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Comparative evaluation of software
for deconvolution of metabolomics
data based on GC-TOF-MS
Hongmei Lu, Warwick B. Dunn, Hailin Shen, Douglas B. Kell, Yizeng Liang

Traditional options available for deconvolution of data from gas chromatography-mass spectrometry (GC-MS) experiments have

mostly been confined to semi-automated methods, which cannot compete with high-throughput and rapid analysis in metabo-

lomics. In the present study, data sets acquired using GC with time-of-flight MS (GC-TOF-MS) were processed using three

different deconvolution software packages (LECO ChromaTOF, AMDIS and SpectralWorks AnalyzerPro).

We paid attention to the extent of detection, identification and agreement of qualitative results, and took interest in the

flexibility and the productivity of these programs in their application. We made comparisons using data from the analysis of a

test-mixture solution of 36 endogenous metabolites with a wide range of relative concentration ratios.

We detected differences in the number of components identified and the accuracy of deconvolution. Using the AMDIS Search

program, the resulting mass spectra after deconvolution were searched against the author-constructed retention index/mass

spectral libraries containing both the mass spectra and the retention indices of derivatives of a set of metabolites. We based

analyte identifications on both retention indices and spectral similarity.

The results showed that there were large differences in the numbers of components identified and the qualitative results from

the three programs. AMDIS and ChromaTOF produced a large number of false positives, while AnalyzerPro produced some false

negatives. We found that, in these three software packages, component width is the most important parameter for predicting the

accuracy of the deconvoluted result.
ª 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Metabolomics is an emergent scientific
discipline which is applied to many differ-
ent applications. It is becoming a tool in
the functional annotation of genes and
enzymes and in the comprehensive
understanding of cellular and organism-
specific responses to biological, environ-
mental and drug-related perturbations.
Metabolomics has been defined as the
unbiased identification and quantification
of all metabolites in a biological system
[1–3]. Metabolomics provides a number of
advantages when compared to studies of
the transciptome and proteome [4–7].

The number of metabolites present in an
organism is large. Saccharomyces cerevisiae
contains approximately 600 metabolites
[8], the plant kingdom has an estimated
200,000 primary and secondary metabo-
lites [2] and the human metabolome
Elsevier Ltd. All rights reserved. doi:10.1016/j.trac.2007.11.004Elsevier Ltd. All rights reserved. doi:10.1016/j.trac.2007.11.004
contains approximately 1500 metabolites
[9], excluding lipids and exogenous
metabolites derived from food or pharma-
ceuticals. Moreover, differences in metab-
olite concentrations are observed to be
greater than 5000-fold, although these
differences are not proportional to the
biological relevance of these metabolites
[10]. Global analysis of so many metabo-
lites with divergent physical properties
and large dynamic concentration ranges is
a great, and currently unresolvable, chal-
lenge to analytical techniques, data pro-
cessing and data interpretation. As an
alternative, metabolic profiling is com-
monly applied to detect a wide array of
metabolites, related by chemical properties
or metabolite class, in any given sample.

There are a number of analytical tools
used to analyze these highly complex mix-
tures [2–6,11]. These include gas chroma-
tography-mass spectrometry (GC-MS),
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liquid chromatography-mass spectrometry (LC-MS), cap-
illary electrophoresis-mass spectrometry (CE-MS), Fourier
transform infrared spectroscopy (FT-IR) and nuclear
magnetic resonance spectroscopy (NMR). Some advan-
tages of GC-MS include stable retention time, robust pro-
tocols for sample preparation and instrument operation
and the ability to identify metabolites by assessing reten-
tion time/index and electron-impact mass spectra. A rel-
atively broad coverage of compound classes can be
detected with good sensitivity, after appropriate instru-
ment optimization [12,13], including organic and amino
acids, sugars, sugar alcohols, phosphorylated intermedi-
ates and lipophilic compounds. GC-MS can be regarded as
the gold standard for metabolic profiling [14].

In GC-MS, sample components are expected to exit the
chromatography column and be introduced into the MS
one-by-one. However, compounds often travel through
the column with similar speeds, so a large number of the
compounds coelute or are not completely resolved chro-
matographically. To obtain accurate pure-mass spectra of
a specific compound in coeluted peaks in order to identify
and quantify compounds correctly in metabolomics,
mathematical multivariate curve-resolution procedures,
(often named deconvolution) need to be applied. Multi-
variate curve-resolution methods that have been devel-
oped include iterative [15,16], non-iterative [17,18], and
hybrid approaches [19,20]. They have been used to
clarify chromatographic and spectral profiles from over-
lapping chromatographic peaks obtained using various
types of hyphenated chromatography systems [21]. The
main disadvantage of the methods developed is that they
are very difficult to automate for different complex bios-
amples that have specific analytical needs.

