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Abstract

Cell pastes and supernatant Escherichia coli samples, taken from an industrial bioprocess overproducing recombi-
nant a2 IFN were analysed using pyrolysis mass spectrometry (PyMS) and diffuse reflectance-absorbance Fourier
transform infrared spectroscopy (FT-IR). PyMS and FT-IR are physico-chemical methods which measure predomi-
nantly the bond strengths of molecules and the vibrations of bonds within functional groups, respectively. They
therefore give quantitative information about the total biochemical composition of the bioprocess sample. The
interpretation of these hyperspectral data, in terms of the quantity of a2 IFN in the cell pastes and supernatant
samples was possible only after the application of the ‘supervised learning’ methods of artificial neural networks
(ANNs) and partial least squares (PLS) regression. Both PyMS and FT-IR are novel, rapid and economical methods
for the screening and the quantitative analysis of complex biological bioprocess over producing recombinant proteins.
Models established using either spectral data set had a similarly satisfactory predictive ability. This shows that
whole-reaction mixture spectral methods, which measure all molecules simultaneously, do contain enough informa-
tion to allow their quantification when the entire spectra are used as the inputs to methods based on supervised
learning. Moreover, this is the first study where FT-IR in the mid-IR range has been used to quantify the expression
of a heterologous protein directly from fermentation broths and the first study to compare the abilities of PyMS and
FT-IR for the quantitative analyses of an industrial bioprocess. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Bioprocess control strategies are dependent on
the observability of the culture; that is to say, the
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acquisition and exploitation of signals (such as
pH, O2, CO2, and temperature), even under com-
plex environmental conditions such as those
found in bioprocess reaction mixtures (Locher et
al., 1992). The power of spectroscopic methods to
analyse complex biological samples has been re-
alised in the research laboratory (Marquardt et
al., 1993; Hazen et al., 1994; Goodacre and Kell,
1996) and there is now an increasing interest in
acquiring evidence regarding the applicability of
these powerful analytical tools on an industrial
scale. Although many physical parameters are
measurable on-line, others such as the concentra-
tion of product(s) are difficult to determine and
often require considerable pre-processing of the
samples.

An ideal method for quantitative analysis of
biologically important products in crude biopro-
cess samples would involve minimal sample
preparation (i.e. be reagentless), would give infor-
mation on recognisable chemical characters,
would be rapid, quantitative, robust (Kell et al.,
1990) and relatively inexpensive. Pyrolysis mass
spectrometry (PyMS) and Fourier transform in-
frared spectroscopy (FT-IR) are valuable tech-
niques that offer these advantages.

PyMS and FT-IR are physico-chemical meth-
ods which measure predominantly the bond
strengths of molecules and the vibrations of bonds
within functional groups, respectively (Meuzelaar
et al., 1982; Griffiths and de Haseth, 1986;
Schrader, 1995). Therefore they give quantitative
information about the total biochemical composi-
tion of the bioprocess sample. However, the inter-
pretation of these multidimensional spectra, or
what are known as hyperspectral data (Goetz et
al., 1985; Abousleman et al., 1994; Wilson et al.,
1995), has conventionally been by the application
of ‘unsupervised’ pattern recognition methods
such as principal components (PCA), discriminant
function (DFA) and hierarchical cluster (HCA)
analyses. With ‘unsupervised learning’ methods of
this sort the relevant multivariate algorithms seek
‘clusters’ in the data, thereby allowing the investi-
gator to group objects together on the basis of
their perceived closeness (Everitt, 1993); this pro-
cess is often subjective because it relies upon the
interpretation of complicated scatter plots and

dendograms, which are not suitable for accurate
quantitative interpretation.

More recently, various related but much more
powerful methods, most often referred to within
the framework of chemometrics (Massarrt and
Buydens, 1987; Brown et al., 1996), have been
applied to the ‘supervised’ analysis of these hyper-
spectral data (Goodacre et al., 1995); arguably the
most significant of these is the application of
‘intelligent’ systems based on artificial neural net-
works (ANNs) (Collins, 1993; Zupan and
Gasteiger, 1993; Widrow et al., 1994; Bishop,
1995; Goodacre et al., 1996a). PLS is another
multivariate full spectrum method (Martens and
Næs, 1989), which is based on inverse modelling,
and is often used for estimation of the concentra-
tion of a determinand of interest in multicompo-
nent mixtures (McAvoy et al., 1992; Bhandare et
al., 1993; Song and Otto, 1995). Once calibrated
these chemometric methods can effectively model
the relationship between PyMS or FT-IR data
and the concentrations of an unknown compo-
nent(s), without the knowledge of the other con-
stituents in the samples.

