
The following quotations provide a useful basis for
discussion of this topic. According to Brent, ‘Just
as development of the telescope and microscope

was followed by periods during which science was
mostly done by observation rather than experiment, it
is possible that the development of gene-expression
monitoring and other functional genomic methods
may presage a phase in which biology once again
becomes more observational… Making new technology
work may be easier than using it to discover truth’1.
Everitt and Dunn provided further thought: ‘It is often
suggested that it is helpful to recognize that the analy-
sis of data involves two separate stages. The first, par-
ticularly in new areas of research, involves data explo-
ration, in an attempt to recognize any non-random
pattern or data requiring explanation. At this stage,
finding the question is often of more interest than seek-
ing the subsequent answer, the aim of this part of the
analysis being to generate possibly interesting hypoth-
eses for later study… A confirmatory analysis becomes
possible once a research worker has a well-defined
hypothesis in mind’2. Furthermore, Everitt states that:
‘Any classification is a division of objects into groups
based on a set of rules – it is neither true nor false
(unlike, for example, a theory) and should be judged
largely on the usefulness of the results’3.

What do we mean by a gene’s functional class?
From the systematic genomic-sequencing pro-

grammes, recognition that the functions of up to half
the genes uncovered are not known is perhaps the 

central feature of the post-genomic era4,5. Currently,
the main approaches to the problem of assigning gene
function seem to be based implicitly on the view that
genes with similar function are likely to be similarly co-
expressed (‘guilt by association’1,6). Further, whole-
genome approaches to the analysis of gene function at
the level of the transcriptome7–10, the proteome11,12

and the metabolome13 are now considered de rigeur for
serious functional genomics. In particular, it is possible
to knock out individual genes in appropriate model
organisms systematically14 and to compare the patterns
of expression of all genes in strains wherein the func-
tions of the gene knocked out (or overexpressed) are
nominally known with those in which the gene
knocked out (or overexpressed) is of unknown func-
tion. Thus, huge datasets are becoming available that
we might seek to use as the ‘input’ to some kind of
mathematical modelling or data analysis program,
whose ‘output’ is an assignment to a certain class of
gene function.

In view of the likely widespread adoption of these
and related methods, we consider that the question of
how best, in principle, to assign function to genes from
such datasets might itself benefit from a wider consid-
eration of the literature on the classification of objects
using multivariate data. In particular, the ability to
monitor all gene expression simultaneously using
microarray technology makes it especially timely to
revisit the question of what we actually mean by a
gene’s functional class, and our purpose here is to
rehearse the relevant arguments.

Class assignment from multivariate data
The essential problem discussed here can be described

with reference to Fig. 1, which illustrates a situation
wherein a dataset is obtained from what might be a
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At present, the assignment of function to novel genes uncovered by the systematic genome-sequencing programmes is a

problem. Many studies anticipate that this can be achieved by analysing patterns of gene expression via the transcriptome,

proteome and metabolome. Thus, functional genomics is, in part, an exercise in pattern classification. Because many genes

have known functional classes, the problem of predicting their functional class is a supervised learning problem. However,

most pattern classification methods that have been applied to the problem have been unsupervised clustering methods. 

Consequently, the best classification tools have not always been used. Furthermore, the present functional classes are 

suboptimal and new unsupervised clustering methods are needed to improve them. Better-structured functional classes will

facilitate the prediction of biochemically testable functions. 
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large number of samples, each of which has a large
number of datapoints attached to it. These datapoints
can be numerical values of gene or protein expression
levels, metabolite concentrations or growth rate under
certain conditions, binary valued properties (e.g. the
ability or otherwise to grow on a particular substrate)
or, for our general purposes, any phenotypic properties.

The outputs from this arrangement are several pos-
sible functional classes. Between the inputs and the out-
puts are a series of mathematical transformations that,
if applied to the inputs, can be used to generate the 
outputs. The problem of functional genomics can 
then be reduced to: (1) choosing the optimal inputs;

(2) finding the optimal output classes and their struc-
ture; and (3) thereby finding the correct mathematical
relationships that use the differential data in the input
patterns to establish the correct functional class assign-
ment(s) on the basis of those input patterns. Although
(1) and (3) are beginning to be developed, the question
of how one might seek to optimize the output classes
rationally has not yet been adequately considered.