Metabolomics generates floods of data every day [22].
It is clear that deconvoluting metabolomics data with
conventional manual methods is too time-consuming
and tedious, and requires skilled individuals. However,
the increasing capability of chromatography-MS sys-
tems, particularly improved signal-to-noise (S/N) ratios
and higher peak capacity, means that the analyst
expects to be able to analyze in a single analysis hun-
dreds of metabolites whose chemical nature is unknown
(60–90% of the total in a complex matrix) [23]. The
extremely complex samples inevitably lead to differences
in peak shapes, retention-time drift, and variation in the
response for different compounds, which make decon-
volution more complex and difficult.

As a result, deconvolution is a major bottleneck of
metabolomics. The development of metabolomics
requires specialized, automated software or tools for
deconvolution after high-throughput instrumental
analysis. In recent years, tools have been developed to
address the problems of co-eluting interferences, and to
identify accurately as many peaks as possible. Instru-
ment manufacturers (e.g., LECO, Waters, Shimadzu and
Agilent Technologies) and third-party suppliers of data-
216 http://www.elsevier.com/locate/trac
analysis software (e.g., AMDIS, AnalyzerPro and XCMS)
have provided deconvolution functions in software
packages.

We wondered whether these software packages are
capable of deconvoluting metabolomics data and whe-
ther their results are credible and reliable. To our
knowledge, there has been no broad comparison of these
software packages. For this article, to evaluate and
compare software packages in an applied situation, we
prepared a standard data set with a specifically chosen
standard mixture in known proportions. The data were
processed using three separate programs – AMDIS
(NIST), ChromaTOF (LECO) and AnalyzerPro (Spectral-
works) – with GC-MS data from a GC-TOF-MS instru-
ment (LECO). ChromaTOF software was obtained as part
of the LECO Pegasus III TOF-MS instrument that we
bought. AMDIS was downloaded free of charge. Ana-
lyzerPro was a one-month free demo from Spectralworks
Ltd, UK. No other software packages were used because
they were unavailable or our knowledge was limited. In
view of our on-going metabolomics studies, we investi-
gated these three data-deconvolution-software packages
to increase our options for data analysis.
2. Materials and methods

2.1. Preparation of analytical metabolite solutions
Some 36 single-metabolite solutions with an approxi-
mate concentration of 20 mM were prepared in 50:50
water:acetonitrile (Metabolite Stock Solutions 1–36) (as
described in Table 1). The metabolites are typical
endogenous components and include common metabo-
lites (e.g., amino acids, organic acids, sugars, sugar
alcohols and aromatic amines). Combinations of these
metabolite solutions were prepared for analysis. Metab-
olite Stock Solutions 1–36 were diluted and mixed to
produce Solutions 1–4, with concentrations of 500 lM,
350 lM, 150 lM and 50 lM, respectively, containing all
36 metabolites. Solution 5 was prepared with variations
in metabolite concentrations, 50% of the metabolites
were at a concentration 10 times greater than the other
50% (i.e. 50 lM and 500 lM, respectively). Solutions 1–
5 were lyophilised (HETO VR MAXI vacuum centrifuge
attached to a HETO CT/DW 60E cooling trap; Thermo
Life Sciences, Basingstoke, UK) before chemical deriva-
tization and analysis.

2.2. GC-TOF-MS
Two-stage chemical derivatization was performed prior
to GC-TOF-MS analysis. First, oximation was performed
by heating the samples with O-methylhydroxylamine
(50 lL; 20 mg/ml in pyridine; 80 min; 40�C); then, the
samples were trimethylsilylated with MSTFA (N-acetyl-
N-(trimethylsilyl)-trifluoroacetamide; 50 lL; 80 min;
40�C).



Table 1. List of metabolites

Pyruvic acid Valine
Leucine Sorbic acid
Proline Threonine
Fumaric acid Nicotinic acid
Uracil 4-hydroxyproline
Aspartic acid 2-hydroxyglutaric acid
Oxaloacetic acid Arabinose
Ribitol Rhamnose
2-oxoglutaric acid Asparagine
Fructose Trans-aconitic acid
Glucose Citric acid
Glucuronic acid Gluconic acid
Quinaldic acid N-acetylglucosamine
Glucose-6-phosphate Indole-3-acetic acid
Serotonin 5-hydroxytryptophan
Glutaric acid Citramalic acid
Myo-inositol Ascorbic acid
Tryptamine Sucrose
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Derivatized samples were analyzed by GC-TOF-MS
using a Agilent 6890 N GC instrument (Stockport, UK)
coupled to a LECO Pegasus III MS instrument (St Joseph,
USA), controlled with ChromaTOF software v2.15.
Sample analysis was randomized and three machine
replicates were performed for each sample.

