for the networks to learn 
most of the parameters in the 2-step pathway, it was found helpful for the Michaelis-Menten case to vary the concentra- 
tion of the starting pathway substrate for each set of internal parameters, and to train separate networks for each par- 
ameter. Some parameters were much easier to learn than others, reverse K,,, and V,, values normally being the most 
diflicult. For the 3-step pathway learning sometimes required as much as 3 days, and occasionally convergence was 
not obtained. Overall, neural networks of the present type, with fully interconnected feedforward architectures and 
trained according to the backpropagation algorithm, scaled poorly as the problem size was increased. 
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1. lntmluetlon 

Metabolic Control Analysis (MCA), which 
stems from the work of Kacser and Bums (1973) 
and Heinrich and Rapoport (1974), is a formalism 
which allows one to establish the extent to which 
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individual enzymes in a metabolic pathway control 
both the flux through that pathway and the con- 
centrations of intermediary metabolites (for a re- 
cent review see Fell, 1992). MCA is an exact 
algebraic formalism (Reder, 1988), valid for any 
arbitrarily complex metabolic pathway. MCA pro- 
vides measures of how perturbations in metabolic 
steps (enzymes, etc.) affect the variables, i.e. the 
metabolite concentrations and the fluxes. This is 
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done via the flux- and concentration-control coef- 
ficients. MCA can be an important tool for the ra- 
tional optimization of metabolic pathways, where 
the objective is to optimize some metabolic 
variable. This is a particularly desirable goal in 
areas such as biotechnology (Kell and Westerhoff, 
1986), where the field is nowadays commonly 
referred to as ‘metabolic engineering’ (Backman 
et al., 1990; Bailey et al., 1990; Bailey, 1991; 
Stephanopoulos and Vallino, 1991; Tong et al., 
1991; Ikeda and Katsumata, 1992; Cameron and 
Tong, 1993; Katsumata and Ikeda, 1993). The gen- 
eral approach is based on the analysis of the rele- 
vant steady state using MCA followed by a choice 
of the steps with larger control coefficients to be 
the targets for manipulation (nowadays typically 
via cloning, Niederberger et al., 1992). One major 
result of the MCA formalism is that it is now ac- 
cepted that the control of steady-state flux and me- 
tabolite concentrations is distributed through all 
the steps of metabolism, even enzymes of 
pathways other than the one leading directly to the 
output flux of primary interest, as long as there are 
links between them (Kacser and Bums, 1973). As 
a consequence of the summation theorem, which 
states that all flux-control coefficients add up to 
unity, most steps in fact have negligible control 
over any flux, a fact that has been confirmed in 
several independent experiments (see Fell, 1992 for 
a review). This reinforces the notion of systemic 
control, as each step alone has little control over 
a flux (or concentration), but a group of steps can 
have considerable control over the same flux, if 
acting in coordination. Niederberger et al. (1992) 
have elegantly shown this for the tryptophan sys- 
tem of yeast, and Kacser and Acerenza (1993) have 
indicated how for certain pathways the relative ex- 
tent of the cloning required is a simple function of 
flux ratios. MCA’s advantage in such applications 
is that it is an exact quantitative approach. Its 
drawback is that it is only valid for infinitesimal 
perturbations. Due to the nonlinearity of the ki- 
netics’ of metabolic systems, however, extrapola- 
tions to large changes cannot in general be done 
with any degree of accuracy (see also Small and 
Kacser, 1993) 

Consider a typical (general&d) metabolic 
pathway such as that in Fig. 1. An initial or ‘exter- 
nal’ metabolite X0, present at a constant or 