The combination of pyrolysis mass spectrome-
try (PyMS) and chemometrics has been shown to
have the potential for the screening and quantita-
tive analysis of microbial cultures (Goodacre et
al., 1994a, 1995; Goodacre and Kell, 1996) includ-
ing those that produce recombinant proteins such
as cytochrome b5 (Goodacre et al., 1994b). This
technique is automated and rapid and typically
permits the acquisition of 300 samples in a work-
ing day.

Diffuse reflectance-absorbance FT-IR is a more
rapid, automated method which yields more de-
tailed information about chemical structure than,
for example, the rather slower UV absorbance
spectroscopy typically used in HPLC analysis.
The method can be employed simply after oven-
drying bioprocess samples at 50°C (Goodacre et
al., 1996b; Winson et al., 1997; Timmins et al.,
1998). In particular because the sample presenta-
tion approach utilises the diffuse reflectance of a
sample, held on an aluminium plate, it is very
rapid (spectral acquisition is 10 s, and can be
decreased by lowering the number of acquisitions
co-added). Four hundred samples may be
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analysed on a single plate, conveniently allowing
in excess of 3000 samples per day to be collected.
Indeed, we have shown previously (Winson et al.,
1997) that this approach can be used accurately to
determine the concentration of ampicillin added
to E. coli and Staphylococcus aureus.

In the present study, we demonstrate the use of
the PyMS and FT-IR techniques in combination
with chemometrics for determining the accumula-
tion of a2 IFN as the percentage of the total
microbial protein (% TMP) in recombinant E. coli
bioprocess samples. The bioprocess reaction mix-
tures were previously analysed by ZENECA
Pharmaceuticals and a2 IFN levels determined by
conventional methods.

2. Materials and methods

2.1. Model recombinant E. coli bioprocess

An E. coli K-12 derivative, transformed with a
plasmid vector, expressing human interferon-a2
from the thermo-inducible lpL promoter was cul-
tured in 15 l of batch growth medium at 37°C, pH
6.7, 50% dOT (air saturation). The composition
of the batch growth medium was (per litre):

KH2PO4 3 g; (NH4)2SO4 10 g; NaCl 10 g;
Na2HPO4 6 g; casein hydrolysate 2 g; glycerol 35
g; yeast extract 20 g; MgSO4·7H2O 0.5 g;
CaCl2·H2O 0.03 g; thiamine 0.008 g; FeSO4/citric
acid 40/20 mg; trace elements solution 0.5 ml;
tetracycline 10 mg. A feed of yeast extract was
supplied continuously (4.5 h post inoculation) to
the bioreactor at 0.75 g l−1 per h. At the end of
the batch phase (ca. 14 h, glycerol exhaustion), a
fed-batch feed containing glycerol and ammonium
sulphate (714 and 143 g l−1 respectively) was
supplied to the bioreactor at a rate which main-
tained the oxygen uptake rate of the culture at
maximum without exceeding the maximum oxy-
gen transfer rate possible under the conditions
described. At 15 h fermentation time, the bioreac-
tor temperature was increased from 37 to 42°C to
induce expression of the recombinant protein
product.

UWA was provided with a supernatant sample
(residual growth medium), and a cell-paste sample
for each time point (h): 0, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23 and 24. The corresponding values
for accumulation of a2 IFN (as % TMP; total
microbial protein) as calculated from Coomassie
stained gels and protein estimations are shown in
Table 1.

2.2. Pyrolysis mass spectrometry

Clean iron–nickel foils (Horizon Instruments,
Heathfield, UK) were inserted, using clean for-
ceps, into clean pyrolysis tubes (Horizon Instru-
ments), so that 6 mm was protruding from the
mouth of the tube. Five-microliter aliquots of cell
pastes and supernatant were evenly applied onto
the foils. The dry weights of the cells were used to
adjust the weight of the final slurries with physio-
logical saline to :25 mg ml−1. Supernatant sam-
ples were applied unprocessed. Prior to pyrolysis,
the samples were oven-dried at 50°C for 30 min,
the foils were then pushed into the tube, using a
stainless steel depth gauge so as to lie 10 mm from
the mouth of the tube. Finally, viton ‘O’ rings
(Horizon Instruments) were placed :1 mm from
the mouth of each tube. Samples were run in
triplicate.