The GC instrument was operated in split mode using
helium as carrier gas in constant-flow mode, with an
initial GC temperature of 70�C. A DB-50 GC column
(Supelco, Gillingham, UK; 30 m · 0.25 mm · 0.25 lm
film thickness) was used. The transfer-line and source
temperatures were 250�C and 230�C, respectively. The
mass range used was 30–600 Da with a detector voltage
of 1700V. Each sample was analyzed using two sets of
instrument conditions, A and B – A was as previously
described [12] and B was identical to A with the
exception of the oven-temperature program, which was
increased from 28�C/min in A to 70�C/min in B. All data
were exported as netCDF files for further data analysis.
The A data were mainly to be used for manual decon-
volution to establish the judgment rule, while the B data
were to be used for evaluating the software packages.

2.3. Data processing
In this study, we used an Acer computer with two
Pentium (R) D 3.0 GHz processors and 2 GB RAM for
Windows-based applications. The deconvolution-soft-
ware packages were operated with Windows XP Pro-
fessional (Version 2002, Service pack 2).

2.3.1. AMDIS. The Automated Mass Spectral Decon-
volution and Identification System (AMDIS, Version
2.64, NIST, US) extracts spectra for individual compo-
nents in a GC-MS data file and identifies compounds by
matching these spectra against specialized libraries or
the NIST 02 library. It was developed at NIST with
support from the US Department of Defense and is freely
available.
We subjected GC-MS data files to analysis by AMDIS in
simple mode. Data deconvolution was performed with
the following specifications:
� component width = 12;
� adjacent peak subtraction = 1;
� resolution = medium;
� sensitivity = medium; and,
� shape requirements = medium.

2.3.2. ChromaTOF. ChromaTOF software (version
2.15) was available as part of the LECO Pegasus III TOF-
MS instrument. In the ChromaTOF software, the settings
of parameters derived from our previous study and
experience [12]:
� the S/N threshold was set at 10;
� baseline offset at 1.0;
� data points for averaging at 3; and,
� peak width at 2.5.

2.3.3. AnalyzerPro. AnalyzerPro demo (Version
2.0.0.1) is a vendor-independent software, which is
provided by Spectralworks Ltd, UK. AnalyzerPro can
analyze a GC-MS file using qualitative processing to
detect components using proprietary algorithms. The
spectra for the components found are automatically
enhanced, eliminating the need for manual background
subtraction or further spectral refinement algorithms.
AnalyzerPro can import a number of vendors� file for-
mats (e.g., ABI/MDS Sciex, Agilent, JCamp, NetCDF,
MassLab, and Thermo Electron) and convert them to
.swx files that are optimized for data analysis. We per-
formed deconvolution with the following specifications
suggested by the software company:
� minimum masses = 6;
� area threshold = 500;
� height threshold = 200;
� width threshold = 0.02 min;
� resolution = low;
� scan window = 2;
� S/N = 5; and,
� smoothing = 1.

2.3.4. NIST MS search software. NIST MS Spectral
Search Program (version 2.0 a), distributed by the
Standard Reference Data Program of NIST, was used to
compare software-deconvoluted MS result files with the
standard mass spectra in our own reference libraries,
University of Manchester (UoM) Yeast GC-TOF-MS
Library containing both retention indexes of derivatives
of a set of metabolites (as determined under our condi-
tions) and the corresponding mass spectra. UoM Yeast
GC-TOF-MS Library includes 254 mass spectra of the
oxime-TMS derivatives of metabolites. The quality of
data deconvolution is described by the number of the
components detected and the accuracy of the deconvo-
luted mass spectrum. The match factor is a weighted
http://www.elsevier.com/locate/trac 217
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count describing how well the deconvoluted spectrum
matches the theoretical spectrum of a metabolite can-
didate in the library. Library searching uses the normal
identity-search mode. The match factor of the full mass
spectrum for the deconvoluted components with the
standard mass spectrum in reference libraries was taken
as the first identification criterion that provided an
indication of the reliability of assignment. The setting of
the match-factor threshold was based on the statistical
results of the standard mass spectra in our own reference
libraries and the deconvoluted spectra. When the match
factor was 850, 90% of the qualitative results of the
deconvoluted spectra from manual methods were accu-
rate. This value should be considered acceptable.