Present functional classes
A typical functional classification of the type widely

available on the Web is that for Mycobacterium tuberculosis
(Box 1). Similar lists exist for Escherichia coli15,16 and other
model organisms (Table 1). Whatever the merits of any
particular groupings chosen, we can state the following:
• organisms are sufficiently different that the class

structure must be organism specific17;
• there is clearly substantial arbitrariness in the existing

class structures, which are largely based on our exist-
ing knowledge18 of the relevant biochemistry;

• the class structure is based only on the known ‘outputs’,
and is not derived from (let alone optimized against)
the different patterns of the ‘inputs’ that might be
observed experimentally;

• the implicit view from the structure and display of
these databases is, in most cases, that there is an essen-
tially (strictly) hierarchical relationship between classes;
thus in Box 1, ‘small-molecule metabolism’ is divided
into ten classes, each of which is then subdivided at
least once, with no gene product appearing in more
than one class;

• there are many more genes than we should like in
the classes ‘other’, ‘conserved hypotheticals’ and
‘unknown’, and these classes are clearly likely to be
highly heterogeneous (indeed, so heterogeneous as
to be potentially valueless); and

• the semantics of what is meant by a ‘function’ need
to be considered.
Although these problems are certainly (and explicitly)

recognized by those who seek to categorize genes into
functional classes, the main questions we ask are as 
follows.
• Are these the best groupings, how do we decide, and

what does ‘best’ mean?
• What are the best methods for forming mathemati-

cal relationships between any input patterns we
observe and any functional class(es) to which we may
assign them?

Figure 1 
The class assignment problem. The problem is represented by (a)
input data, whose choice one might hope to optimize; (b) mathe-
matical transformations, which use the differential data in the input
patterns to establish the correct functional class assignment(s) on
the basis of those input patterns; and (c) output classes, into which
one might wish to assign a sample whose measured properties are
to be used as the inputs. 

Input data Output
classes

Mathematical
transformation(s)
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(a) (b) (c)

Table 1. Examples of websites in which a listing of suggested functional classes has been given

Organism Web address  

Bacillus subtilis http://bioweb.pasteur.fr/GenoList/SubtiList/help/classif-search.html

Caenorhabditis elegans http://www.proteome.com/databases/WormPD/WormPDcategories/
Functional_Categories.html

Escherichia coli http://ecocyc.pangeasystems.com/ecocyc/ecocyc.html
http://www.genome.ad.jp/dbget-bin/get_htext?E.coli.operon.kegg

Mycobacterium tuberculosis http://www.sanger.ac.uk/Projects/M_tuberculosis/Gene_list/

Saccharomyces cerevisiae http://www.mips.biochem.mpg.de/proj/yeast/catalogues/funcat/index.html
http://www.proteome.com/databases/YPD/YPDcategories/
Functional_Categories.html
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Pattern classification methods
There are many areas of science in which pattern

classification methods developed in statistics and 
artificial intelligence are important, and where the
arrangement is exactly as shown in Fig. 1. The goal 
of pattern recognition is to classify objects of interest
that possess particular attributes into several cat-
egories or classes. The functional genomics agenda is
therefore to be seen, in part, as an exercise in pattern 
recognition.

Pattern classification methods can be grouped into
two different categories: unsupervised and supervised
learning methods19–29. If a set of multivariate obser-
vations is given with the aim of establishing the exis-
tence of classes in the input data, with no knowledge
or care for an imposed class structure, we will be using
clustering or unsupervised learning. Alternatively, if
there is a defined class structure, the need is then to
establish rules by which new objects are correctly clas-
sified into one or more of the existing classes. This
supervised learning is often referred to as discrimi-
nation or multivariate calibration in the statistical liter-
ature, as the class structure is produced on the basis of 
known, correctly classified objects and their attendant
properties.

By definition then, the problem of predicting gene
functional class is (or may be cast as) a supervised learn-
ing problem because many genes have known func-
tional classes. It is therefore surprising that most pattern
classification methods that have been applied to the
problem are unsupervised, for example, for transcrip-
tome data6,30–34 (see Ref. 35 for a related counter-
example). This is unfortunate because these methods
measure only what changes; however, for functional
assignment we are interested not in what changes but
in which changes matter.

