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The newly emerging field of systems biology involves a judicious interplay

between high-throughput ‘wet’ experimentation, computational modelling

and technology development, coupled to the world of ideas and theory.

This interplay involves iterative cycles, such that systems biology is not at

all confined to hypothesis-dependent studies, with intelligent, principled,

hypothesis-generating studies being of high importance and consequently

very far from aimless fishing expeditions. I seek to illustrate each of these

facets. Novel technology development in metabolomics can increase sub-

stantially the dynamic range and number of metabolites that one can

detect, and these can be exploited as disease markers and in the consequent

and principled generation of hypotheses that are consistent with the

data and achieve this in a value-free manner. Much of classical biochemis-

try and signalling pathway analysis has concentrated on the analyses of

changes in the concentrations of intermediates, with ‘local’ equations )
such as that of Michaelis and Menten v ¼ ðVmax � SÞ=ðSþ KmÞ ) that

describe individual steps being based solely on the instantaneous values of

these concentrations. Recent work using single cells (that are not subject to

the intellectually unsupportable averaging of the variable displayed by het-

erogeneous cells possessing nonlinear kinetics) has led to the recognition

that some protein signalling pathways may encode their signals not (just) as

concentrations (AM or amplitude-modulated in a radio analogy) but via

changes in the dynamics of those concentrations (the signals are FM or

frequency-modulated). This contributes in principle to a straightforward

solution of the crosstalk problem, leads to a profound reassessment of how

to understand the downstream effects of dynamic changes in the concentra-

tions of elements in these pathways, and stresses the role of signal process-

ing (and not merely the intermediates) in biological signalling. It is this

signal processing that lies at the heart of understanding the languages of

cells. The resolution of many of the modern and postgenomic problems of

biochemistry requires the development of a myriad of new technologies

(and maybe a new culture), and thus regular input from the physical
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The belief that an organism is ‘nothing more’ than a

collection of substances, albeit a collection of very

complex substances, is as widespread as it is difficult

to substantiate. . .The problem is therefore the inves-

tigation of systems, i.e. components related or

organized in a specific way. The properties of a sys-

tem are, in fact, ‘more’ than (or different from) the

properties of its components, a fact often overlooked

in zealous attempts to demonstrate ‘additivity’ of

certain phenomena. It is with the ‘systemic proper-

ties’ that we shall be mainly concerned.

H. Kacser (1957) in The Strategy of the Genes (ed.

CH Waddington), pp. 191–249. Allen & Unwin, Lon-

don

Progress in science depends on new techniques, new

discoveries, and new ideas, probably in that order.

Sydney Brenner, Nature, June 5, 1980

Systems biology as such is not especially new [1–3],

but while it is not hard to find prescient comments

from Henrik Kacser and from Sydney Brenner [4],

those given above might be seen as epitomizing the

key features of the more recent move towards, and

interest in, Systems Biology [5–14] (Fig. 1).

Parallelling the Brenner quote, my lecture also chose

to highlight three aspects of our current work with col-

laborators. The first involves the philosophical under-

pinnings of our scientific strategy and of the systems

biology agenda, which can each be considered to

involve an iterative interplay [15–17] between a series

of linked activities. These activities include data (obser-

vations) and ideas (hypotheses); theory, computation

and experiment; and the iterative assessment of the

parameters and variables in such computational mod-

els and experiments. The second area relates to the

actual development of technology for systems biology,

specifically analytical and computational technol-

ogy ) especially in metabolomics ) to help provide

both high quality data and the concomitant modelling

that relies on it. The third strand develops various

ideas that emerged following our recent findings [18–

20] that protein signalling pathways ) specifically those

involving the nuclear transcription factor NF-jB –

may encode their signals not so much in terms of

changes in the concentrations of the observable signal-

ling intermediates but in terms of their frequency or

dynamics. Such signals must be perceived by down-

stream signal processing elements that respond to their

dynamics, and so to understand such pathways prop-

erly one needs to understand and focus on not only

the intermediates (the medium) but also the ‘down-

stream’ means (‘network motifs’ – see, e.g. [21–23]. or

‘design elements’ [24]) by which such signals are per-

ceived (to make the message). This leads to a pro-

foundly different view of the significance of networks

in systems biology, and one that allows one a much

better understanding of signalling as signal processing.

