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SUMMARY

We provide a critical survey of some of the major limitations of the principles and applications of
metabolic control analysis, with special reference to the enhancement of fluxes of biotechnological interest.
Experimental methods of single-cell analysis such as flow cytometry show that the implicit assumption that
we study and model ensembles of identical cells is often completely untenable, and that cellular heterogeneity
is much greater than we normally assume. A feature of the post-genomic era is the recognition that many
more genes exist, and are expressed, than we had ever recognised, and that methods are being developed for
the quantitative assessment of this. Even if the individual flux-control coefficients of these gene products
were each very small their enormous number means that over-simplified analyses that ignore them are very
likely to lead to erroneous analyses of the true structure and organisation of a metabolic system or subsystem
of interest. Even the assumption that the components of moiety-conserved cycles do not change their total
concentrations during an experiment ignores what may be a large impact of this on the control structure. In
the absence of compartmentation or channelling, such cycles also serve to connect segments of metabolism
usually considered rather distant from each other. Simplified (‘top-down’) methods in which the system
structure is assumed a priori often will not work to give unequivocal answers for complex systems where the
combinatorial explosion of possible interactions requires much more sophisticated methods for system
identification. Dual-inhibitor titrations can reveal unsuspected direct kinetic interactions between individual
catalytic activities in appropriate cases, but these are cleanly apparent only in the regime of large changes
(such that experimental studies in which only small perturbations are revealed will cause (or allow) them to
be missed). No example exists in which one can extrapolate the conventional control coefficients to provide
reliable and quantitative predictions a priori about the behaviour of metabolic systems subjected to ‘large’
changes in parameters, although these may well be a valuable guide. A “Universal Method” proposed for
solving this suffers from technical problems such as being unable to manipulate fluxes at constant metabolite
concentrations. It is thus unclear if there are situations in which it could be applied in practice (especially if
there are substantial interactions between pathways, usually involving conserved moieties such as adenine
and pyridine nucleotide couples).

Metabolic control analysis and functional genomics share the same agenda in that they seek to relate
the presence and activities of individual genes and gene products to higher level processes of cellular
biochemistry and physiology. They can be considered to differ, however, in a philosophical sense since the
former is essentially deductive in character (and as practised, although some of us theorems were initially
captured by induction) while the latter is of necessity inductive, at least initially, because so many ORFs are
of unknown function. Inductive methods of machine learning applied to large-scale data from analyses of the
transcriptome, the proteome and the metabolome should prove of value in unravelling their properties.
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SNAPSHOTS OF SYSTEMS - METABOLIC CONTROL ANALYSIS AND BIOTECHNOLOGY IN
THE POST-GENOMIC ERA

“So the first requirement will be for a theoretical framework in which to embed all the detailed
knowledge we have accumulated, to allow us to compute outcomes of the complex interactions and
to start to understand the dynamics of the system. The second will be to make parallel
measurements of the behaviour of many components during the execution by the cell of an
integrated action in order to test whether the theory is right. Is there some other approach? If I knew
it I would be doing it, and not writing about the problem.”

Sydney Brenner, 1997, in Loose Ends publ. Current Biology, London, p.73

“But one thing is certain: to understand the whole you must look at the whole”

Kacser, H. (1986). On parts and wholes in metabolism. In The organization of cell metabolism (ed.
G. R. Welch and J. S. Clegg), pp. 327-337. Plenum Press, New York.

Introduction - Holism and reductionism, and MCA’s view of the operations of complex biochemical systems

Following its original formulation in 1973 (Heinrich & Rapoport, 1973; Heinrich & Rapoport, 1974;
Kacser & Burns, 1973) as a means of understanding the contribution of the individual steps of a biochemical
pathway to the values of flux and metabolite concentrations observed, some 13 years were to pass before we
first surveyed (Kell & Westerhoff, 1986a; Kell & Westerhoff, 1986b) how the formalism, tools and terms of
metabolic control analysis might usefully be applied to such systems in a biotechnological context. Since
another such period has now elapsed, it is timely to take stock of progress, to recognise that the take-up of
these methods among biotechnologists has been less than widespread, and (as requested by the Editor) to give
a personal and critical review of successes, failures, problems and prospects for the use of MCA in
biotechnology. In what follows, it is taken that the reader has a good working knowledge of the essential
principles of MCA, as summarised for instance in (Cornish-Bowden & Cárdenas, 1990; Fell, 1992; Fell,
1996; Heinrich & Schuster, 1996; Kell, van Dam & Westerhoff, 1989; Kell & Westerhoff, 1986a; Ovádi,
1995) and on the Internet at http://gepasi.dbs.aber.ac.uk/metab/mca_home.htm and in links therefrom. In
addition, we shall concentrate on unicellular systems, implicitly those most commonly exploited to make
products of biotechnological interest.