One subclassification of statistical methods is given
in Fig. 2. Other subclassifications discriminate
between, for example, neural and statistical methods25;
evolutionary computing techniques36, various types of
tree-based classifiers37,38 and other machine-learning
methods29 are also important tools. Important early
studies that assigned relationships between genes and
phenotypes led to the one-gene–one-enzyme 
paradigm39, which was perhaps implicitly translated
more extensively than was appropriate into one-
gene–one-phenotype, although increased interest in
traits to which many genes contribute has spurred 
the analysis of quantitative trait loci40. However, where
class membership is not strictly defined (i.e. where
every object or gene could be a member of more than
one class), our class structures must take this into
account. Depending on the experimental setup, one
approach might be to use the methods of ‘fuzzy’ 
computation41–43. Well-known examples of this type
of behaviour include stimulons and regulons with
overlapping specificities (class membership). The prob-
lem is particularly acute when the same gene has
entirely different functions depending on the environ-
mental conditions. Thus, glycerol kinase is catabolic
when glycerol is the growth substrate, but is anabolic
under most other conditions15. Optimal functional
class structures are therefore not fixed, even for a par-
ticular organism, but depend on the environmental 
conditions.

Box 1. A typical set of gene functional classes, as taken
from the Mycobacterium tuberculosis project

(http://www.sanger.ac.uk/Projects/M_tuberculosis/
Gene_list/). Classification is strictly hierarchical 

Top level list

I. Small-molecule metabolism (1066) 
A. Degradation (163) 
B. Energy metabolism (292) 
C. Central intermediary metabolism (45) 
D. Amino acid biosynthesis (95) 
E. Polyamine synthesis (1) 
F. Purines, pyrimidines, nucleosides and nucleotides (60) 
G. Biosynthesis of cofactors, prosthetic groups and carriers (117) 
H. Lipid biosynthesis (65) 
I. Polyketide and non-ribosomal peptide synthesis (41) 
J. Broad regulatory functions (187) 

II. Macromolecule metabolism (662) 
A. Synthesis and modification of macromolecules (215) 
B. Degradation of macromolecules (87) 
C. Cell envelope (360) 

III. Cell processes (206) 
A. Transport/binding proteins (123) 
B. Chaperones/heat shock (16) 
C. Cell division (19) 
D. Protein and peptide secretion (14) 
E. Adaptations and atypical conditions (12) 
F. Detoxification (22) 

IV. Other (469) 
A. Virulence (38) 
B. IS elements, repeated sequences and phage (135) 
C. PE and PPE families (167) 
D. Antibiotic production and resistance (14) 
E. Bacteriocin-like proteins (3) 
F. Cytochrome P450 enzymes (22) 
G. Coenzyme F420-dependent enzymes (3) 
H. Miscellaneous transferases (61) 
I. Miscellaneous phosphatases, lyases, and hydrolases (18) 
J. Cyclases (6) 
K. Chelatases (2) 

V. Conserved hypotheticals (915) 
VI. Unknowns (606) 

The next level of subdivision for class I c
C. Central intermediary metabolism (45) 

General (13)
Gluconeogenesis (2)
Sugar nucleotides (14)
Amino sugars (1)
Sulphur metabolism (15)

The next level of subdivision for one of the subclasses of class c
Sugar nucleotides (14)

Rv1512 epiA nucleotide sugar epimerase 
Rv3784 epiB probable UDP-galactose 4-epimerase 
Rv1511 gmdA GDP-mannose 4,6 dehydratase 
Rv0334 rmlA glucose-1-phosphate thymidyltransferase 
Rv3264c rmlA2 glucose-1-phosphate thymidyltransferase 
Rv3464 rmlB dTDP-glucose 4,6-dehydratase 
Rv3634c rmlB2 dTDP-glucose 4,6-dehydratase 
Rv3468c rmlB3 dTDP-glucose 4,6-dehydratase 
Rv3465 rmlC dTDP-4-dehydrorhamnose 3,5-epimerase 
Rv3266c rmlD dTDP-4-dehydrorhamnose reductase 
Rv0322 udgA UDP-glucose dehydrogenase/GDP-mannose 
6-dehydrogenase 
Rv3265c wbbL dTDP-rhamnosyl transferase 
Rv1525 wbbl2 dTDP-rhamnosyl transferase 
Rv3400 – probable b-phosphoglucomutase
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What can (microbial) taxonomy tell us?
Taxonomy (particularly numerical taxonomy) is the