‘clamped’ concentration, is transformed by en- 
zymes El to E, via metabolites Si, S,,..., S,., to 
form X,, (like X0, present at a constant concentra- 
tion). In the steady state, the concentrations of Si, 
s,, . . . S,., are constant, so that the rate of produc- 
tion of X, is constant as is the metabolic flux. 
Apart from implicit parameters such as the tem- 
perature, the parameters of the system (also known 
as independent variables) are the concentrations 
and kinetic constants of the enzymes, plus the con- 
centration of the external metabolites, whilst the 
variables of the system (or dependent variables) are 
the steady-state metabolite concentrations and the 
flux(es). Because enzymatic rate equations are 
nonlinear, there may apparently be little relation 
between the properties of individual enzymes when 
studied in isolation and the behaviour of the sys- 
tem as a whole. In MCA, the so-called control 
coefficients describe quantitatively the role of indi- 
vidual enzymes in controlling the flux and meta- 
bolite concentrations. These coefficients depend 
solely on the parameters of the system defined as 
above. Our problem is that the factors controlling 
the pathway, which is what we wish to understand, 
are determined by the parameters, which are ex- 
tremely difficult to measure in vivo, and not by the 
variables (whose determination requires only con- 
ventional (bio)chemical analyses). 

A number of workers have devised computer 
programs for the simulation of the dynamics of 
metabolic pathways and their steady-state analysis 
within the framework of MCA (see e.g. Holzhiitter 
and Colosimo, 1990; Comish-Bowden and 
Hofmeyr, 1991; Sauro and Fell, 1991; Mendes, 
1993). In such programs, one can input the struc- 
ture of the pathway of interest, the rate equations 
and the values of the kinetic parameters of each 
enzyme, and the concentrations of the external me- 
tabolites. The computer then runs the system to a 
steady state, establishing the metabolite concentra- 
tions and the fluxes that result from the parame- 
ters chosen. The control coefficients and other 
control analytic parameters may then be obtained 
analytically or numerically. The problem is that 
constraints on computational time mean that 
whilst we can determine the variables from the 
parameters we cannot solve the inverse problem 
(‘go backwards’), and test all possible combina- 
tions of parameters to see which would give us the 
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best fit to an observed set of variables, i.e. effect a 
global minimisation of the parameter space. Since 
the parameter space of most biochemical systems 
has a large number of dimensions, one will fre- 
quently find instances in which the function to 
minimize has many local minima, and therefore is 
difficult to optimize. Although not formally pro- 
ven to our knowledge for enzymatic reaction net- 
works, it is likely that such inverse problems are 
NP-complete (see Garey and Johnson, 1979; An- 
thony and Biggs, 1992). Numerical methods such 
as steepest descent or other variations of the 
Newton method are not normally able to find the 
global optimum in such cases. 

Artificial neural networks (‘neural nets’) are col- 
lections of identical but very simple ‘computa- 
tional units’ which can take a numerical input and 
transform it into an output (e.g. Rumelhart et al., 
1986; McClelland and Rumelhart, 1988; Cowan 
and Sharp, 1988; Wasserman, 1989; Amit, 1989; 
Kohonen, 1989; Pao, 1989; Aleksander and Mor- 
ton, 1990; Beale and Jackson, 1990; Eberhardt and 
Dobbins, 1990; Hecht-Nielsen, 1990; Simpson, 
1990; Freeman and Skapura, 1991; Hertz et al., 
1991; Peretto, 1992; Gallant, 1993). The inputs and 
outputs may be to and from the external world or 
to other units within the network. The way in 
which each unit transforms its input depends on 
the so-called ‘connection weight’ (or ‘connection 
strength’) and ‘bias’ of the unit, which are 
modifiable. The output of each unit to another 
unit or the external world then depends on both its 
strength and bias and on the weighted sum of all 
its inputs, which are transformed by a (normally) 
nonlinear weighting function referred to as its acti- 
vation function or squashing function. The great 
power of neural networks stems from the fact that 
it is possible to present (‘train’) them with known 
inputs (and outputs) and provide some form of 
learning rule which may be used, iteratively, to 
modify the strengths and biases until the outputs 
of the network as a function of the inputs corre- 
spond to the desired (‘true’) outputs. 