In the following study, we set the threshold of the
match factor at 850. The greater the number of mass
spectra with match factor greater than 850, the closer
the deconvoluted result is to the true result.

The retention index was taken as a second criterion.
To determine the Kovats index, we used n-alkanes (n-
dodecane, n-pentadecane, n-nonadecane and n-doco-
sane).
3. Results

3.1. Samples with different combinations of
concentration
It has been noted that the method of derivatization can
produce more than one derivative for a single metabolite
[24,25], so the number of components detected does not
equal the number of metabolites before derivatization. As
we had no criteria on how many components exist in
solution after derivatization, in an attempt to obtain a
‘‘true’’ measure of the number of metabolite derivatives
in the chromatogram, we integrated the judgment of an
experienced GC-MS analyst with the result from three
data sets of Solution 1 analyzed with a slow temperature
ramp (28�C) with our manual methods HELP (Heuristic
Evolving Latent Projections) and SCC (Spectral Correla-
tive Chromatography) [17,18,26,27], which had proved
to be very useful for analyzing and comparing complex
hyphenated chromatography data, to obtain a relatively
reliable number of components in samples for the fol-
lowing evaluation of the software packages. With those
methods, 51 metabolite derivatives were validated in
solutions and were used as the standard for the following
evaluation work.

We evaluated the comparative performance of the
software packages in the analytical data with two
metabolite sample solutions covering a range of con-
centrations (see Section 2.1). The deconvolution
parameter settings are given in Section 2.3. An exam-
ple of the deconvoluted results from the three software
packages, employing the retention time window 378–
218 http://www.elsevier.com/locate/trac
388s of Solution 1, is shown in Fig. 1a. The concen-
tration of metabolites is 500 lM. This retention-time
window included four metabolite derivatives (uracil,
nicotinic acid, glutaric acid and citramalic acid) and 1
n-alkane (n-pentadecane). The deconvoluted results
showed that many extraneous, aberrant components
from system noise at the same fragment were auto-
matically deconvoluted, although 4 standards and 1
n-alkane are deconvoluted by all the software packages,
as expected.

The kind of error that the data encountered is par-
ticularly evident in the result from AMDIS. One single
peak was deconvoluted as multiple components. AMDIS
deconvoluted 48 components out of the 4 metabolite
derivatives (uracil, nicotinic acid, glutaric acid and
citramalic acid) and 1 n-alkane (n-pentadecane). By
comparison, AnalyzerPro produced the least false posi-
tives (i.e. only deconvoluted 8 components out of 4
metabolite derivatives) and 1 n-alkane with correct
deconvoluted mass spectra (Fig. 1a).

The complete data set was then analyzed using the
three software packages and the deconvoluted and
match results acquired are listed in Table 2.

From the results in Table 2, we found that:
� all metabolite derivatives in solutions with different

concentration were detected by AMDIS;
� 8 metabolite derivatives were not detected by

ChromaTOF when the concentration decreased to
50 lM; and,

� 2–38 metabolite derivatives were not detected by
AnalyzerPro in solutions with four different concen-
trations.
However, the number of the deconvoluted compo-

nents for sample solutions with different concentra-
tions using AMDIS reached 522–720 (i.e. AMDIS
deconvoluted several hundred components, including
the 51 true components). The number is far greater
than using ChromaTOF (78–173) and AnalyzerPro
(14–67). This demonstrated that AMDIS produced
more false positives than the other two software
packages. It introduced another tough question that
we have no way to answer – ‘‘How does the analyst
pick out the correct deconvoluted spectra from those
results without previous knowledge, even though the
spectra of metabolites are detected and deconvoluted
correctly?’’

AnalyzerPro and ChromaTOF provided the least false
positives and therefore made it easier to define true
metabolites, as the numbers of components detected by
those two software packages were closer to the true
number of metabolite derivatives in solution. However,
some metabolites were not detected, and that meant
they produced false negatives. So far, none of these
three software packages has provided a good balance
between avoiding false positives and avoiding false
negatives. If we provisionally ignore false positives and



Figure 1. Zoom in on the retention-time window of 378–388 s and the locations of deconvoluted components from AnalyzerPro, and TIC of: (a)
Solution 1; (b) Solution 2; (c) Solution 3; and, (d) Solution 4.
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Table 2. Results acquired with 3 software packages from samples with different combinations of concentration

Data Solution 1 Solution 2 Solution 3 Solution 4 Solution 5

Number of components deconvoluted ChromaTOF 173 161 121 78 162
AMDIS 720 620 529 522 720
AnalyzerPro 67 49 38 14 42