Perhaps the chief intellectual benefits of MCA have been the recognition (i) that in the steady state of
a (linear) pathway where all steps are proceeding at the same rate it is nevertheless appropriate to recognise
that each contributes quantitatively to the control of flux, in a manner which (for small or infinitesimal
changes) can be summed to unity, (ii) that the flux-control coefficients so determined are consequently
necessarily small, and (iii) that the activities of many steps must be changed simultaneously if fluxes are to be
enhanced substantially. MCA thus constituted a bridge between the rather reductionistic view then prevalent
(that we can understand a systems by looking at its component parts in isolation, without considering the
interactions between them - see (Kell & Welch, 1991; Mendes, Kell & Welch, 1995)) and the holistic one
(which in extremum - and in practice for many real, nonlinear, coherent, self-organising systems (Kell &
Hitchens, 1983) - would hold that the whole is so much more than the sum of its parts that it is essentially
pointless to consider the individual parts in isolation at all (Ho, 1998)).

Coupled to these aperçus has been the recognition that computer simulation can be a powerful tool in
solving the forward problem of metabolism: given the parameters of the system (usually the external
metabolite and effector concentrations and the kinetic properties of the enzymes) one can solve the relevant
differential equations and predict the time course and - if such exist - the steady-state values of flux and
metabolite concentrations. Software such as the program Gepasi produced in Aberystwyth by one of us
(Mendes, 1993; Mendes, 1997; Mendes & Kell, 1998b) has been designed for (and indeed by) biologists (and
successfully hides the mathematical details from the typical user), and given a simulation of a pathway it is
easy to extract the ‘MCA properties’ such as flux- and concentration-control coefficients by numerical
simulation of the effects of small changes in parameter values or analytically by differentiating the rate
equations to acquire the elasticities and inverting the elasticity matrix so obtained (Fell, 1996; Fell & Sauro,
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1985; Mendes & Kell, 1998a; Reder, 1988; Westerhoff & Kell, 1987). The metabolic control anaysis of a
system is thus normally ‘merely’ a snapshot of a typically rather restricted subset of the cellular biochemistry
actually taking place in time and space.

Assumptions in MCA, implicit and explicit.

With its concentration on small or infinitesimal changes, a domain where for (spatially) homogeneous
systems its analysis is both exact and complete, MCA necessarily represents an approximation to a more
complex reality, and this begs the question of how adequate this approximation is. In view of the recognition
that it is but a subset of a full simulation of whatever system it is desired to simulate, it is probably
unsupportable in the general case. Some other common assumptions of MCA (and its usual implementations)
which will be explored later are summarised in Table 1. They include the implicit view that all cells in a
suspension are the same, that it is possible to lump together large segments of metabolism without losing
important knowledge of the behaviour of the overall system (or at least the ability to discriminate the model
from other ‘competing’ models), and that there are ‘universal’ methods which can permit the rational and
practical optimisation of metabolic fluxes in systems of arbitrarily complex organisation.

All cells in an axenic culture are not the same; microbial differentiation

Whilst it is rather obvious that the phenotypes of all cells in a differentiated organism are not the
same (so much so that there is no such thing as a biochemically “normal” individual (Williams, 1956)), it is
implicit in a standard MCA analysis that they are; in other words we tend to treat the system under study as
an ensemble in the thermodynamic sense (Welch & Kell, 1986; Westerhoff & van Dam, 1987). In fact, the
essence of the problem (Kell et al., 1991) is that one is trying, typically, to correlate a rate of change (v) of a
certain variable with respect to the value of a certain parameter or property (p), but a correlation may be

expected between the mean values v
_

 and p
_

 only if v is kinetically of first order with respect to p. This is
completely unrealistic even for the axenic microbial cultures that are the focus of this review, and with the
availability of techniques such as flow cytometry (Davey & Kell, 1996; Kell et al., 1991; Shapiro, 1995) it
becomes possible to determine the heterogeneity of cellular properties directly. In one example of our own
(Kaprelyants & Kell, 1992), the extent to which chemostat-grown (and thus as near as one can get to
genuinely steady-state cultures of) Micrococcus luteus cells could take up the membrane energisation probe
rhodamine 123 varied by more than 1000-fold under conditions in which uptake was fully uncoupler-sensitive
and neither efflux pumps nor lack of membrane permeability were an issue. The unwanted consequence of
the failure to take culture heterogeneity into account (in terms of being led to erroneous conclusions about
causality and mechanism) reaches its apotheosis in the study of microbial viability/culturability (Kell et al.,
1998). Such an analysis ignoring heterogeneity will also tend to mask intercellular interactions (Fuqua, S.C.
& Greenberg, 1996; Kell, Kaprelyants & Grafen, 1995) such as those in which culturable cells secrete a
factor necessary for the resuscitation and growth of non-growing cells of the same organism (Kaprelyants &
Kell, 1993; Kaprelyants, Mukamolova & Kell, 1994; Kaprelyants et al., 1999; Mukamolova et al., 1998).
Note of course that in transitions to states such as dormancy and non-culturability we are here talking about
what MCA would regards as ‘large’ changes.