We have seen that it is possible by computer 
simulation to determine steady-state variables 
such as fluxes and metabolite concentrations as a 
function of parameters such as the enzymatic rate 
constants and external metabolite concentrations. 
It is obviously then possible to change one or more 

of the parameters and to determine another set of 
associated variables, and so on. This can be done 
rapidly and automatically on a computer. Having 
acquired related sets of parameters and variables, 
we would then be in a position to train a neural 
network in which the (known) variables were the 
inputs and the parameters were the outputs. If the 
net successfully learned to reflect the correct par- 
ameters when presented with the variables, we 
would have solved our problem. We could then 
present the net with ‘unknown’ (i.e. experimentally 
determined) variables and ask it for the parame- 
ters. The correctness of the network’s predictions 
would obviously be checked by running ‘a simula- 
tion with the parameters provided by the network 
and seeing if they generated the variables used as 
the input to the net. Using this novel approach, we 
would in fact be able to obtain the (enzymatic) 
parameters of a metabolic network (and hence the 
control coefficients and elasticities) by measuring 
the variables alone. In this context, it is also worth 
mentioning that neural nets have been used to ad- 
dress cognate inverse problems for a number of 
dynamic systems (e.g. Chen and Billings, 1992; 
Masri et al., 1992,1993; Veng-Pedersen and Modi, 
1993; Brouwn et al., 1994). 

We have therefore sought to assess the ability of 
simple feedforward neural networks updated via 
the backpropagation algorithm to solve tbe inverse 
metabolic problem described above, and to use the 
neural net approach. to carry out control analyses 
that are not restricted to small changes to deter- 
mine optimal (changes in) pathway parameters 
necessary for maximising fluxes (in biotechnology) 
or for minimising them (in pharmacology). It 
transpires that whilst such neural networks can in- 
deed learn to predict parameters from variables for 
simple metabolic pathways, the method ‘does not 
appear to scale well to large pathways. A prelimi- 
nary account of this work has been presented 
(Sauro and Kell, 1992; Kell et al., 1993; Mendes 
and Kell, 1994). 

2. Methods 

2.1. Outline of the method 
To be able to use this method, one must know 

in advance the structure of the metabolic pathway, 
i.e. the detailed sequence of reactions that the sub- 



18 P. Mendes, D.B. Kell/ BioSystems 38 (19%) 15-28 

xo - 
E, 

% -s,--- Sn_-- xn 
E* E, E,_, E” 

Fig. 1. A generic metabolic pathway. Xs and X,, are external 
metabolites, which are forced by some mechanism to have a 
constant concentration. St, S2....S,,_t and S,, are the ‘internal’ 
metabolites (note that these are variables). Arrow heads refer 
to the positive direction of fluxes; for generality, all steps are 
treated as kinetically reversible. 

s&ate(s) molecules (X0 in Fig. 1) undergo until the 
product(s) (X,, in Fig. 1) are formed. This includes 
any possible branches or cycles between the two. 
Additionally one must know the kinetic, equations 
of each step in the metabolic sequence. The values 
of the parameters of these equations are the targets 
that the method tries to estimate. It is assumed 
that one can measure experimentally the concen- 
trations of the intermediate metabolites (and the 
fluxes) in the steady state. 

The method comprises two stages. In the first 
stage one generates a ‘large’ number of steady- 
state simulations of the pathway (we normally 
chose lOO-SOO), each with a different set of values 
of the parameters (within some boundaries). All 
the unknown parameters must be varied, and any 
that are known must not. If some parameters are 
known to fall in a small interval one has the option 
of either not varying them (setting them to an esti- 
mate of the mean value), or to use that interval as 
the domain of variation of the parameter. For con- 
venience, the result of this set of simulations is 
written to one single file as a table (one row per 
simulation). It is important that the parameters 
with unknown values be varied in a domain that 
contains the unknown value. As with conventional 
statistical methods neural networks are known to 
extrapolate poorly. 