Number of metabolite derivatives
undetected

ChromaTOF 0 0 0 8 0
AMDIS 0 0 0 0 0
AnalyzerPro 2 9 17 38 19

Number of metabolite- derivative spectra
deconvoluted correctly

ChromaTOF 37 31 28 14 27
AMDIS 32 30 20 8 26
AnalyzerPro 28 24 14 5 18

Trends Trends in Analytical Chemistry, Vol. 27, No. 3, 2008
false negatives produced by the software packages, the
validity of ChromaTOF for deconvoluting spectra was
best. The number of metabolite spectra deconvoluted
correctly by ChromaTOF was greater than the num-
bers deconvoluted correctly by AMDIS and Analyzer-
Pro (Table 2).

In addition, with the concentration of the components
decreasing from 500 lM to 50 lM, we found that the
number of deconvoluted components decreased, the
number of undetected compounds increased and
the number of metabolite spectra deconvoluted correctly
decreased. Taking the counterparts of the retention-time
window of 378–388 s in Solution 1 from sample solu-
tions of different concentrations to show the effect of the
concentration, these fragments still include 4 metabo-
lites (uracil, nicotinic acid, glutaric acid and citramalic
acid) and 1 n-alkane (n-pentadecane). Only the result for
AnalyzerPro is listed (Figs. 1 and 2). The chromato-
graphic locations of deconvoluted components are
shown in zoom in Fig. 1. Taking the sample whose
concentration is 500 lM as an example, the deconvo-
luted spectra of metabolite derivatives are compared with
the standard spectra in the libraries (Fig. 2).

When the concentration was 500 lM, AnalyzerPro
deconvoluted 8 components (Fig. 1a). Fig. 2 showed that
the deconvoluted mass spectra of 4 components and 1
n-alkane coincide with the standard spectra and all their
match factors are greater than 850 for uracil, 864 for
nicotinic acid, 915 for glutaric acid, 918 for n-pentadec-
ane and 903 for citramalic acid. The remaining 3 com-
ponents are extraneous, aberrant peaks (false positives).

When the solution concentration decreased to 350 lM
(Fig. 1b), 6 components were detected, and 3 metabolite
derivatives (uracil, glutaric acid and citramalic acid) and
n-pentadecane were identified. The previously shown,
validated peak for nicotinic acid in Solution 1 was not
detected (false negative). The match factors of metabolites
detected decreased, and that of glutaric acid decreased to
833 (i.e. less than 850). The remaining 2 components
are extraneous, aberrant peaks (false positives).

Then, when the solution concentration decreased
to 150 lM (Fig. 1c), 5 components were detected. The
220 http://www.elsevier.com/locate/trac
result for Solution 3 was less accurate than for Solution
2 in that the ions contained in deconvoluted spectra
were inaccurate, which meant that the qualitative result
was not adequate, although the components were
deconvoluted at the correct retention time. The match
factors of all 3 identified metabolites were less than 850
(i.e. 673 for uracil, 293 for glutaric acid and 819 for
citramalic acid). Only the deconvoluted mass spectrum for
n-pentadecane was correct (match factor 908). The
remaining component is an extraneous, aberrant peak
(false positive).

Finally, when the concentration of the solution
decreased to 50 lM (Fig. 1d), the accuracy was the least,
as only n-pentadecane was detected and identified cor-
rectly, and no metabolites were detected.

From these results, we observed that the deconvoluted
results strongly depend on the concentration of metab-
olites in the sample. When the concentration is com-
paratively high, the software is liable to produce false
positives, but when the concentration is comparatively
low, it produces more false negatives and the quality of
deconvoluted mass spectra decreases, even though they
are detected. The same trend can be observed in the
complete data set (Table 2). With the concentration
decreasing from 500 lM to 50 lM, the number of
components with match factor over 850, acquired by
ChromaTOF, decreased from 37 to 14; that by AMDIS
from 32 to 8; that by AnalyzerPro from 28 to 5 – which
indicated that the deconvoluted result strongly depends
on the concentration.

However, many metabolites are usually present at a
relatively low concentration in biological samples, and,
from a biological point of view, metabolites present in
high concentrations are not necessarily more important
than those present at low concentrations, so the problem
of how to identify the components with low concentra-
tions in biological samples remains a challenge for us.