Not all organisms are the same....

So far as the typical textbook of biochemistry is concerned, cells are inevitably taken to be essentially
similar, with a great majority of their broad activities (and the ‘housekeeping’ genes which code for them)
being common throughout biology (at least at the level of prokaryote, eukaryote and archaean). Specific
features such as photsynthesis or nitrogen fixation are seen merely as occasional adjuncts. Our attempts to
simulate metabolism seem to rely implicitly on this, and it is perhaps assumed that models have a validity
beyond the sytem for which they are constructed. However, as we enter the post-genomic era, two major facts
have become evident; (i) many or most ORFs code for products of unknown function (Blattner et al., 1997;
Bork et al., 1998; Cole et al., 1998; Goffeau et al., 1996; Hinton, 1997; Oliver, 1996) with many being
conserved but most comparatively unique (Koonin & Galperin, 1997), and (ii) large-scale, genome-wide
comparisons of orthologous genes point up the prevalence of horizontal gene transfer (Forterre, 1997a;
Forterre, 1997b; Koonin et al., 1997; Rivera et al., 1998) and the consequent inadequacy of gradualist views
of evolution. (Note however that these analyses are to date restricted to the very small fraction (Amann,
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Ludwig & Schleifer, 1995) of cultured microbes, and that many close relative of existing taxa remain to be
cultured (Kaprelyants et al., 1999; Kell et al., 1998; McVeigh, Munro & Embley, 1996).) Consequently, we
now recognise that many more genes contribute to fitness than had previously been considered.

The major approaches to functional genomics currently being undertaken involve the systematic
knocking out of individual genes seriatim; where this is being done, e.g. in S. cerevisiae (Dujon, 1998; Oliver
& Baganz, 1998; Oliver et al., 1998; Teusink et al., 1998), it is found that (“only”) some 15% are ‘essential’,
and the question arises as to the role of the others - do they have a very high contribution to fitness under a
restricted set of conditions met only occasionally and never in the laboratory, or do they all provide a
marginal contribution to fitness? At least as judged by the fact that they are both transcribed under laboratory
conditions in rich media and can be shown to contribute to fitness in sensitive growth rate tests (Eisen et al.,
1998; Smith, Botstein & Brown, 1995; Smith et al., 1996; Thatcher, Shaw & Dickinson, 1998), one is led to
attach significance to the latter view. The mental picture which emerges then is that whilst there may be core
or major blocks of primary metabolism which are important, the contribution of the rest of the cellular
activities which are normally neglected is likely to be just as great or greater. (Note here the point - shown up
in some of the pioneering control analysis of mitochondrial respiration (Wanders et al., 1984) - that the
control structure, even for a given respiratory flux, depended enormously on the reaction (hexokinase vs
creatine kinase) that used the ATP.) When we come to intact microbial cells, we must recognise that although
these other interactions may be individually small they are collectively numerous (the totals of genes in E.
coli, baker’s yeast and Streptomyces coelicolor A3(2) are some 4000, 6000 and 8000 respectively), and while
fewer will contribute to a flux than to the overall fitness as correctly judged (Kell, 1987; Westerhoff,
Hellingwerf & van Dam, 1983) by growth rate, the emerging paradigm is of a much greater complexity and
sophistication of unicellular controls than we had heretofore recognised. One example of an important (and
probably excessive) simplification in common usage is that the total values of pyridine nucleotides in cellular
compartments are not of particular significance.