Table 1
Number of samples examined, indication of their age and
quantity of a2 IFN present in cell pastes and in the bioprocess
samples

Bioprocess time Accumulation of a2Accumulation of
IFN as % TMP ina2 IFN as %(h)

TMP in cell supernatant
pastes

0 Not detected Not detected*
14 Not detected* 4.391.0

Not detected15 5.390.4
3.890.5* 5.590.716
8.790.617 6.190.9*

12.190.5*18 6.090.9
16.590.719 5.790.9*
16.990.4*20 5.590.8
17.890.221 4.891.1*
17.390.7*22 5.591.0
19.790.123 4.690.8*

24 20.790.4* 5.290.8

* Samples used in training sets for both PyMS and FT-IR.
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Table 2
Comparison of PyMS and FT-IR, in combination with PLS
regression and ANNs for the quantification of a2 IFN, in the
cell pastes and the supernatant bioprocess samples

Sample type RMS error in predic-Spectral method
tions

ANNs PLS

2.27Cell pastes 1.78PyMS
FT-IR 1.92 2.87

Supernatant PyMS 0.53 0.56
0.46FT-IR 0.43

1986; Causton, 1987). PCA is a well known tech-
nique for reducing the dimensionality of multi-
variate data whilst preserving most of the
variance, and Matlab V.5 (Mathworks, Natick,
MA) was employed to perform PCA according to
the NIPALS algorithm (Wold, 1966). Discrimi-
nant function analysis (DFA) then discriminated
between groups on the basis of the retained PCs
and the a priori knowledge of which spectra were
replicates (MacFie et al., 1978; Windig et al.,
1983) and thus this process did not bias the
analysis in any way. DFA was programmed ac-
cording to Manly’s principles (Manly, 1994). The
objective of DFA is to maximise the ratio of the
between-group to within-group variance (a group
includes the spectral replicates), therefore a plot
of the first two discriminant functions (DFs) dis-
plays the best 2-D representation of the group
separation and can be used to observe any differ-
ences or similarities between the fermentation
samples.

2.5. Chemometric processing using super6ised
learning

To gain quantitative information on a2 IFN
production, ANNs and PLS models were estab-
lished. Both were carried out using a user-friendly
‘in-house’ package developed by Jones et al.
(1998).

ANNs and PLS are both well established
chemometric techniques used for quantitative
analyses of analytical chemical data. For a given
analytical system there are some patterns (e.g.
mass or IR spectra) which have desired responses
which are known (i.e. the concentration of target
determinands, a2 IFN). These two types of data
form pairs which for the present purpose are
called inputs and targets. The goal of super6ised
learning is to find a model or mapping that will
correctly associate the inputs with the targets.
Once the model has been formed it can then be
challenged with new inputs (the mass or IR spec-
tra) and will give its estimates of the concentra-
tion of a2 IFN (the target determinand).

The ANNs were trained by gradient descent
using the standard back propagation (BP) al-
gorithm (Rumelhart et al., 1986). Each input and

The pyrolysis mass spectrometer used for this
study was a Horizon Instruments PYMS-200X.
The sample tube carrying the foil was heated prior
to pyrolysis, at 100°C for 5 s. Curie-point pyroly-
sis was at 530°C for 3 s, with a temperature rise
time of 0.5 s. Data were collected over the m/z
range 51–200 and normalised as a percentage of
total ion count.

2.3. Diffuse reflectance-absorbance FT-IR

Diffuse reflectance-absorbance FT-IR analysis
was performed using a Bruker IFS28 infrared
spectrometer equipped with a diffuse-reflectance
TLC attachment (Bruker, Banner Lane, Coven-
try, UK) and a liquid N2-cooled MCT (Mercury-
Cadmium-Telluride) detector. Culture cell pastes
and supernatant samples (5 ml; three replicates)
were applied into the wells of a sand-blasted
aluminium plate. After allowing the samples to
oven dry at 60°C for 20 min, the plate was
mounted on a motorised stage and infrared spec-
tra were collected in the range of 4000–600 cm−1

with 256 co-adds, with a spectral resolution of 4
cm−1. For chemometric processing, spectral data
were converted into ASCII format, using the
Opus software that controls the FT-IR
instrument.