3.2. Analysis of repeatability
An essential factor in assessing the quality of software is
the repeatability of results. Ideally, when the software
processes the data from different technical replicates of



RT6.3265 Uracil_1492_2TMS

30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

0

50

100

50

100

31

31

45

45

59

59

73

73

85

85

99

99

109
113

113

117
126

126

147

147

153

153

169

169

183

183

241

241

255

256

RT6.3515 Nicotinic acid_1493_1TMS

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

0

50

100

50

100

51

51

59 73

78

78

90

106

106

120

136

136

180

180

RT6.3732 Glutaric acid_1495_2TMS

30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

0

50

100

50

100

31

31

45

45

55

55

61

61

73

73

85

88
97

97

116

116

129

129

147

147

158

158

186

186

203

204

233

233

261

261

RT6.3848 EITTMS_N12C_SD2_1500.0_1344EC05_n-Pentadecane

30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

0

50

100

50

100

43
57

71

71

85

85

99

99

113

113

126

127 141

155

155 169 212

RT6.4098 Citramalic acid_1516_3TMS

30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350

0

50

100

50

100

45

45

59

59

73

73

85

115

115

133

133

147

147

157

163 185

185

203

203

217

217

231

231

247

247

259

259

321

321

349

349

Figure 2. Deconvoluted spectra of metabolites whose concentration is 500 lM, compared with standard spectra in library.
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the same sample, the results provided by software should
remain constant, because the sample contains the same
metabolites. To test the repeatability of the software,
accurate sample-preparation and chromatography pro-
cesses are essential to produce repeatable results. Previ-
ous studies [12,28] have shown that the reliability of
this experimental method is very high.

We considered another technological challenge
encountered in metabolomics – dynamic range – as
there are large differences in the concentrations of the
different metabolites present in a metabolomics data set.
In this test, Solution 5, with the wide variation of
Figure 3. TICs of 3 replicates for Solution 5 and

Table 3. Results from fragment of 416–423 s in replicates using 3 softwar

Software Replicate Number of components deconvoluted Metab

Fructo

ChromaTOF 1 10
2 10 s

3 9 s

AMDIS 1 43
2 31
3 44

AnalyzerPro 1 6
2 6
3 6

s = Detected metabolite derivative without wrong spectrum; · = Undetecte
right spectrum.
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metabolite concentrations, was prepared and analyzed
three times to test the repeatability of software packages.
The TICs of the 3 replicates are shown in Fig. 3.

The retention-time window of 416–423 s in TIC of
Solution 5 (see Fig. 3) included 6 metabolite derivatives
(fructose, cis-aconitic acid, fructose, glucose, citric acid
and glucose), and the results from each software package
are shown in Table 3.

Although we expected that the 6 metabolite derivatives
in the 3 replicates to be deconvoluted correctly and iden-
tically, the numbers of deconvoluted components and
spectra for the replicate analyses differ from each other
the retention-time window of 416–423 s.

e packages

olite derivatives

se cis-Aconitic acid Fructose Glucose Citric acid Glucose

s s s

s s

s s

s s s

s s s

s s s

s s s

· s

s s s

d metabolite derivative; Empty = Detected metabolite derivative with



Table 4. Comparison of results generated by 3 software packages for Solution 5 in replicated runs

Data Replicate 1 Replicate 2 Replicate 3

Number of components deconvoluted ChromaTOF 149 162 159
AMDIS 782 720 995
AnalyzerPro 44 42 45

Number of metabolite derivatives undetected ChromaTOF 0 0 0
AMDIS 0 0 0
AnalyzerPro 16 19 18

Number of metabolite-derivative spectra deconvoluted correctly ChromaTOF 30 27 30
AMDIS 26 26 23
AnalyzerPro 19 18 18

Trends in Analytical Chemistry, Vol. 27, No. 3, 2008 Trends
(Table 3). AMDIS and ChromaTOF detected all 6 metab-
olite derivatives with many false positives, and inconsis-
tent and unsatisfactory spectra. AnalyzerPro produced
fewer false positives, but, in the second replicate, fructose
was not deconvoluted (false negative). A similar tendency
can be observed for all the data (Table 4).

From the results in Tables 3 and 4, the repeatability of
the software packages was not as high as expected. Of
course, this problem may be attributed to two factors,
the software and the experiment.

3.3. Effect of software parameters
To understand better those parameters that affect the
deconvolution accuracy, different parameter values were
Table 5. Results from AMDIS with different settings

Parameter Parameter
value

Number of
components
deconvoluted

Number o
out of 51
derivative

Component
width

3 480 0
6 637 0
8 681 0
9 701 0
10 705 0
12 720 0
15 737 0
20 777 0

Adjacent peak
substraction

0 690 0
1 720 0
2 720 0

Resolution low 571 0
medium 720 0
high 996 0

Sensitivity very low 210 0
low 392 0
medium 720 0
high 1361 0
very high 2131 0

Shape
requirements

low 728 0
medium 720 0
high 647 0
tested in the 3 software packages. When testing one
parameter, the other parameters remained constant as
shown in Section 2.3. The results from the 3 software
packages using different parameter settings are shown in
Tables 5–7.