Moiety conservation and flux enhancement

One aspect of metabolism that has received comparatively little attention for the purposes of flux
maximisation is the existence of moiety-conserved cycles (Reich & Sel'kov, 1981). These are ubiquitous in
metabolism and a few of them (e.g. NAD/NADH and ATP/ADP) act as major links between various parts of
metabolism and impose constraints on the behaviour of the system. Whilst affecting the poise of these
cofactor couples has been shown to be useful in metabolic engineering (Lopez de Felipe et al., 1998) the flux
through a pathway, as seen within the MCA formalism (Hofmeyr, Kacser & van der Merwe, 1986), is also
controlled by the total amount of conserved moieties. We have observed by computer simulation that the flux
of several model pathways responds to the total amount of conserved moiety according to a bell-shaped
curve. This suggests that for such systems there is an optimal amount of cofactor for a given pathway flux
(and that compartmenation of pathways would be necessary to optimise them separately), otherwise the flux
will be somewhat limited by the availability of the conserved moiety. To manipulate the total amount of the
moiety we will thus need to target the pathways of their biosynthesis and degradation. Alternatively we could
as well manipulate the number and/or affinity of moiety binding sites which modulate the amount of
available (i.e. free) total moiety. Fig. 1 depicts such a bell-shaped relation between the total amount of the
moiety and the flux for a simple branched pathway in which other parameters are held constant. As nicely
shown by Rohwer, Olivier & Hofmeyr {?this volume?}, the addition of extra reactions to this scheme can
change the shape of these curves significantly, reinforcing the importance of recognising that the control
structure of simple systems may be changed dramatically when we embed them in more complex ones (such
as a cell). Indeed one must be very careful not to discard too much detail about the system when constructing
models. Others (Bakker, ?this volume?, Cornish-Bowden, ?this volume?) have presented model pathways in
which the constraints imposed by mass conservation (in the parasite Trypanosoma brucei) can indeed be used
to advantage in the design of drug therapies.
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Figure 1. Dependence of entry steady-state flux on the total amount of conserved moiety in a model branched
pathway. The pathway simulated is shown in the inset, the arrows representing the positive direction of flux.
All reactions are fully reversible, all kinetic and equilibrium constants are unity, [A] = 10, [C] = [D] = 1 such
that the overall disequilibrium ratio is 0.1 on both branches.

On modelling at the right scale

We have traditionally treated our systems relatively simply, due in part to the difficulty of measuring
everything. With the emergence of measurements of the the transcriptome (Bowtell, 1999; Brown & Botstein,
1999; Chu et al., 1998; de Saizieu et al., 1998; Debouck & Goodfellow, 1999; DeRisi, Iyer & Brown, 1997;
Duggan et al., 1999; Iyer et al., 1999; Lipshutz et al., 1999; Marton et al., 1998; Schena et al., 1996;
Spellman et al., 1998; Velculescu et al., 1997; Wodicka et al., 1997), the proteome (Anderson & Anderson,
1998; Blackstock & Weir, 1999; Boucherie et al., 1996; Cash, 1998; Garrels, 1996; Humphery-Smith,
Cordwell & Blackstock, 1997; Wang & Hewick, 1999; Wilkins et al., 1996; Wilkins et al., 1997) and the
metabolome (Oliver & Baganz, 1998; Oliver et al., 1998) we now have the ability to carry out hundreds of
measurements on macromolecular and metabolic variables simultaneously. The outcomes of the pioneering
studies are in many cases given in the form of lists of expression ratios for the hundreds of genes of interest,
which are hard to interpret - the appropriate scale for easy understanding is not a life-sized model (Eisen et
al., 1998). Treating related segments of metabolism as ‘blocks’ is one solution (Kacser, 1983; Kell et al.,
1989), sometimes referred to as top-down analysis (Brand, 1996; Brand, 1998; Brown, Hafner & Brand,
1990), and is being exploited in functional genomics as the FANCY method (Oliver & Baganz, 1998;
Teusink et al., 1998), but this approach fails to give a true account of the system of interest under a number of
circumstances, and in some cases may lead only to the system being underdetermined.

A critique of ‘top-down’ methods in which segments of metabolism are treated as one

In the early literature of MCA (Kacser & Burns, 1973) it was already proposed that one could group
sequential enzymes and treat them as one unit for the purposes of control analysis. This is possible due to the
summation theorem (Kacser & Burns, 1973) and the fact that the elasticity concept can be applied to groups
of reactions (Kacser, 1983). Brown et al. (Brown et al., 1990) took this one step further and formally
proposed the ‘top-down’ method for determining control coefficients. In this method one builds two groups of
metabolic steps around (upstream and downstream of) one single intermediate metabolite. Provided that this
central intermediate metabolite is the only kinetic link between the two groups of steps then one can
determine the elasticites of the two groups towards that metabolite with just two single-modulation
experiments. Group control coefficients can then be calculated using the connectivity and summation
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theorems (the assumption therefore being that no other interactions - such as feedback loops or metabolic
channelling (Agius & Sherratt, 1997; Mendes et al., 1995; Ovádi, 1995) - exist between the two groups). The
control coefficients thus obtained for the two groups of steps could reveal which of them has more control,
e.g. as in (Simpson, Shimizu & Stephanopoulos, 1998; Stephanopoulos & Simpson, 1997), where knowledge
of this can allow one to vary the control structure of a pathway to improve fluxes of biotechnological interest
(Simpson, Colon & Stephanopoulos, 1995).