2.4. Discriminant function analysis

The initial stage involved the reduction of the
dimensionality of the PyMS and FT-IR data by
principal components analysis (PCA; (Jolliffe,
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output variable was scaled between 0.2 and 0.8.
The structure of the ANN used in this study to
analyse pyrolysis mass spectra consisted of three

layers containing 150 input nodes, one output
node (amount of determinand) and one ‘hidden’
layer containing eight nodes (a 150-8-1 topology),

Fig. 1. Pyrolysis mass spectra of (a) a2 IFN, (b) cell paste alone, and (c) cell paste with 20.7 a2 IFN (as % TMP). These have been
normalised so that the total ion count is 100%.
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Fig. 1. (Continued)

whilst the architecture of the ANN for the FT-IR
data was 883-10-1. The inputs and outputs of the
PLS models were scaled to a standard deviation
of one and mean centred (Martens and Næs,
1989).

During calibration of the ANNs and PLS, the
root mean squared (RMS) error between the true
and desired concentrations over the entire calibra-
tion model for the unknown spectra was calcu-
lated. The RMS errors vs. the number of epochs
or factors used in predictions in the ANN and
PLS models, respectively, were plotted. This al-
lowed an indication of the optimal number of
epochs or PLS factors to form the best general
predictive model.

Training data for the construction of these
models consisted of the PyMS and FT-IR data of
every other sample from the bioprocess sample
sets, whilst to avoid extrapolation, the extremes
were always placed in the training set (cell pastes
and supernatant were treated as independent sets;
Table 2) together with the known quantity of a2
IFN present in those samples. After training, the
remaining samples were used to test the calibrated

models, and output their estimates in terms of the
amount of a2 IFN present in the bioprocess
samples.

3. Results and discussion

As can be seen from Table 1, a greater range of
homologous protein production levels was ob-
served in the cell pastes (% TMP range 3.8–20.7)
compared to levels detected in the supernatant (%
TMP range 4.3–6.1). Since the cell paste samples
cover a wider range of total mass protein it is
likely that their analysis will be most useful for
assessing the use of the PyMS and FT-IR analyti-
cal techniques for the quantification of a2 IFN.

Pyrolysis mass spectra are commonly difficult
to interpret and that of a2 IFN (Fig. 1a) was no
exception; the supernatant (data not shown) and
cell paste (Fig. 1b,c) spectra were equally com-
plex. Mass 117, which is the molecular ion of
indole, a breakdown product of tryptophan
(Goodacre and Kell, 1993) and consequently a
characteristic indicator of protein (Meuzelaar et
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Fig. 2. Diffuse reflectance-absorbance FT-IR spectra (unmanipulated) of (a) a2 IFN (triplicates) and (b) cell pastes (average of
triplicates) with different concentrations of a2 IFN.
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Fig. 3. Separation of cell pastes (a) PyMS data (b) FT-IR data by DFA. Samples are labelled quantitatively as detailed in Table 1.

al., 1982), was examined for increasing intensity
over the period of increased expression of the
recombinant protein of interest (data not shown).
Although a roughly linear relationship was de-
tected, there was a lot of scatter around the best
fit line and this line did not pass through the
origin. This is perhaps not surprising since a2
IFN is not the sole protein found in E. coli. No
other single ion intensities were found to alter in a
proportional or linear manner and thus these
could not be used alone to estimate the quantities
of the determinand.

The FT-IR spectra from these bioprocess sam-
ples were also complex (Fig. 2), and because of
the multitude of cellular components, all with
their own molecular vibrations capable of ab-
sorbing appropriate electromagnetic radiation,
broad superimposed spectral bands were observed
within the mid-infra range (4000–600 cm−1). The
infrared spectra of proteins exhibit strong amide I
absorption bands at 1650 cm−1 associated with
the characteristic stretching of C�O and C�N and
the bending of the N�H bond (Stuart, 1996);
however changes in the absorbance at 1650 cm−1

could not be used to quantify a2 IFN production.
Since both the PyMS and FT-IR spectra are

complex and no single mass or wavenumber could
be used to quantify the level of a2 IFN, it was
therefore necessary to explore various chemomet-
ric approaches which use information from the
whole spectrum.