As shown in Table 5, the parameters employed in
AMDIS had no impact on the number of undetected
metabolite derivatives (i.e. it deconvoluted all metabolite
derivatives in the sample, though with a large number of
false positives). Meanwhile, as parameters adjacent peak
subtraction, resolution and sensitivity increased from low
to high, the number of deconvoluted components
increased. As the shape requirements were changed from
low to high, the number of deconvoluted components
f undetected metabolites
expected metabolite
s

Number of spectra deconvoluted
correctly out of 51 expected
metabolite derivatives

17
23
24
27
26
26
25
24

26
26
24

26
26
29

26
27
26
27
26

27
26
19
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Table 6. Results from AnalyzerPro with different settings

Parameter Parameter
value

Number of components
deconvoluted

Number of undetected
metabolites out of 51
expected metabolite derivatives

Number of spectra deconvoluted
correctly out of 51 expected
metabolite derivatives

Component width (min) 0.001 44 18 20
0.01 44 18 20
0.02 42 19 18
0.03 34 23 13
0.04 27 26 12
0.05 21 31 11
0.10 4 47 0

Minimum masses 3 63 11 18
6 42 19 18
9 35 21 18
12 32 23 18

Resolution minimum 51 13 19
low 42 19 18
high 42 19 18
maximum 42 19 18

Scan windows 1 46 16 17
2 42 19 18
5 40 19 18
9 37 20 17

Smoothing 1 42 19 18
5 69 9 20
9 82 7 20
15 82 8 20

Area threshold 50 43 18 18
500 42 19 18
1000 36 20 18
2000 33 22 15
3000 30 24 15

High threshold 20 42 18 19
200 42 19 18
1000 38 20 18
3000 32 23 15
4000 30 24 14
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decreased. So we recommend parameter settings in AM-
DIS that will deconvolute a lower number of components;
of course, that is sometimes likely to sacrifice to some
extent the accuracy of deconvoluted spectra of metabolite
derivatives. For example, when the resolution value was
set at low or medium, the number of deconvoluted com-
ponents is apparently smaller than when the value was
set at high (see Table 5), but, unfortunately, the number
of correctly deconvoluted spectra also decreased.

From the results shown in Table 6, when changing
parameters, including minimum mass, resolution, scan
windows, area threshold and height threshold, the
number of deconvoluted components decreased and the
number of undetected metabolite derivatives increased,
but there was no apparent effect on the number of cor-
rectly deconvoluted spectra. With the value of parameter
smoothing increasing, the number of components in-
224 http://www.elsevier.com/locate/trac
creased and the number of undetected metabolite
derivatives decreased (i.e. false positives increased and
false negatives decreased). At first, the number of cor-
rectly deconvoluted spectra increased, with a maximum
of 5, so the parameter values suggested by software
provider (see Section 2.3) were reasonable.

The results shown in Table 7 for ChromaTOF indicated
that altering the parameters for baseline, smoothing and
the S/N ratio have little impact on the deconvolution
result.

To summarize, the results of the 3 software packages
indicated that component width was the chief determi-
nant of the deconvolution result. The influence of other
parameters (e.g., smoothing, baseline, scan windows and
resolution) was relatively weak. The peak widths in data
for Solution 5 were 0.02–0.04 min or 9–15 scan points.
We found that the closer the setting of the component



Table 7. Results from ChromaTOF with different settings

Parameter Parameter
value

Number of components
deconvoluted

Number of undetected
metabolites out of 51
expected metabolite derivatives

Number of spectra deconvoluted
correctly out of 51 expected
metabolite derivatives

Component width (s) 0.4 456 0 30
1.2 220 0 31
2.5 162 0 27
4.0 131 1 26
8.0 86 4 23
2 180 0 26

S/N 5 179 0 26
10 162 0 27
15 151 1 27
0 161 0 25

Baseline 0.5 165 0 25
1 162 0 27
1 149 1 28
3 162 0 27

Smoothing 5 156 0 29
7 161 0 25
9 150 1 24

11 143 1 25
15 141 2 26
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width is to the true value, the greater is the number of
spectra of metabolite derivatives that are deconvoluted
correctly (Tables 5–7).