An attractive application of this method would be to apply it repeatedly by subdividing each group
into smaller groups. This would result in the determination of the complete control structure of the pathway,
each time with more resolution (hence the ‘top-down’ name). Although elegant in conception, this method
may be impossible to apply with impunity in practice, due to the requirement of grouping steps such that
there is only one kinetic link (via the intermediate metabolite) between them. Ainscow and Brand have
recently extended the method (Ainscow & Brand, 1995) such that it can be applied to the case when the
groups of steps are connected by more than one metabolite. Nevertheless, for the method to work as intended
one must be absolutely sure that all the kinetic links between the groups of steps are known and included in
the analysis explicitly (or are unaffected by the modulations performed (Ainscow & Brand, 1998a)). Thus,
one can never be sure that the coefficients determined by this method are correct as there could be extra
kinetic interactions between the two groups of steps other than the ones taken into consideration. The
classical method of direct determination of control coefficients by perturbation of enzyme activities is
immune from this problem and so could (and should) be used to confirm the results with the top-down
method - but (while this may be hard if the number of reactions in individual blocks is large) this rather
defeats at least some of the purpose of using it in the first place! (Recently, Kholodenko and colleagues have
presented a combination of top-down MCA and the perturbation method which they refer to as ‘Metabolic
Design Analysis’ (Kholodenko et al., 1998).) But there are extra problems when one wants to use this method
in general: (i) there are several known (and certainly many more unknown) feedback loops in metabolism and
(ii) many reactions include cosubstrates such as NAD/NADH or ATP/ADP which form kinetic links between
steps normally considered distant. Both these reduce the number of metabolites that can be effectively used in
the top-down approach to separate groups of steps, and as such the determination of whether the particular
blocks chosen for the simplification are the most appropriate ones should be seen as a system identification or
inverse (Mendes & Kell, 1996) problem. As such the method is not amenable, in general, to a true ‘top-down’
approach of measuring all control coefficients. The problems are greatly compounded by the propagation of
errors and bias contingent on the measurement of elasticities (Schlosser, Holcomb & Bailey, 1993; Thomas &
Fell, 1995) and control coefficients (Ehlde & Zacchi, 1996; Small, 1993), and such errors may not be
normally distributed (Ainscow & Brand, 1998b). We therefore find that the (correct) application of the top-
down method to large, complex biosystems may be rather limited in practice, and above all dangerous if
results are not validated by an independent method. Indeed, the effect of error propagation can be such that it
is almost impossible to falsify a chosen model (in the sense of discriminating it from a better model of
metabolic flux and its control) within the limits of the experimental precision attainable, especially when the
perturbations are held small (within the range in which elasticities are unchanged).

Note that this is not a critique of simplification per se, since in many cases the intrinsic dimensonality
of the major blocks of a complex system of interest may well be comparatively small and the level of
understanding that we require, and indeed good precision in our models (Broadhurst et al., 1997; Kell &
Sonnleitner, 1995; Shaw et al., 1997), is more easily attained with small models than with large ones. But this
is something that we find out afterwards, when measurements of many variables have been made and
evaluated (Eisen et al., 1998; Tamayo et al., 1999), not something to build in beforehand! Hence our stress
that these types of problem should first be seen as problems of system identification.

Proton-coupled electron transport-linked phosphorylation - an example of a chanelled system, assessed using
dual-inhibitor titrations

A consequence of lumping reactions together in the macroscopic way typified by the top-down
approach is that it is assumed that their intermediates are delocalised. One of the major areas of interest of
this laboratory has been in the problem of channelling, most recently in terms of intermediary metabolites
(Mendes et al., 1995; Mendes, Kell & Westerhoff, 1992; Mendes, Kell & Westerhoff, 1996) but more
classically in terms of the problem of whether the energetic intermediates of electron transport-linked
phosphorylation are delocalised or not (Kell, 1979; Kell, 1988; Kell & Westerhoff, 1990). The basic idea is
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as follows. In the classical chemiosmotic coupling model (Mitchell, 1966; Nicholls & Ferguson, 1992),
electron transport generates a transmembrane proton gradient which, due to the rapid diffusion rates of
protons in aqueous media, leads to a delocalised protonmotive force ∆p consisting of a membrane potential
∆ψ and a pH gradient z∆pH which is consequently available to all ATP synthase enzymes in the organelle in
whose membrane the pmf-generators are embedded. Uncouplers act by dissipating the pmf as heat. (In
addition, the pmf can in principle feed back to inhibit electron transport via ‘slip’ or be dissipated ‘naturally’
to heat via a pmf-dependent ‘leak slip’ which does not differ formally from the imperfect coupling naturally
present.) This is depicted in Fig 2.