The first stage in the chemometric process was
to use the unsupervised analysis of discriminant
function analysis (DFA) as detailed above. DFA
on the pyrolysis mass spectra from the cell paste
samples (Fig. 3a) separated the non-producers
and the low producer (3.8 as % TMP) away from
the other samples in the first discriminant func-
tion (DF); the second DF showed a trend which
was correlated more with the age of the sample
rather than the accumulation of a2 IFN. The
same phenomenon was found on DFA of the
supernatant samples (data not shown). DFA on
the FT-IR spectra from the same cell pastes (Fig.
3b) showed a similar, but not so obvious, trend to
that observed in Fig. 3a. It was evident that DFA
alone would not be able to give accurate estimates
of the accumulation of a2 IFN and additional
chemometric methods which use supervised learn-
ing would need to be exploited.

To gain quantitative information on a2 IFN
production, ANNs and PLS models were estab-
lished using the PyMS and FT-IR data for both
supernatant and cell pastes. After the ANN and
PLS models were calibrated they were challenged
with the training and test sets. Plots of the ANNs
and PLS estimates versus the true amount of a2
IFN in the cell pastes (Fig. 4) gave linear fits
(dashed lines) which were very close to the ex-
pected proportional fits (i.e. y=x, solid line). It
was therefore evident that the neural network’s
and PLS estimates of the quantity of a2 IFN in
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the cell pastes were very similar to the true quan-
tity, both for spectra that were used as the train-
ing set and, most importantly, for the ‘unknown’
pyrolysis mass spectra (Fig. 4a,b) and FT-IR
spectra (Fig. 4c,d). Table 2 gives details of the
RMSEP for the test sets only for both the cell

pastes and supernatant samples. It can be seen
that these errors of prediction were satisfactorily
low, highlighting that both PyMS and FT-IR
could be used to give accurate estimates of a2
IFN levels in bioprocess reaction mixtures.

Fig. 4. Estimates of the levels of a2 IFN in cell pastes using PyMS data and ANNs (a), PyMS data and PLS regression (b), FT-IR
data and ANNs (c) and FT-IR data and PLS regression (d).
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4. Concluding remarks

In analysing complex fermentor reaction mix-
tures and supernatants, unlike simple mixtures
(Goodacre et al., 1993) the multivariate analysis
approach monitors not only the spectral contribu-
tion of the target molecule per se but may also
take into account other features which are associ-
ated with the metabolite concentration. In this
way the use of supervised methods such as PLS
and ANNs can exploit differences in the organism
or the supernatant which correlate with metabo-
lite overproduction. This can provide a useful
‘amplification’ to the method when the target
molecule concentrations are particularly low.

The object of these experiments has been to
quantify production of the protein a2 IFN in
crude bioprocess samples. The true test for spec-
troscopic techniques in combination with chemo-
metrics for the quantitative analysis of fermentor
reaction mixtures comes with real world prob-
lems, such as those tested in the experiment
above. We consider that these approaches will
prove to be valuable tools and the data accumu-
lated will enable rapid and quantitative analysis of
recombinant protein production in other hosts
over-expressing a gene of interest.

The important conclusion to be drawn from the
results so far, is that whole-reaction mixture spec-
tral methods which measure all molecules simulta-
neously, do contain enough information to allow
their quantification when the entire spectra are
used as the inputs for modern chemometric meth-
ods, based on supervised learning.

In the future, we hope to form models for a
much greater number of samples collected from a
number of similar bioprocesses, varying only in
the arbitrary experimental conditions. This should
give an indication of the stability and robustness
of these models to even more diverse data. An-
other possibility is to analyse the spectrum of pure
determinands and to use this information (via
appropriate variable selection methods) to
‘weight’ the spectra in favour of those masses
most likely to contribute to a parsimonious model
with which to obtain quantitative information.

In conclusion, these results demonstrate that
modern analytical spectroscopies can provide

rapid accurate quantitative estimates of the levels
of heterologous proteins such as a2 IFN in E. coli
bioprocesses, but only when combined with intel-
ligent chemometric systems which perform super-
vised learning.
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