In the second stage one trains the neural net- 
work. This is the process of adjusting the weights 
of the connections between neurons. The data ob- 
tained in the previous stage are used to construct 
two sets of data: the first (the ‘training set’) is 
shown to the neural network repetitively until the 
later converges to a model, the second (the ‘test 
set’) is used to see how well the neural network 
performs with data it has not seen in the training 

stage. Both sets are composed of a group of col- 
umns that are fed to the input nodes of the neural 
network and another group which is the desired 
target of the neural network’s outputs. For the in- 
puts of the neural network we chose those parame- 
ters that we can measure or set together with the 
variables that we can measure and for the outputs 
the desired kinetic parameters. Note that parame- 
ters that are invariant need not be included in the 
neural network. Typically, therefore, we have at 
the inputs of the neural network the intermediate 
metabolite concentrations and the fluxes. 

After these two stages are successfully com- 
pleted, one can then use the trained neural net- 
work to estimate values of the desired parameters 
from measurements of the variables (those that are 
inputs of the network). This is a very rapid process 
(fractions of a second typically) and is well suited 
to be used routinely (Kell and Davey, 1992). If the 
predictions are accurate, the neural net is said to 
have generalised. 

2.2. Metabolic pathways 
The performance of the method proposed was 

tested using model metabolic pathways. The first 
of these (Fig. 2) is composed of two sequential 
steps with one intermediate. This pathway has 
only one true variable, although we use two vari- 
ables in the neural network analysis (the flux and 
the concentration of the intermediate). In this case 
one variable is dependent on the other, in that the 
flux is here a simple function of the concentration 
of the intermediate. First we assume the two steps 
to follow first order kinetics. In this case the model 
has six parameters: the concentrations of the sub- 
strate and product of the pathway (which are 
clamped), the two equilibrium constants and two 
rate constants, Of these, the concentrations and 

A- B -c 

E, E* 

Fig. 2. A two-step metabolic pathway. A and C are external 
metabolites, which are forced by some mechanism to have a 
constant concentration. B is the only ‘internal’ metabohte (note 
that this is a variable). The two steps are named Et and E2 but 
can be enzyme catalysed or simple first-order kinetics. 
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the equilibrium constants are easily determined, 
which leaves us with two unknown parameters 
that we will try to estimate with a neural network. 
This is a very simple example in the sense that one 
can actually express the values of the two un- 
known parameters in terms of the values of the 
other parameters and the variables in algebraic 
format. However one cannot do so in general, and 
indeed this is impossible when we consider the 
same pathway but with Michaelis-Menten kinetics 
for both steps. In this case the model has ten par- 
ameters as each Michaelis-Menten enzyme has 
three independent parameters (there is a fourth but 
this is the equilibrium constant which we can mea- 
sure and is invariant in experiments) 

2.3. The MLP architecture 
In the training process, an algorithm is used to 

change the weights and bias of each node so that 
the output values are close enough to the desired 
values (obtained in the simulations). The algo- 
rithm that we have used is known as backpropaga- 
tion of error (Rumelhart et al., 1986) and has been 
widely applied to multi-layer perceptrons. The 
number of units in the hidden layer(s) was varied 
as described in the text, and the squashing func- 
tion used was the logistic function 

Uj = l/(1 + e-7 (1) 

where Oj is the output of the node and x the 
weighted sum of its inputs. 

2.4. Software and hardware platforms 
All the results shown here were obtained on a 

Dell 456OKE personal computer running the 
Microsoft Windows NT operating system. The 
neural network computations were made using 
the program WinNN, by Yaron Damon 
(danony@rebecca.its.rpi.edu). A trial version of 
this program is available free of charge on the in- 
temet from ftp://ftp.cica.indiana.edu/pub/ibmpc/ 
windows3/programr/winnnO93.z ip, or in the 
CICA CD-ROM. The simulations of the steady- 
state properties of metabolic pathways were car- 
ried out using the program GEPASI (Mendes, 
1993), available free of charge on the internet from 
ftp://bmsdarwin.brookes.ac.uk/pub/software/ 

ibmpc/gep20&.zip, in the CICA CD-ROM, or 
from one of us (PM). 