∆pETC

Jp

heat

uncoupler

−

+

Figure 2. The classical chemiosmotic coupling paradigm for electron transport-linked phosphorylation

The consequence is that the rate of phosphylation Jp should depend only and monotonically on ∆p,
typically (when compared with the data that may be obtained experimentally in acid-bath-type experiments)
according to a sigmoidal function of the pmf and with a threshold of ca 150 mV in which no phosphorulation
occurs, i.e.

Jp = [ATP-synthase] . f(∆p) (Eq. 1)

In a typical dual-inhibitor titration using an uncoupler and an ATP synthase inhibitor, we first study
the effect of uncoupler on Jp, with results similar to those in Fig 3 (open circles). We then inhibit half of the
ATP synthases using a tight-binding (or better covalent) inhibitor such that Jp falls to one half of its original
value (Fig 3). The effect of the uncoupler titration that must be predicted from the delocalised chemiosmotic
type of uncoupling model is similar to that given by the closed triangles in Fig 3, since the pmf canot be made
smaller by this treatment and it is probably slightly larger due to the smaller drain on it: the shape of the curve
is the same but the rate at any level of uncoupler (and putatively pmf) is just one half of the control.
Similarly, the amount of uncoupler needed to achieve full uncoupling is the same. Unfortunately for this
view, the experimental curve is quite different: lowering the initial Jp to one-half of its original value with the
ATP synthase inhibitor decreases by one half the amunt of uncoupler necessary to achieve full uncoupling.
No delocalised coupling model can account for this type of behaviour in uncoupler/energy transfer inhibitor
titrations (Herweijer, Berden & Slater, 1986; Hitchens & Kell, 1983a; Hitchens & Kell, 1983b; Kell, 1988;
Kell, 1992; Westerhoff & Kell, 1988), and indeed none has made a serious attempt to do so. Note, however
(from Fig 3), that if we had carried out the experiment in the limit of small changes -not allowing the flux to
change by more than say 5-10% - and included error bars as well, we might easily have allowed ourselves the
conclusion that the titration curve (normalised to the flux in the absence of uncoupler) had been unchanged
by the presence of the energy transfer inhibitor (and thus consistent with the delocalised model). Only the
extension to large changes gave a clear an unequivocal discrimination between the competing models, and
the conclusion is that if we wish to test our models to destruction, rather than simply seeking to parametrise
those we believe to be true, we must carry out large changes in the external parameters.
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Fig 3. Theoretical and experimental traces from dual uncoupler/energy transfer inhibitor titrations.

Between the Bud and the Rose: Large Changes and Metabolic Control Analysis

As is well-known, and is mentioned above, the theorems of MCA work only for parameter changes
which are small (and in principle infinitesimal). This said, we should be reminded of the classical paper
(Kacser & Burns, 1981) illustrating that we should expect genetic dominance to be rare (as is observed) due
to the fact that only rarely (e.g. as in (Agius & Peak, 1997; Agius et al., 1996)) is an individual flux-control
coefficient sufficiently high to give a major change in phenotype when the amount of active enzyme
decreases to 50% of the wild type. The necessary corollary of this is exactly that enzymes with low flux-
control coefficients at wild-type levels should also be expected to have low flux-control coefficients at the
lower enzymes concentrations, i.e. following large changes!  Notwithstanding, it is to be assumed (and see
below) that substantial increases in flux towards metabolites of biotechnological interest do require large
changes in at least some of the parameters such as enzyme concentrations (and the same is true for the
phenotypic manifestation of disease states when a threshold loss in enzymatic function is induced (Durrieu et
al., 1997; Letellier et al., 1998; Mazat et al., 1997; Mazat et al., 1998)). Small and Kacser tackled the
problem of exactly how great an inaccuracy in estimating control coefficients via large changes in parameters
might be involved. They first introduced the idea of a deviation index as the relative change in a metabolic
variable such as a flux to a large change in a parameter (Small & Kacser, 1993a), and showed that for
unbranched chains of enzymes with linear kinetics there was a direct relationship between deviation indices
and flux-control coefficients. They also pointed out that combined changes of the activity of individual
enzymes will produce a more-than-additive response (and see below). The behaviour of branched and non-
linear pathways was more complex (Small & Kacser, 1993b), and though it was stated that many metabolic
systems behave in practice as quasi-linear systems, the differences between the actual and predicted
amplification factors were often quite great. Indeed, a detailed study by Schuster & Holzhütter (Schuster &
Holzhutter, 1995) of erythrocyte properties resulting from large-scale alterations in enzymatic activities
concluded that no existing extrapolation method using the conventional control coefficients was able to
provide reliable predictions.