Put another way, and again quoting Henrik Kacser

[25,26], ‘But one thing is certain: to understand the

whole one must study the whole’.

Philosophical elements of systems biology

As in Fig. 1, most commentators (summarized, e.g. in

[12]), as I do [17,27], take the systems biology agenda

to include pertinent technology development, theory,

sciences, engineering, mathematics and computer science. One solution, that

we are adopting in the Manchester Interdisciplinary Biocentre (http://

www.mib.ac.uk/) and the Manchester Centre for Integrative Systems

Biology (http://www.mcisb.org/), is thus to colocate individuals with the

necessary combinations of skills. Novel disciplines that require such an inte-

grative approach continue to emerge. These include fields such as chemical

genomics, synthetic biology, distributed computational environments for

biological data and modelling, single cell diagnostics ⁄bionanotechnology,
and computational linguistics ⁄ text mining.

Fig. 1. Systems biology is usually seen as an iterative activity integ-

rating computational work, high-throughput ‘wet’ experimentation

and technology development with the world of theory and novel

ideas.
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computational modelling and high-throughput experi-

mentation. Hypothesis-driven science is only a partial

component of this, and not the major one [16]. More

specifically, in systems biology, studies are performed

purposively in an iterative manner, in a way that con-

trasts with previous strategies. This iteration is multi-

dimensional, and can be described or seen in various

ways, including both wet (experimental) and dry (com-

putational and theoretical), reductionist and synthetic,

qualitative and quantitative, and a systems biologist

would lay more stress than is conventional on the right-

hand arcs of the diagrams in Fig. 2. A particular fea-

ture is the ‘vertical’ focus of systems biology in seeking

to relate ‘lower’ levels of biological organization such

as enzymatic properties to higher levels of biological

organization, and in this sense systems biology shares

the same agenda as the long-established approaches of

Metabolic Control Analysis [11,26,28–32]) and Bio-

chemical Systems Theory [33,34].

It is a curious fact that in physics and chemistry

(and indeed in economics) ‘theory’ has a status almost

equal with that of experiment, and has claimed many

Nobel Prizes, but in modern biology this is not the

A

B

C

D

E

The cycle of knowledge

Basic ‘bottom-up’-driven Systems
Biology pipeline

Models and Reality

Modelling

Holism/reductionism

Fig. 2. Some of the iterative elements of systems biology. (A) Sci-

ence can be said to advance via an iterative interplay between the

worlds of ideas and of experimental data. The world of ideas

includes theories, hypotheses, human knowledge and any other

mental constructs, while the world of data consists of experimental

observations and other facts, sometimes referred to as ‘sense

data’ in the philosophical literature as an iterative process, move-

ment between these two worlds is not simply a reversible action:

analysis is not the reverse of synthesis [339]. (B) One view of sys-

tems biology, reflecting a largely bottom-up approach, as in the ‘sili-

con cell’ [340]. First we need what we term a ‘structural model’

(this describes the network’s structure, and has nothing to do with

structural biology) that defines the participants in the process of

interest and the (qualitative) nature of the interactions between

them; then we try to develop equations, preferably mechanistic

rather than empirical, that best describe the relationships, then

finally we seek to parameterize those equations (recognizing that if

errors occur in the earlier phases we may need to return and cor-

rect them in the light of further knowledge). (C) The hallmark of

modelling as a comparison between the mathematical models and

the ‘reality’ (i.e. observed experimental data plus noise), again as

an iterative process. (D) Producing and refining a model: data on

kinetic parameters allow one to run a forward model. However,

invoking such parameters from measured omics data (fluxes and

concentrations) is referred to as an inverse or system identification

problem (e.g. [86–88,90,91,341–347]) and is much harder. One

strategy is to make estimates of the parameters and on the basis

of the consequent forward model refine those estimates iteratively

until some level of convergence (with statistical confidence levels)

is achieved. (E) The iteration in models ⁄mapping between levels

of biological organization, e.g. in the case illustrated between the

overall metabolism of an organism and its enzymatic parts.
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case. ‘Pure’ theoreticians do not easily make a living