3. RestsIts 

3.1. Two sequential first-order reactions 
To create the data for training and checking the 

performance of the neural net, we proceeded as 
follows: the pathway of Fig. 2 was implemented on 
the metabolic simulator Gepasi (Mendes, 1993) 
where we set the concentration of A to IO (in ar- 
bitrary units, but could easily be seen as e.g. mM). 
Gepasi was instructed to run 250 simulations, each 
of them with two random values for kt and k2. 
Because their true values are unknown, it is impor- 
tant to allow these parameters to take values 
within a sufficiently large domain. This in most 
cases means through more than one order of 
magnitude, and possibly several. In the results 
shown here the boundaries were 0.01 and 100 
(again in arbitrary units, but consistent with the 
units of concentration, so mM s-l in the example 
above), covering four orders of magitude. Had we 
used a random uniform distribution for values of 
k, and kZ, we would have obtained many more 
points in the upper decade than in the three lower 
decades. However, because we want tbe neural 
network to learn the inverse representation within 
each of the four orders of magnitude (and not just 
the upper one), it is very important that we cover 
all the decades equally. Gepasi allows us to do so 
by generating pseudo-random numbers in loga- 
rithmic space (Mendes, 1993). The program puts 
the results of the simulations in a columnar tile, 
one parameter or variable per column and one row 
per simulation. This is very close to the format of 
training and test set files required by most neural 
network programs, including WinNN. We only 
had to separate the original tile in two and add one 
line at the top with the number of rows in the tile 
and how many columns are inputs of the neural 
net. We chose to use the first 200 lines for the 
training set and the last 50 for the test set. These 
had to be post-processed in order to be used with 
the neural network. Because we are using rhe logis- 
tic as the squashing function, the output8 (kl and 
k2) must be scaled between 0 and 1 as the logistic 
has these values as asymptotes. Again, just rescal- 
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Fig. 3. Performance of the neural network model for the two 
step pathway with linear kinetics. Real values on the x-axis and 
the network prediction on the y-axis. Results are shown for the 
post-processed results of the test set (logged and resealed be- 
tween 0.2 and 0.8 covering values of k, and k2 between 0.01 
and 100. The 45O slope line indicates where the exact predic- 
tions would lie. A: k,, B: k,. 

ing the values of ki and kz is not good enough; we 
have to rescale the logarithm of these values so as 
to cover all orders of magnitude equally. We have 
done so between the values of 0.2 and 0.8, trying 
to avoid saturation on the extremes of the logistic 

(see also Goodacre et al., 1993). Similar arguments 
apply to the inputs. Although there are no limits 
on the arguments that the logistic function can 
take, its output becomes saturated at around 3 
(and -3). We therefore resealed the logarithm of 
the inputs between -2 and 2. A very important 
point is that we resealed the test and training sets 
together, not separately although each column was 
resealed independently of the others (see also Neal 
et al., 1994). 

The objective is for the neural network to learn 
the (inverse) relation between the rate constants 
and the metabolite concentration and the flux, so 
we must have the latter two applied at the inputs 
and the rate constants applied at the outputs of the 
net. We have chosen to use 10 hidden units be- 
tween the inputs and outputs. Each unit in one 
layer is connected to all units in the next layer (a 
fully connected feedforward neural network). 
Random noise (*0.02 in the normalized scale) 
was added automatically (by the WinNN package) 
to the inputs of the neural network. In these condi- 
tions the learning algorithm converged in the order 
of 100 iterations; the performance of the trained 
neural network on the test set is displayed in Fig. 
3. Note that these data were not those used to train 
the neural net, but were used only to test the pre- 
dictive power of the network. As can be seen by in- 
spection of Fig. 3 the neural network is quite 
capable of giving excellent predicitions for the 
values of the rate constants given measurements of 
the concentration of the intermediate and the 
steady-state flux. At the extremes of the scale there 
is some bias in the predictions (positive error in the 
low end and negative error in the high end). This 
is known to be an artefact introduced by the 
squashing function (e.g. Long et al., 1990; 
Goodacre et al., 1993; Jacobsson and Hagmann, 
1993) and can be solved by using a linear function 
in the output nodes (Goodacre et al., 1995). Indeed 
we have confirmed that this does eliminate such a 
bias in the current example (results not shown). 

