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Dedicated to the memory of Reinhart Heinrich (1946–2006).
Abstract

Metabolic control analysis, co-invented by Reinhart Heinrich, is a formalism for the analysis of biochemical networks, and is a highly

important intellectual forerunner of modern systems biology. Exchanging ideas and exchanging models are part of the international

activities of science and scientists, and the Systems Biology Markup Language (SBML) allows one to perform the latter with great

facility. Encoding such models in SBML allows their distributed analysis using loosely coupled workflows, and with the advent of the

Internet the various software modules that one might use to analyze biochemical models can reside on entirely different computers and

even on different continents. Optimization is at the core of many scientific and biotechnological activities, and Reinhart made many

major contributions in this area, stimulating our own activities in the use of the methods of evolutionary computing for optimization.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

For most of us, including the present authors, Reinhart
Heinrich’s great contribution was the independent co-
invention of metabolic control analysis (MCA) (Heinrich
and Rapoport, 1973, 1974), a crucial forerunner of the
modern systems biology in which we recognize in particular
that systems are logical graphs or networks, with emergent
properties that depend in a highly non-linear manner on
e front matter r 2007 Elsevier Ltd. All rights reserved.
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the ‘local’ properties of each of the elements of the
network. Indeed, MCA is a highly principled version of
sensitivity analysis, that has subsequently developed quite
independently in other fields (e.g. Lüdtke et al., 2007;
Rabitz and Alis-, 1999; Saltelli et al., 2004), a recent
development being the fusing of elasticity analysis with flux
balance analysis (Smallbone et al., 2007). Although D.B.K.
had been traveling to East Berlin—and indeed the
Humboldt University—for a couple of years previously
(visiting the person who is now his wife), it was at the Il
Ciocco meeting in 1989 (Cornish-Bowden and Cárdenas,
1990) that he first met Reinhart, and enjoyed many
profound conversations with him over 17 years, including
at the Yokohama International Conference on Systems
Biology (ICSB) meeting when they discussed science
together for the last time. In 1989, of course, there was
no Web, and few or no common metabolic modeling
packages. At Il Ciocco, P.M., then a fresh graduate, also
met Reinhart for the first time, and demonstrated an early
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version of Gepasi (Mendes, 1993, 1997, 2001; Mendes and
Kell, 1998) on an Amstrad computer with no hard disk
(Mendes, 1990). P.M. still remembers vividly the excite-
ment that Reinhart displayed for being West of the Iron
Curtain; little did we know that this curtain was about to
fall within a year, by the time Reinhart organized a
scientific meeting in Holzhau. It was also at the ICSB
meeting in Yokohama that P.M. last talked with Reinhart.
What meetings like Il Ciocco represent are opportunities
for the global network of scientists to interact efficiently,
and it is Reinhart’s huge contribution to the world of
metabolic network modeling and optimization, within the
concept of the global family of science and scientists, that
we would wish to acknowledge with pleasure.

Interactions between scientists concerned with modeling
and systems biology involve the exchange and analysis of
such models, but models could and can be created and
represented in many ways that would not be comprehen-
sible without access to all the software (and often the very
same computer) that was used to create them. In other
words, there were certainly no standards of interoperability
between such programs, and it was not until 10 years
later in Visegrad (Cornish-Bowden and Cárdenas, 2000;
Kell and Mendes, 2000) (http://bip.cnrs-mrs.fr/bip10/
meet99.htm), also attended by Reinhart, that such com-
munity discussion began in earnest, culminating so far in
the massively important Systems Biology Markup Lan-
guage (SBML) (Hucka et al., 2003) (www.sbml.org). More
specifically, a mailing list entitled MMFF (metabolic model
file format) was set up by one of us (P.M.) in April 1999,
just after Visegrad. The members of this list created a draft
specification of a common metabolic file format (PMB;
portable metabolic binary format). Most of the subscribers
to this list joined the SBML effort in April 2000. The MDL
(model definition language) specification draft, a predeces-
sor of SBML, was created in August 2000, as was the
sysbio mailing list. By September 2000 (in the first revision
of this MDL document), SBML is referred to as such
among this community. At all events, it is this last aspect,
the importance of a lingua franca (Kell, 2006b), on which
we wish first to focus here.