(and only partly for sociological reasons connected

with their perceived grant-winning abilities). Equival-

ently, it would be laughable for an engineer not to

make a mathematical model of a candidate design for

a bridge or an aeroplane before trying to build one,

since the chance of it ‘working’ would be remote

(because it is ‘complex’, and this is because its compo-

nents are many and they act in nonlinear ways). By

contrast, making mathematical models of the biologi-

cal systems one is investigating (and seeing how they

perform in silico) is generally considered a minority

sport, and one not to be indulged in by those who pre-

fer (or who prefer their postdocs and students) to

spend more time with their pipettes.

Fairly obviously, it is easy to recognize that mole-

cular biology concentrated perhaps too heavily on parts

rather then wholes in its development, or at least that it

is time, now that we have the postgenomic parts list of

the genes and proteins (though not yet the metabolites)

of most organisms of immediate interest, for working

biologists to incorporate the skills of the numerical

modeller (or indeed the radio engineer [35]), just as the

more successful ones needed to become acquainted with

the techniques of molecular biology when they began

to be developed 30 years ago. In 10 years’ time the ref-

erees of grant proposals and papers will normally ask

only why one did not model one’s system before study-

ing it experimentally, not why one might wish to.

This said, it is useful to rehearse the variety of rea-

sons why one might wish to model a biological systems

that one is seeking to understand and study experi-

mentally [36] (and see also [12,13,37]):
l testing whether the model is accurate, in the sense

that it reflects ) or can be made to reflect ) known

experimental facts. This amounts to ‘simulation’;
l analysing the model to understand which parts of

the system contribute most to some desired properties

of interest;
l hypothesis generation and testing, allowing one to

analyse rapidly the effects of manipulating experimen-

tal conditions in the model without having to perform

complex and costly experiments (or to restrict the

number that are performed);
l testing what changes in the model would improve

the consistency of its behaviour with experimental

observations.

The last two points amount to ‘prediction’.

The techniques of modelling

Most strategies for creating mathematical models of

biological systems recognize that the nonoptical, high-

resolution experimental analysis of spatial distributions

beyond macro-compartments is not yet available and

thus it is appropriate to use ordinary differential equa-

tions (ODEs) that assume such compartments both to

be to be well-stirred and with their components in high

enough concentrations that they are ‘homogeneous’. If

the former assumption breaks down one can create

subcompartments [38], while the latter requires one to

resort to so-called ‘stochastic’ methods [39,40].

Modern ODE solvers can deal with essentially any

system, even when its ‘local’ kinetics are on very differ-

ent timescales (so-called ‘stiff’ systems), and many have

been devised by and for biologists, thus making them

particularly easy to use. A particular trend is towards

making models that are interoperable between laborat-

ories, and the website of the Systems Biology Markup

Language http://www.sbml.org/[41,42] lists many,

including Gepasi [38,43,44].

Figure 2 shows various views of the systems biology

agenda. Figure 2A stresses the importance of inductive

methods of hypothesis generation; these have unac-

countably had far less emphasis than they should have

done because of the traditional obsession in twentieth

century biology with hypothesis testing [16]. However,

the search for good hypotheses can be seen as a heuris-

tic search over a huge landscape of ‘possible’ hypothe-

ses, of the form familiar in heuristic and combinatorial

optimization problems [45–47], and the choice of

where to look next ) this is the ‘principled’ part ) is

known as ‘active learning’ [48–54]. It can be and has

been automated in areas such as functional genomics

[55,56], in clinical [57,58] and analytical chemistry [59],

and in the coherent control of chemical reactions [60].