field that is perhaps most relevant to a biologist con-
cerned with the classification of objects on the basis of
a series of properties. A particular point to be made
about taxonomic methods, in general, is that they use
experimentally observed data as the inputs and produce
the (purportedly optimal) classes as the outputs.
Numerical taxonomy is a form of unsupervised learn-
ing and uses classification programs to generate taxo-
nomic classes. This contrasts with the current class
structures available for functional assignments, which
are generated by hand rather than by computer, and are
not based a priori on whole-genome-derived phenotypic
data or whole-genome-expression studies.

According to Gilmour, ‘natural taxa are thought to
be those that are most highly predictive overall – that
is, not for a special purpose but in terms of several 
logically independent statements that can be made 
concerning its members’44. We agree with Everitt3 that
this should be the preferred aim; this is also the broad
view of the algorithmic information theory45,46, which
is arguably the best theory of unsupervised learning.

Sokal44 also states that ‘cladists consider supraspecific
taxa as real entities, not as classes, and therefore to them
a natural taxon is a taxon that exists in nature inde-
pendent of man’s ability to perceive it’, and that ‘by
contrast, phenetic numerical taxonomists consider
supraspecific taxa as classes and are therefore not es-
pecially concerned with their reality’. Again this phenetic
view seems most suitable for our purposes.

Although this is not the place to discuss in detail the
axioms of numerical taxonomy47,48, it is worth listing
a few of those that we consider significant and potentially
of general use for our present needs:
• a great many characters should be used – this provides

robustness against misclassification;
• groups should be seen as polythetic, that is, the class

membership should be based on the largest possible

number of shared characters and not on the pres-
ence or absence of single characters (these two points
are based on the statistical principle that all information
relevant to a problem should be used in solving it;
http://omega.albany.edu:8008/JaynesBook.html);

• equal weighting is to be given initially to all charac-
ters measured (the infamous statistical principle of
indifference); and

• because we are not trying (and indeed are trying not)
to conform to any predetermined class structure we
must take an empirical, data-driven, operational
approach49.
Phylogenetic methods that are based on the analysis

of macromolecular sequences50,51 are bound up so inti-
mately with the questions of evolution that they do not
seem suitable for our purposes. Indeed, the biggest (and
effectively insuperable) problem with hijacking classi-
cal taxonomic methods lies in their assumptions that a
tree structure is appropriate, and that such trees must
by and large be hierarchical, with each organism or 
output class appearing in only one place. 

The structures needed for functional genomics are
different because many genes are involved in many
responses. To this end, it is worth mentioning that
metabolic control analysis52–57 tells us (a priori, and even
under conditions in which the changes in enzyme
activity are small) that: (1) at the metabolic level, all
metabolites will change their concentrations in a fash-
ion described by the concentration–control coeffi-
cients; and (2) these changes in concentration can be
large. Similarly, experimental studies at the level of the
proteome show that changes in the expression of single
genes can affect the levels of potentially hundreds of
proteins58; transcriptome studies also demonstrate (and
in view of the above necessarily show) that ostensibly
minor changes in physiological state are accompanied
by changes in the levels of hundreds of transcripts7. For
our purposes, better structures are directed acyclic
graphs (DAGs).

Directed acyclic graphs and multiple classes
Existing functional class organizations assume a tree

structure. In a tree, each ‘child’ node has a single con-
nection to a ‘parent’ node (class) at a higher level of 
generality. However, this is unsuitable for functional
genomics because single genes or groups of genes can
have more than one function. The correct functional
class organization should therefore be a DAG, which
differs from a tree structure in that even though the 
levels of generality increase unidirectionally, there can
be connections to more than one parent59. Thus, for a
given set of environmental conditions, we can allow for
the fact that a single parameter change leads, in the
steady state, to multiple changes and therefore we might
have an output class structure that reflects this. The
conclusion of this analysis is that the unsupervised
learning algorithms that we apply to functional
genomics data should learn DAG classifications. How-
ever, to the best of our knowledge, no such unsuper-
vised learning algorithms exist. Existing unsupervised
learning algorithms can only learn either unstructured
classes or tree unstructured classes. Although it might
be possible to combine existing unsupervised methods
to learn DAGs, new computer science and statistics
seem to be needed.