3.2. Two sequential Michaelis-Menten enzymes 
The next logical step up in the complexity of the 

pathway to be analysed by a neural net is to have 
the two steps catalysed by enzymes with Michaelis- 
Menten type kinetics. The reaction topology is the 
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same as the previous example (Fig. 2). As in the 
previous case, we still only have two variables: the 
steady-state concentration of B and the flux, J; 
however there is now a larger number of parame- 
ters. Each Michaelis-Menten enzyme needs four 
parameters to be characterized: the forward 
limiting rate Vf, the reverse limiting rate V’, the 
Michaelis constants for the substrate, KS, and for 
the product, Kp’ Because of thermodynamic con- 
straints (the Haldane relationships, Haldane, 
1930), one of these is not independent and so can 
be expressed as a function of the other three and 
the equilibrium constant. Doing this one can rear- 
range the Michaelis-Menten equation to use three 
of those parameters and the equilibrium constant: 

lJ= 

P vf s-- ( > K-4 
PVf 

K,+S+- 
Keq V’ 

This way, we are left with three unknown parame- 
ters per reaction (instead of one in the case of first 
order reactions), which makes a total of six. Pre- 
liminary results suggested that in this case we can- 
not easily train neural nets like those of the 
previous example to learn the inverse relation. 
This might be due to the fact that the relation may 
now be under-determined. For this limitation to be 
overcome we need to make available to the inputs 
of the neural network more information about the 
system. Fortunately there is one parameter of the 
pathway that can be manipulated experimentally: 
the concentration of the substrate, A. For one set 
of random values of the kinetic constants we can 
do several simulations with different, but known 
and fixed, values of [A]. The result is that we have 
various values of the steady-state concentration of 
B and flux, which we hope describe a set of kinetic 
constants uniquely (at least in the region we 
examine). 

The simulations were set up as before with the 
following modifications: Vfl, Yrl, V/2, Y2, KS,, 
and KS 2 varied between 0.1 and 10. We ran three 
simulations with [A] = 1, [A] = 3 and [A] = 5 
respectively; 500 sets of kinetic parameters were 
generated (1500 simulations in total), where the 

first 400 were chosen for the training set and the 
last 100 for the test set. 

With respect to the neural network model, we 
had to do some optimizations before obtaining a 
neural net model that could learn the inverse rela- 
tionship. First we noticed that as the nonlinearity 
in the kinetics of the reactions increased, a single 
layer of hidden units connecting the inputs to the 
outputs was not enough (see also Cybenko, 1989). 
Four-layer fully connected feed-forward neural 
nets (four-layer perceptrons) appear to be better at 
learning the inverse relation and so we have used 
them in this and subsequent examples. We also 
observed quicker and better learning when we 
used one neural network to learn each parameter 
than when we used one single neural network to 
learn them all (see also Goodacre et al., 1994). 
Given this, we trained six neural networks each 
with a topology of 6- 15- lo- 1 (6 inputs, 15 nodes on 
the first hidden layer, 10 nodes on the second hid- 
den layer and 1 output). The performance of these 
networks with unseen data is depicted in Fig. 4. As 
can be seen from Fig. 4C and 4F, we did not 
manage to train neural networks that were able to 
relate the six inputs and each of the reverse 
limiting rates. This was not a problem of lack of 
generalisation but rather of lack of convergence. 
However, the inverse relations of the other kinetic 
parameters were modelled by the neural networks 
with considerable success (Fig. 4A, B, D, and E). 
We also repeated the whole process but this time 
setting the two reverse limiting rates to fixed ar- 
bitrary values (as if we knew their value a priori). 
In this case we managed to train a single neural 
network to learn the inverse relationship between 
the variables and the rest of the kinetic parameters 
(results not shown) even better than those in Fig. 
4A, B, D and E. 