Principled hypothesis generation is clearly at least as

important as hypothesis testing, and appropriate

experimental designs, such as those used in active

learning (and these go far beyond those usually des-

cribed in textbooks of experimental design [61–65]),

ensure that the search for good candidate data is not

an aimless fishing expedition but one which is likely to

find novel answers in unexpected places (e.g. [15,16,66–

69]).

Figure 2B sets down the overall strategy, usually

known as a ‘bottom up’ strategy, that we consider to

be appropriate for most systems biology problems of

interest to readers of the FEBS Journal. As whole-

genome models of metabolism have become available

(e.g. [70–72]), it has become evident that one can learn

much merely from the structure plus constraints of a

qualitative but stoichiometric model of the network

(e.g. [14,73–80]). This leads one to stress the import-

ance of first getting the structural model (the funda-

mental building blocks that determine and constrain

Metabolomics, modelling and machine learning systems D. B. Kell
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the ‘language’ of cells). From the qualitative model, we

then require suitable equations that that can represent

the quantitative nature of the interactions set down in

the structural model. Such equations are preferably

mechanistic, as is common in molecular enzymology

[81–84], but may also be empirical if they serve to fit

the data over a suitably wide range [33,34,85]. After

this, one must parametrize the kinetic data, as the

parametrized equations (recast into the form of cou-

pled ordinary differential equation) can then be used

directly in forward models (e.g. [38,44]). Figure 2C, D

and E highlight the basic and iterative relations

between computational models and reality on one

hand and between changes in the model that are

invoked and its subsequent dynamic behaviour, leading

to an understanding of how events at one level (e.g.

the enzymatic) can be used to gain an understanding

of events at a higher level (e.g. physiology or whole-

cell metabolism). As mentioned above, the goal of sys-

tems biology in integrating these different levels of

organization thus shares many similarities with those

of metabolic control analysis and biochemical systems

theory.

A particular issue with systems biology, which is

why we stress the need to measure parameters, is that

it is the parameters that control the variables and not

the other way round, while omics measurements usu-

ally determine only the variables (e.g. in metabolism ⁄
metabolomics the metabolic fluxes and concentrations).

Going from the variables to the parameters involves

solving an inverse or ‘system identification’ problem

[86], and this is typically very hard [87–91] as these

problems are often heavily underdetermined (many

parameter combinations can give the same variables),

even if the structural model is correct.

Metabolomics and metabolomics technology

development

As enshrined in the formalism of Metabolic Control

Analysis (MCA) [11,26,28–32], it has been known for

over 30 years that small changes in the activities of

individual enzymes lead only to small changes in meta-

bolic fluxes but can lead to large changes in concentra-

tions. These facts are causally related, expected and

mathematically proven. Metabolomics, being down-

stream of transcriptomics and proteomics, thus repre-

sents a more suitable level of biological organization

for analysis [92] since metabolites are both more tract-

able in number and are amplified relative to changes in

the transcriptome, proteome or gross phenotype [93].

Although we must in due time seek to integrate all the

omes, metabolomics is thus the strategy of choice for

the purposes of functional genomics, biomarker devel-

opment and systems biology (e.g. [94–104]).

If we consider metabolic systems, most analysts take

discrete samples and provide what we have referred to

as ‘metabolic snapshots’ [26]. Typical model microbes

such as baker’s yeast [70] contain upwards of 1000

known metabolites, and most of these have a relative

molecular mass of less than 1000 [27]. Indeed, meta-

bolomics is usually considered to mean ‘small molecule

metabolomics’, even if cell wall polymers and the like

are necessarily produced by metabolism.

The actual number of measurable metabolites in a

given biological system is unknown, but numbers such

as 10–13 000 have already been observed in mouse

urine [105], albeit that some or many are of gut micro-

bial origin [101]. Most of these have yet to be identi-

fied chemically.