1.1. The medium is the message

Marshall McLuhan’s famous slogan (http://en.wikipedia.
org/wiki/The_Medium_is_the_Massage) (e.g. (McLuhan
and Fiore, 1971)) (that predates the original ARPANET
by 2 years and the widespread civilian use of the Internet
by 20) not only made widespread the concept of the global
village but is intended to convey the idea that the generic
form of a medium is more important than its ‘meaning’ or
‘content’. Consistent with this, it appears (Kell, 2006a)
that the initial difficulties of interoperability between
modern software systems are much more about data
structures (syntax) than about their meaning (semantics)
(Siepel et al., 2001; Wilkinson et al., 2005), although these
can and will be dealt with using separate but integrable
technologies. It is also important to recognize that a model
is ‘just that’; it is a representation of reality (Kell and
Knowles, 2006), just as is Magritte’s famous painting
of a pipe (http://en.wikipedia.org/wiki/The_Treachery_Of_
Images).
SBML, now at level 2 version 3, allows one to describe

accurately the structure of most models in which there is
not a highly complex spatial segregation within a
compartment nor combinatorial variants of, e.g., protein
phosphorylation states. SBML is an XML (eXtensible
Markup Language) that allows one to describe facts in a
principled way by marking them up in a standardized
‘language’. As well as allowing the exchange of models,
SBML provides a very convenient means for storing them
in model databases such as Biomodels (www.biomodels.
net) (Le Novère et al., 2006). The present version of SBML
also now allows one to mark up the models with
rudimentary semantic information. In a similar way, the
Semantic Web (e.g. Alesso and Smith, 2006; Baker and
Cheung, 2007; Berners-Lee and Hendler, 2001; Berners-Lee
et al., 2006; Fensel et al., 2003; Stevens et al., 2006; Taylor
et al., 2006), will allow the semantic annotation of such
XML documents using the Resource Description Frame-
work (RDF) and Web Ontology Language (OWL), while
the Web 2.0 concept (http://en.wikipedia.org/wiki/Web_2)
relates to the general increase in social or community
involvement in developing a particular domain.
Although it is plausible that RDF will add significantly

to XML (Wang et al., 2005) (and SBML L2V3 integrates it
now), the great power of SBML (Kell, 2006a, b) is its
ability to lie at the focus of a distributed computing model
in which loosely coupled software programs allow its
integration in pipelines or workflows constructed via a
distributed, service-oriented architecture (Foster, 2005;
Hey and Trefethen, 2005). This loose integration reflects
the thinking behind the Systems Biology Workbench
(Sauro et al., 2003), but we consider (Kell, 2006a, b,
2007; Kell and Paton, 2007) that more global distributed
workflow environments such as Taverna (Hull et al., 2006;
Oinn et al., 2004, 2006, 2007) (www.taverna.sourceforge.net)
are likely to provide the environment of choice. An obvious
advantage of Taverna is that by using widely adopted
interoperability standards (WSDL and Web Services), it
can readily make available a large number of diverse
services that can be incorporated into systems biology
workflows. As usual, the cost of adoption of standards is
largely paid for by the benefits that come from compat-
ibility with other software. There are a great many modules
that perform useful activities and that can beneficially write
to SBML (see, e.g. Kell, 2006b, 2007 and Fig. 1). One
example might be Web Services to retrieve bibliographic
references that could be useful to annotate models
(Ananiadou and McNaught, 2006; Ananiadou et al.,
2006), while another whole area covers the optimization,
in some sense or senses, of the models themselves (e.g.
Mendes and Kell, 1998; Moles et al., 2003; Rodriguez-
Fernandez et al., 2006).

http://bip.cnrs-mrs.fr/bip10/meet99.htm
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http://www.taverna.sourceforge.net
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Fig. 1. Some of the modules or activities that one might wish to perform on a systems biology model encoded in SBML, and that may be stitched together

to form workflows.
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1.2. Optimization of biochemical networks

Another great contribution of Reinhart was his pioneer-
ing work on the application of optimization to metabolic
networks (Heinrich and Schuster, 1998). Initially this
focused more on optimality principles of metabolism
(Heinrich et al., 1991) in terms of parameters such as time
scales (Schuster and Heinrich, 1987) metabolite (Schuster
and Heinrich, 1991; Schuster et al., 1991) or enzyme
(Heinrich and Klipp, 1996; Klipp and Heinrich, 1999)
concentrations. This was essentially analytical optimization
using devices such as Laplace transforms. Later, they used
optimization algorithms to explain the structure of meta-
bolic pathways (Ebenhoh and Heinrich, 2001, 2003;
Heinrich et al., 1997; Meléndez-Hevia et al., 1997; Stephani
et al., 1999; Waddell et al., 1997). In this case, they mostly
used evolutionary optimization algorithms, such as genetic
algorithms, to perform combinatorial optimization.