3.3. Three sequential Michaelis-Menten enzymes 
Following the logic of the two previous experi- 

ments, we increased the complexity of the pathway 
by adding one extra step catalysed by a Michaelian 
enzyme (Fig. 5). We now have nine kinetic con- 
stants, with only three variables: [B], [Cl and the 
flux J. We repeated the procedure dwribed in 
the previous section, from which we obtain data 
for nine neural networks with nine inputs and 
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one output each. Each of these will be used to 
model the inverse relation between the nine appar- 
ent variables (they are truly only three but 
triplicated by the use of three different concentra- 
tions of the substrate A, as before) and each of the 
kinetic parameters. The results are depicted in 
Fig. 6A-I. 

Once again we observed that the neural net- 
wprks are not able to learn the inverse relationship 
between the concentrations and flux and the re- 
verse limiting rates (Fig. 6C, F and I). In general 
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the performance of the neural networks for this 
three-enzyme pathway is poorer than for the two- 
enzyme pathway, in particular with respect to the 
Michaelis constants. We also note that the param- 
eter best modelled by the neural networks is the 
limiting rate of the last enzyme in the pathway. 
This might suggest that there is a simple relation 
between this parameter and the concentrations 
and flux; however this is not apparent by simple 
inspection of plots of [B], [C] and J versus VJ3 
(data not shown). 
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Fig. 4. Performance of the neural network model for the two step pathway with Michaelian kinetics. Real values on the x-axis and 
tire network prediction on the y-axis. Results are shown for the post-processed results of the test set (logged and resealed between 
0.2 and 0.8 covering values of fit, V,, yfr, V,, KS,, and Ks,2 between 0.1 and 10. The continuous 45” slope lines indicate where 
the exact predictions would lie, the broken lines are the least-squares linear fits from the plotted data. A: KS, (best fit line with corre- 
lation coefkht of 0.8696); B: Vf (best fit line with correlation coefftcient of 09404); C: V; (best tit line with correlation coefficient 
of 0.4006); D: Ks,2 (best fit line with correlation coefficient of 0.9627); E: Vrz (best fit line with correlation coefficient of 0.9807); 
F: Vj (best tit line with correlation coeIIicient of 0.06067). 

4. Discussion 

Inverse problems are those in which one knows 
values for a set of variables of a model and wants 
to deduce from that the values of the parameters 
that were responsible for the system to attain that 
state. One example, known as inverse kinematics, 
is that of calculating the motion of an object in 
space from a desired final position. This is a prob- 
lem faced by the brain when it controls the limbs. 
Biological brains are very good at solving this par- 

A- B -c- D 

E, E2 E3 

Fig. 5. A three-step metabolic pathway. A and D are external 
metabolites, which are forced by some mechanism to have a 
constant concentration. B and C are the ‘internal’ metabolites 
(variables). The three steps are catalysed by enzymes E,, E2 
and EJ. 

titular inverse problem, while in robotics some ac- 
ceptable solutions have also been developed, some 
based on artificial neural networks (Kuperstein, 
1987; Miller, 1987; Jordan, 1992). 

Here we discuss a particular inverse problem in 
metabolism, which is that of identifying the values 
of steady-state kinetic parameters from the values 
of measured concentrations and fluxes. The cor- 
responding forward problem is easily solvable by 
integration of systems of differential equations (see 
e.g. Heinrich et al., 1977; Hayashi and Sakamoto, 
1986), and this is a process easily carried out by 
using computer programs specifically designed for 
this purpose (Holzhiitter and Colosimo, 1990; 
Cornish-Bowden and Hofmeyr, 1991; Sauro and 
Fell, 1991; Mendes, 1993). We have here 
developed a method aimed at solving this,particu- 
lar inverse problem that uses a combined ap- 
proach: in the first stage a model of the metabolic 
system is set up and repeatedly simulated in the 
forward direction using pseudo-random values for 
the parameters, while in a second stage the data 
generated by the simulations are used to train a 