The default in the 3 software packages can be used
when we are not sure which value should be set. To
obtain an optimal result, it is most important to estimate
the component width as accurately as possible. The
results slightly depended on the type of data file (e.g.,
noise or peak overlap), which could be found in data
acquired by different ramps (data not shown). The peak
widths observed in metabolomic studies are generally
variable and therefore using one peak width can be
detrimental.

We recommend that the parameter shape should be
set at low in AMDIS, because the chromatographic peak
shape for derivatized metabolite peaks are not consistent
because of the sample complexity.
4. Discussion

We have evaluated three commercially or freely avail-
able software packages (ChromaTOF, AnalyzerPro and
AMDIS) for the analysis of data from metabolite mixtures
analyzed with GC-TOF-MS. The aim of this research was
to evaluate and to compare the applicability of existing
software packages, to highlight the requirements and the
difficulties, and to promote discussion on possible solu-
tions for metabolomics chromatographic data.

Based on all results above, the 3 different software
packages each have advantages and limitations.
One particular feature of the present ChromaTOF and
AMDIS deconvolution-software packages is that they
tend to generate artifactual components corresponding
to noise (as judged by the mass spectrum and TIC
chromatogram) and to produce duplicate or multiple
peak assignments that (again from the mass spectra)
clearly correspond to a single chromatographic peak and
chemical entity. Such artifacts can account for 10–20%
of the peaks in the chromatogram for ChromaTOF and
70–80% for AMDIS, although they adequately detected
closely co-eluting components. AnalyzerPro results
showed the detection of fewer false positives, though also
with a greater number of false negatives. Some metab-
olites present in the sample could not be detected. It
should be noted that up to the release of this paper, there
has been a new revision to the AnalyzerPro algorithm to
address the number of false negatives without increasing
the false positives.

The results of the 3 software packages strongly
depended on the concentration of sample. An attempt
should be made to reconstruct ‘‘pure-component’’ spec-
tra from complex TIC chromatograms, even when
components are present at trace levels. For this purpose,
observed chromatographic behavior, along with a range
of noise-reduction methods, are expected to work.

Repeatability of all software is unsatisfactory. To
improve repeatability, we should try to modify the algo-
rithm or to find a new algorithm for deconvolution. A
standardized protocol for sample preparation is necessary.

Although all results depend on operator-set software
parameters, there is no one set of values in the 3 soft-
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ware packages that will be successful for the deconvo-
lution of all metabolites. When the accurate component
width was provided, the optimal analysis result could be
obtained. The other parameters only slightly influenced
conclusions based on the data and, subsequently, the
reported numbers of identifications.

Since there were differences between the programs in
both the number of confident identifications and the
components detected, there was no specific indication
that any of the programs was superior.

Combination of the results acquired by the 3 software
packages could circumvent problems in a complemen-
tary way, and may improve the reliability of results.

As there is no better software package available
presently, from the results of our tests, we suggest that
the user should choose the deconvolution software for
metabolomics study according to their experimental
objectives. If you prefer obtaining an accurate number of
the metabolites in samples from mass spectra, we rec-
ommend ChromaTOF and AnalyzerPro. If you prefer
accurate mass spectra, AMDIS and ChromaTOF are
better choices.

As far as speed is concerned, although automatic
software packages can also be applied with some degree
of success, they are still a fairly slow for the flood of data
from metabolomics. AnalyzerPro can handle multiple
data files simultaneously to speed up the process. In
addition, AnalyzerPro and ChromaTOF possess a com-
paratively friendly user interface, and the display, the
input and the output of data and figures are more con-
venient than those of AMDIS.

Another important point is that the use of ChromaTOF
is restricted to data with vendor-instrument-specific file
formats, while AMDIS and AnalyzerPro can process
multiple vendors� instrument data through a single user
interface, so consistent data analysis and presentation
from different instruments help with the development of
standard operating procedures (SOPs) and client reports.
This is very useful for metabolomics development, because
metabolomics is a strategy increasingly being applied and
requires many researchers to participate, so the data from
different instruments and laboratories may be expected to
be processed with the same software packages.

Generally, none of these 3 software packages has
provided a comprehensive solution to meet the chal-
lenges or the needs for the development of metabolomics.
More efficient, automated, flexible and reliable data-
handling systems are required. Future developments in
this area are vital for metabolomics to progress. It is
necessary to find new algorithms and to write better
software that can avoid false positives and false nega-
tives, and that can deconvolute low-concentration
components from high noise and background. Avail-
ability of a vendor-independent data-processing software
pipeline that is modular and flexible enough to incor-
porate new algorithms and that is expandable to other
226 http://www.elsevier.com/locate/trac
types of MS data (e.g., GC–MS and CE–MS) could sig-
nificantly boost progress in metabolomics.
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