The history of biomedicine as perceived via the

awards of the Nobel Committee indicates the import-

ance to our understanding of the subject of both small

molecules (examples: ascorbic acid, coenzyme A, peni-

cillin, streptomycin, cAMP, prostaglandins, dopamine,

NO) and novel analytical methods (examples: paper

chromatography, X-ray crystallography, the sequen-

cing of proteins and of nucleic acids, radioimmuno-

assay, PCR, soft ionization MS, biological NMR). An

important area of metabolomics thus consists of max-

imizing the number of metabolites that may be meas-

ured reliably [106–109], as a prelude to exploiting such

data via a chemometric and computational pipeline

[27,107,110]. As above, it transpires that optimizing

scientific instrumentation is a combinatorial problem

that scales exponentially with the number of experi-

mental parameters. Thus, if there are 14 adjustable set-

tings on an electrospray mass spectrometer, each of

which can take 10 values, the number of combinations

to be tested via exhaustive search is 1014 [111]. Since

the lifetime of the Universe is about 1017s [112], it is

obvious that trying all of these (‘exhaustive search’) is

impossible. So-called heuristic methods [113–117] are

thus designed to find good but not provably optimal

solutions, and methods [111,118] based on evolution-

ary algorithms [119] have proved successful. However,

they are still slow because the run times are inconveni-

ent and there is a human being in the loop, and the

number of experiments that can be evaluated is corre-

spondingly small.

As indicated above, active learning methods are

attractive, and, in a manner related to the computa-

tionally driven supervised [120] and inductive [16] dis-

covery of new biological knowledge [121], we have

contributed to the Robot Scientist project [55]. This

was concerned with automating principled hypothesis

D. B. Kell Metabolomics, modelling and machine learning systems
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generation in the area of experimental design for func-

tional genomics. In this arrangement, one seeks to

optimize the order in which one does a series of experi-

ments, given that the number of possible experiments

n can be done serially in n! (n factorial) possible

orders. For n ¼ 15, n! � 1.3.1012. In the Robot Scien-

tist paper [55] a computational system was used: (a) to

hold background knowledge about a biological domain

(amino acid biosynthesis, modelled as a logical graph);

(b) to use that knowledge to design the ‘best’ (most

discriminatory) experiment in order to find the bio-

chemical location in that graph of a specific genetic

lesion; (c) to perform that experiment using microbial

growth tests, and to analyse the results; and (d) on the

basis of these to design, perform and evaluate the next

experiment, the whole continuing in an iterative man-

ner (i.e. in a closed loop, without human intervention)

until only one ‘possible’ hypothesis remains.

We have now combined these ideas to use heuristic

search methods in an automated closed loop (the

‘Robot Chromatographer’) to maximize simultaneously

the number of peaks observed while also minimizing

the run time [59], and in addition maximizing a metric

based on the signal : noise ratio. Depending on the

sample (serum [107] or yeast supernatant [122–124]),

this has more than trebled the number of metabolite

peaks that we can reliably observe using GC TOF MS

[59] (Fig. 3), thereby allowing us to discover important

new biomarkers for metabolic and other diseases

including pre-eclampsia [125], peaks that were not

observed in the original, previously optimized run con-

ditions. The new technology thus led directly to the

discovery of new biology, as in previous work in meta-

bolomics (e.g. [67,68]). Sometimes it is a lack of unex-

pected differences that is the result of interest [126].

An especially useful strategy in microbiology is to

study the exometabolome or ‘metabolic footprint’

[122–124,127] of metabolites excreted by cells, as this

gives important clues as to their intracellular metabo-

lism but is much easier to measure. Current work is

concentrating on the optimization of 2D GC technol-

ogy (GC·GC-TOF) [128–130] and ultra-performance

liquid chromatography [105,124,131,132].