The not-very Universal Method

It is worth noting that, as proven in the summation theorem of Metabolic Control Analysis (e.g.
(Cornish-Bowden, Hofmeyr & Cárdenas, 1995; Fell, 1996; Heinrich & Rapoport, 1974; Heinrich & Schuster,
1996; Kacser & Burns, 1973; Kell & Westerhoff, 1986a)), changes in the concentrations of individual
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enzymes tend to have little effect on particular metabolic fluxes (nor, indeed, on the gross phenotype under
most laboratory conditions (Thatcher et al., 1998)). However, in part because of the so-called connectivities
of MCA, changes in individual enzyme concentrations can and do have substantial effects on metabolite
concentrations, even when the changes in flux are negligible (Mendes et al., 1995; Mendes et al., 1996). It is
therefore very reasonable that attempts to increase metabolic fluxes by increasing the concentrations of
metabolic enzymes may lead to substantial increases in metabolite levels, and that these may either prove
cytotoxic or at least necessarily lead to the diversion of flux to pathways other than that desired. It would
therefore be desirable (if it were indeed possible) to seek to modulate fluxes by changing enzyme activities in
a manner that managed to preserve the steady-state levels of metabolites. Thus Kacser & Acerenza (Kacser &
Acerenza, 1993) introduced the so-called Universal Method that purported to have this effect and to be
‘entirely general’. In the Universal Method, it is recognised that in any pathway leading to the output of
interest, the activities of whose enzymes one would wish to increase, there will be branch points leading to
other parts of metabolism which should not be perturbed. Because of the conservation of mass, the fluxes
down each branch point following a change in flux are related both to the changes in flux before and after the
branchpoint in the pathway of interest and to the ratio r of enzyme activities before and after the change in
flux. For unimolecular reactions, there is a unique value of r for each such reaction at which the fluxes down
the branches remain unchanged.

However, the Universal Method seems to be inapplicable in practice in real, large systems, due to its
requirement for maintaining constant metabolite concentrations. This is basically impossible to achieve:
while for some cases (branch points) a small change in the metabolite concentration may not affect the overall
outcome significantly, in general one can never be sure this will not be the case (and the number of
interactions will greatly exceed the number of fluxes), and to date we do not know of any experimental
attempt to exploit the method in practice.

Multi-site modulation

Whilst the Universal Method probably cannnot be made to work as advertised, it does draw attention
to the need - whatever the effects on the rest of metabolism - for multisite modulations to be performed if
there is to be a substantial increase in flux, and this is now widely recognised (Cornish-Bowden, 1995;
Cornish-Bowden et al., 1995; Fell, 1998; Fell & Thomas, 1995; Niederberger et al., 1992; Thomas & Fell,
1998). This does not contradict any of the insights of MCA, and in fact it can be shown both by analysis and
simulation (Small & Kacser, 1993a; Small & Kacser, 1993b) that this result is to be expected: as soon as the
step with higher control becomes faster (as happens with overexpression) the control shifts to other steps in
the pathway. It is now evident that for any strategy to be successful in increasing the flux of a pathway
substantially there is a requirement for the manipulation of several steps. This was clearly demonstrated
experimentally by Niederberger and colleagues in their classical study (Niederberger et al., 1992) and has
been discussed at some length by Fell and Thomas (Fell, 1998; Fell & Thomas, 1995; Thomas & Fell, 1998).
In a recent conference it was evident that the metabolic engineering community (both research and industry)
is converging to this conclusion, and it is now largely accepted that to increase flux one should manipulate at
least two metabolic steps (Mendes & Kell, 1997). Removing the fluxes to unproductive pathways is likely to
be much more significant for mature fermentations than seeking solely to stimulate the flux through the
desired one per se (Holms, 1996; Holms, Hamilton & Mousdale, 1991).

Active learning and a post-Baconian approach to science in the post-genomic era

The commonest conventional method of experimental science, generally referred to as ‘the scientific
method’, involves the preparation of an experimental system in a specified state and the manipulation of,
preferably, a single parameter, whereupon one observes the time-evolution of the values of one or more
variables compared to that of a control in which the ‘triggering’ manipulation is not performed. The
parameter may then be moved to different set points. Each of those variables might also be controlled at a
fixed level, i.e. as a parameter, and comparable experiments performed. If the system is comparatively simple
and well behaved (e.g. asymptotically stable, and not chaotic as in (Davey et al., 1996)) and the problem well-
posed it is usually possible to determine the form and parameterisation of the system equations by
mathematical fitting procedures (Mendes & Kell, 1998a), leading to what is usually considered an
understanding of the system. However, this is true only for simple systems, and one may put forward the
views that (i) this kind of deductive reasoning is that usually practised in the MCA community (though there
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is evidence that some of the theorems of MCA were originally induced from the results of simulations on an
anlogue computer), and (ii) the functional genomics agenda (Kell, 1998) is likely to be much better attacked
under current conditions via an inductive type of approach.