24 

A 
0.8 

P. Met&es. D.B. KeN/ BioSystems 38 (19%) IS-28 

0.8 

2 0.4 

5 

0.2 
0.2 0.4 0.6 0.8 

True value 
C 

0.8 ,3-/l 

0.2 0.4 0.6 0.8 

True value 
K 932 

D 

0.8 

0.6 0.6 

0.4 

0.2 

t 

??
0 

??
-I- 0 -1 

@*, , , ,-I 
0.2 0.4 0.6 

True value 

0.8 0.2- 0.4 0.6 

True value 

0.8 

E F 

0.8 0.8 

E 
g 0.6 
5 

h 
2 0.4 

a 

0.2 
0.2 0.4 0.6 

True value 
0.8 0.4 0.6 

True value 
0.8 



P. Mendes, D.B. KeN/ BioSystems 38 (19%) 15-28 

0.8 

0.6 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

True value True value 

0.8 

0.6 

0.2 E--L- 
0.2 0.4 0.6 0.8 

True value 

Fig. 6. Performance of the neural network model for the three step pathway with Michaelian kinetics. Real values on the x-axis and 
the network prediction on the y-axis. Results are shown for the post-processed results of the test set (logged and resealed between 
0.2 and 0.8 covering values of KS,,, vf,. Fr,, Ks.2. vi. I=2. Ks.j> f12 and Vj between 0. I and IO. The continuous 45” slope lines 
indicate where the exact predictions would lie, the broken lines are the least-squares linear fits from the plotted data. A: KS,, (best 
fit line with correlation coefficient of 0.8794); B: v’, (best tit line with correlation coefficient of 0.8673); C: V, (best tit line with 
correlation coefficient of 0.6908); D: KS,* (best tit line with correlation coefftcient of 0.9043); E: f12 (best fit line with correlation 
coefficient of 0.9206); F: V2 (best fit line with correlation coefficient of 0.6229); G: Ks,~ (best fit line with correlation coefftcient of 
0.7987); H: FrJ (best Iit line with correlation coefficient of 0.9740); I: V’, (best Iit line with correlation coefficient of 0.2664). 

feedforward neural network in which the inputs verges and general&s, one has then solved the 
and outputs are now in the opposite order to that problem within the domain in parameter space 
in the simulation, i.e. the variables (concentrations defined by the boundaries of the random values in 
and fluxes) are at the inputs and the (kinetic) par- the forward simulations. Moreover, if convergence 
ameters at the outputs. If the neural network con- is obtained one has solved the inverse problem of 
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all metabolic pathways that have the same struc- 
ture and kinetics as the model used. For example 
the results of Fig. 3 apply to all systems of two se- 
quential first order reactions with values of for- 
ward rate constants between 0.01 and 100. 
Artificial neural networks are good candidates for 
this task as they have been demonstrated to fit any 
arbitrary nonlinear function given enough number 
of nodes in the hidden layers (Hornik et al., 1989; 
White, 1992). Methods designed for linear systems 
are not expected to perform well. We did in fact try 
to apply partial least squares (PLS, Martens and 
Naes, 1989) to the data corresponding to Fig. 6, 
but this technique indeed failed to model the data 
(results not shown). 

The results described above show us that the 
method proposed here seems to perform well for 
some of the parameters but, apparently, not for all 
of them. The neural networks were not able to 
converge in reasonable time in the case of the re- 
verse limiting rates (I’?. This is only a moderate 
limitation in fact, as these kinetic parameters tend 
to have only a small influence in determining the 
values of the variables in the forward problem 
(Mendes and Kell, 1994). This problem may also 
be alleviated if one knows that some of the other 
parameters lie within a narrower range of values. 
It is not unreasonable to think that in experimental 
settings one may know at least the order of 
magnitude of the Vf and KS parameters. 

The performance of the neural networks for the 
data from the three-enzyme pathway, in which 
there is a larger average error of the neural net- 
work estimates as compared to those of the two- 
enzyme pathway, suggest that this method does 
not scale well, however, at least using fully inter- 
connected feedforward nets trained according to 
the standard backpropagation algorithm. 
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