Figure 2
One categorization of methods that can be used for attacking problems in statistical
pattern recognition20.
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The existence of more than one function for a gene
also causes problems for supervised prediction methods
because it is usually assumed by such methods that each
example has only one correct class label, that is, you
learn a (mathematical) function mapping from input
attributes to a single class. Relatively little work has
been done on multiclassification problems in statistics
and computer science36. Gilbert et al. presented an
example of a system producing multiple rules using
metabolome data60. Ideally, the supervised learning
program should exploit the whole classification tree
when learning; currently this can only be done by
inductive logic programming algorithms61.

On model complexity
If we could know quantitatively all the interactions

between the players in a cell, we might be able to pro-
vide a full mathematical model of them; this is usually
considered to be the gold standard. Although we can
expect significant progress resulting from the availabil-
ity of large-scale phenotypic data, the problem with this
type of approach (the life-sized kinetic model) is that it
is enormously difficult to parametrize accurately62,63,
even though not all pathways are possible64, despite
simplifying assumptions being made57, and especially
given the experimental evidence that cell growth can
be chaotic65. Explanations, like organisms66, have an
optimal size.

Problem areas
In a short overview, it is not possible to set out all the

likely pitfalls, but it is worth mentioning two. Accord-
ing to Brenner67, ~8% of assignments in fully sequenced
microbial genomes might be incorrect. It is clear that
supervised learning methods must be trained using cor-
rect output classes, therefore this is a significant prob-
lem and is known as class noise. Similarly, the statistical
analysis of the reproducibility and the significance of all
observed differences in gene-expression data is in its
infancy68, and is clearly an area where more-robust
methods than those currently in use will be required69.
That, however, is a problem common to almost any
computational analysis using multivariate data70.

What are our needs in the post-genomic era?
Induction vs deduction

Scientific inference uses a combination of deductive
and inductive reasoning. In deductive logic: given the
truth of the axioms and observations, the answer must
be true (axiom: all whales are blue; observation: Percy
is a whale; deduction: therefore Percy is blue). By con-
trast, inductive logic seeks to generalize rules from
examples71,72 (observations: Percy is blue and a whale,
George is blue and a whale, Anne is blue and a whale;
induction: all whales are blue) and even if all the obser-
vations are true, inductive rules can be falsified (Moby
Dick is a whale and is white). Both types of reasoning
are needed, induction to form new hypotheses and
deduction to test these hypotheses. Of course, in the
deductive framework, confounding observations can
topple cherished axioms too.

Metabolic control analysis and functional genomics
share the same agenda in that they seek to relate the pres-
ence and activities of individual genes and gene products
to higher level processes of cellular biochemistry and

physiology57. However, they can be considered to differ
in a philosophical sense because the former is essentially
deductive in character (and as practised) whereas the 
latter is (of necessity) inductive, at least initially, because
so many open reading frames are of unknown function.

Because of the flood of data expected in the post-
genomic era, it will be necessary to transfer the burden
of much of the deductive and inductive reasoning to
computers. As discussed by Brent1, advances in much
of recent biology have been hypothesis driven, even
though the flood of genomic data suggests that we can
now expect many advances to be data driven. We need
the power of automatic inductive reasoning to induce
hypotheses (‘rules’) from data72 regarding the function
of unclassified genes. Then, after a tentative class assign-
ment, we can return to the deductive mode (‘if gene
X is claimed to have function Y, then the best way to
confirm this is using phenotypic tests Z’); this deductive
step could also be automated.

Conclusions and recommendations
High-dimensional data from the transcriptome, the

proteome and the metabolome in genetically marked
strains provide important inputs to classification meth-
ods designed to predict the functional class(es) for the
modified gene. However, most of these classifications
are unsupervised and the problem of predicting func-
tional class is best cast as a supervised pattern classification
problem. This requires the pre-assignment of functional
classes and known class members, but current lists of
functional classes are not driven by data from whole-
organism studies and are suboptimal for the purposes
of functional genomics. 

We consider that novel, unsupervised classification
methods could improve the current lists of functional
classes themselves, and that inductive methods of machine
learning (based both on phenotypic and other data,
including macromolecular sequences) provide the best
initial approaches to assigning gene function.
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