Indeed, we consider that complex systems cannot be treated to best advantage (Westerhoff & Kell,
1996) in this more classical, deductive way. First of all, there are far too many variables and potential
parameters for an exhaustive set of experiments to be performed, and those parameter sets producing
‘desirable’ outcomes may be few and far between. (For n parameters which might adopt m values the number
of combinations is obviously mn, and even if m is only a miserable 2 for n=100, 2n ~ 1031, and the lifetime of
the Universe is ‘only’ some 1017s (Barrow & Silk, 1995).) The inevitable conclusion for the study of complex
systems is that we we must vary many (or at least several) parameters at a time (over a large range - see
above) and use the methods of multivariate statistics and machine learning to deconvolute the data so
obtained to extract those features most relevant to the operation of the system. Then, because of the high
dimensionality of the system and problem, we must iterate this process further (somewhat in the way in which
we traditionally need to provide rounds of mutation and selection in fermentation development programmes
(Crueger & Crueger, 1989)). Indeed, our own approach in recent years to the understanding of complex
cellular systems has been to exploit spectroscopic methods such as pyrolysis mass spectrometry (Broadhurst
et al., 1997; Gilbert et al., 1997; Goodacre & Kell, 1996; Goodacre, Kell & Bianchi, 1993; Goodacre, Neal &
Kell, 1994a; Goodacre, Neal & Kell, 1996a; Goodacre et al., 1994b; Taylor et al., 1998), FT-IR (Goodacre,
Rooney & Kell, 1998a; Goodacre et al., 1996b; Oliver et al., 1998; Winson et al., 1997; Winson et al., 1998),
and dispersive Raman (Goodacre et al., 1998b) in which hundreds of variables are measured simultaneously
and to couple these measurements with advanced chemometric and related analyses based on the methods of
artificial intelligence and evolutionary computing (Bäck, Fogel & Michalewicz, 1997; Rich & Knight, 1991;
Weiss & Kulikowski , 1991).

Although the above described the overall structure of a single experiment, scientific research of
course proceeds by a process of experimental hypothesis testing (e.g. (Oldroyd, 1986)), and it is appropriate
to end by outlining one way of computer-assisted knowledge acquisition with which we think important
progress might be made. This process is an active approach, which in fact differs markedly from the passive
nature of most ‘scientific discovery’ systems (Langley et al., 1987), which either receive data all at once in a
single batch, or have no choice over the next example (Raju & Cooney, 1998), and suffer from the problem
that most of the observables have little bearing on the overall outcome (Blum & Langley, 1997) and for the
purposes of this analysis amount to ‘noise’. The study of systems that can choose the next experiment is
known as ‘active learning’. There are two computational tasks in active learning: formation of hypotheses
that are consistent with known background knowledge and experimental results, and selection of the best
experiment (or set of experiments) to discriminate between hypotheses. It should be noted that experiment
selection in active learning is not to be confused with the traditional statistical study of experimental design,
where the difference is between deciding which question to ask next (active learning) versus ensuring that a
set of experiments can answer a question (traditional experimental design).

To conclude, it seems reasonable that active learning approaches can lead us efficiently to means for
asking and answering the right kinds of question at the right kind of complexity in the post-genomic era.
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Table 1. Some explicit and implicit assumptions of modern MCA, and some inadequacies of its usual
implementations in a biotechnological context.

ASSUMPTION/MISAPPLICATION COMMENTS/CONSEQUENCES

All cells are the same Heterogeneity is very much greater than normally
assumed, and this can be determined experimentally
using single-cell analyses

Simple models are adequate Genome sequencing has uncovered the fact that we
know the function of fewer than half of their genes,
and there is evidence that almost all contribute to
fitness even in laboratory conditions. Much more of
metabolism is relevant to a flux than is normally
recognised.

The Universal Method permits a rational approach to
the optimisation of flux in any metabolic system

It doesn’t work if (i) the end-product feeds back to
inhibit its own synthesis, whetehr kinetically or by
mass action, and/or (ii) there are interactions between
pathway branches involving moiety-conserved
cycles.

The coefficients of MCA determined using large
changes are not too badly different from those
obtained via very small parameter changes

Nonlinearities, unknown interactions and the overall
complexity of biological systems mean that deviation
indices are reasonably small only in simple systems.
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