Our own work has also relied on aspects of optimization,
though mostly on numerical aspects. We proposed that
metabolic engineering objectives (Kell and Westerhoff,
1986; Kell et al., 1989), usually maximization of a
metabolic flux or an end-product concentration, could be
formalized as an objective function whose maximum is the
solution of the problem (Mendes and Kell, 1998). As these
objective functions are non-linear in the parameters (such
as kinetic constants) that are allowed to vary, the
algorithms used must be appropriate for non-linear
functions. In addition, we recognized that since the
objective functions are specified as a system of non-linear
differential equations for which there is no known
analytical solution, the equations must be integrated
numerically and the optimization must also be carried
out numerically. Implementation of this approach in the
Gepasi software (Mendes and Kell, 1998) provided one of
the first applications of numerical optimization of bio-
chemical networks, which has since been carried on to
COPASI (Hoops et al., 2006). We also recognized that the
same numerical optimization algorithms could be used to
minimize the distance between a model’s result and a set of
data, such that they could be used to fit the model to the
data. This is a powerful application which is at the core of
most biochemical network modeling activities. More
recently, we have identified that (notwithstanding the
recognition that such statements cannot be universal for
all domains (Wolpert and Macready, 1997)) evolutionary
algorithms are often most efficient in solving these
problems (Mendes, 2001; Moles et al., 2003; Patil et al.,
2005; Rodriguez-Fernandez et al., 2006), although other
strategies are also emerging (e.g. Wilkinson, 2007; Wilk-
inson et al., 2007).
Another application of evolutionary optimization algo-

rithms has been the use of genetic programming methods
(Koza, 1992; Koza et al., 2003; Langdon, 1998) to the
reverse engineering or ‘system identification’ of biochem-
ical pathway structure (Koza et al., 2001a, b, 2003),
following the earlier work of Reinhart’s group with genetic
algorithms (Ebenhoh and Heinrich, 2001; Stephani et al.,
1999). We too have found GP to be a very effective means
for optimization and data analysis, independent of
prejudicial hypotheses (Kell and Oliver, 2004), as applied
to metabolism, spectroscopy and metabolomics (e.g.
Gilbert et al., 1997; Johnson et al., 2000; Kell, 2002a, b;
Kell et al., 2001; O’Hagan et al., 2005, 2007).
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1.3. Whither biochemical network modeling?

It has been said that we always overestimate what we
can do in two years and underestimate what we can do
in twenty (Ball and Garwin, 1992).

As well as looking back, it is appropriate, in an article of
this type, to look forward. Obvious trends include the
increasing scale and accuracy of biochemical network
models, including improved knowledge of the human
metabolic network (Duarte et al., 2007; Ma et al., 2007),
improved abilities to effect measurements of the many
uncharted metabolites that still exist (Harrigan and
Goodacre, 2003; O’Hagan et al., 2007), much improved
methods of system identification for estimating system
parameters from measured variables, the improved recog-
nition through metabolomics of metabolic pathway
changes accompanying disease progression (e.g. Dunn et
al., 2007; Kenny et al., 2005; van der Greef et al., 2006),
and the bringing together of metabolomics measurements
and systems biology models (Kell, 2004, 2006a, b, 2007).
Some areas of biochemistry, especially human metabolite
and drug transporters, are woefully underrepresented in
the literature. To allow computational reasoning to assist
us, it is absolutely vital that we use controlled vocabularies
(Spasic et al., 2007) and traceable identifiers to describe the
molecules in these models (see also, e.g. Le Novère et al.,
2005). Calling a molecule ‘glucose’ or even ‘glu’ conveys
nothing to a computer save those strings of letters, since
these terms are of themselves devoid of semantic content
and another user may easily use another term for the same
chemical entity. Referring to it with a ChEBI, KEGG or
PubChem identifier is a start, although of existing string-
based representations only InChI strings (Coles et al., 2005;
Stein et al., 2003) are likely to be genuinely unambiguous
and will likely supplant the very useful but proprietary
SMILES strings (Weininger, 1988). Web-accessible data-
bases, including expression profiling information (e.g.
Uhlen et al. (2005) and www.proteinatlas.org/), accessed
by Taverna-type workflows, will allow the incorporation of
such universal and traceable identifiers into SBML models,
and such models will be both distributed and available to
all. Then the clear goal of the ‘digital human’ (e.g. Hunter,
2004; Kell, 2007), an in silico representation of human
biochemistry and its dynamic response to drugs, will begin
to allow us to understand fully human physiology and
medicine, and this systems approach will also help
enormously to decrease the still-terrible attrition rates seen
in drug development (Kola and Landis, 2004).

It is this legacy in particular—the systems approach to
biology—for which we thank and remember Reinhart
Heinrich with fondness and appreciation.
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