Creating and analysing systems biology models:

network motifs, sensitivity analysis, functional

linkage and signal processing

As postgenomic, high-throughput methods develop, it

is increasingly commonplace to have access to large

datasets of variables (¢omics data) against which to test

a mathematical model of the system that might gener-

ate such data. In these cases, the model will usually be

an ODE model, and finding a good model is a system

identification problem [44,86].

Much less frequently [133], the kinetic and binding

constants are available, and a reliable ‘forward’ model

can be generated directly. One such case [134] is the

NF-jB signalling pathway [135–138]. NF-jB is a nuc-

lear transcription factor that is normally held inactive

in the cytoplasm by being bound to one or more iso-

forms of an inhibitor (IjB). When IjB is phosphoryl-

ated by a kinase (IKK) it is degraded and free NF-jB
can translocate to the nucleus, where it induces the

expression of genes (including those such as IjB that

are involved in its own dynamics). The NF-jB system

is considered to be ‘involved’ in both cell proliferation

and in apoptosis, as well as diseases such as arthritis,

although how a cell ‘chooses’ which of these ortho-

gonal processes will happen simply from the changes

in the concentration of NFjB in a particular location

or compartment is neither known nor obvious. (In a

sense this is the same problem as that of ‘commitment’

in developmental biology generally.) Earlier experimen-

tal measurements showed oscillations in nuclear

NF-jB in single cells, though these were damped when

assessed as an ensemble since individual cells were

necessarily out of phase ([139], and see also [140] for a

different example and [141,142] for a similar philoso-

phy underpinning the use of single-cell measurements

in flow cytometry). More recently, with improved con-

structs and detector technology, the oscillations could

Fig. 3. Closed loop evolution of improved peak number in GC-MS

experiments. Run time is encoded in the size of the symbols. It

may be observed in the figure that this PESA-II algorithm [348] seri-

ally explores areas of space that can improve both the number of

peaks and the run time. The size of the search space exceeded

200 000 000. Each generation contains two experiments, encoded

via the two colours. Data are from the experiments described in

[59].
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clearly be measured accurately in individual cells alone

[19]. This ability to effect accurate measurements in

individual cells is absolutely crucial for the analysis of

nonlinear dynamic systems.

Based on the model of Hoffmann and colleagues

[134] (see also [143,144]), and using Gepasi [43,44] we

have modelled the ‘downstream’ parts of this pathway

(there are 64 reactions and 23 variables), successfully

reproducing the main features of the oscillations

observed experimentally in single cells (Fig. 4A and B)

and performed sensitivity analysis on the model [18].

The model itself is ⁄will soon be available via the ‘tri-

ple-J’ website http://jjj.biochem.sun.ac.za/. Sensitivity

analysis is a generalized form of MCA [30] that is

arguably the starting point for the analysis of any

model [36], and that is useful in many other domains

(e.g. [145]). This sensitivity analysis showed that only

about eight of the 64 reactions exerted any serious

A

C D

B

hgih 9k

1T ↓

9k
9k wol

1T ↑

25k gnisaercnI
1T

Fig. 4. (A) A cartoon illustrating the characterization of oscillations in the nuclear NF-jB concentrations, in terms of features such as ampli-

tude (A1, etc.), time (T1, etc.), Period (P1, etc.) and relative amplitude (RA1, etc.). (B) Time series output of a model [18,19] of the NF-jB

pathway showing oscillations in the concentration of NF-jB in the nucleus (green) and of IKK (red). The model is pre-equilibrated then ‘star-

ted’ by adding IKK at 0.1 lM. As with many such systems, the mechanism underpinning the oscillations is a coupled transcription-translation

system with delays. (C) Effect on IKK and of nuclear NF-jB of varying one rate constant (for reaction 28 in [18]) by two orders of magnitude

either side of its basal value. Trajectories start from the right and follow fairly similar pathways for the first oscillation but then diverge con-

siderably. (D) Synergistic effects of individual rate constants in the model [20]. The colour from red to blue shows increasing rate constant 9,

while increasing symbol size reflects the increase in rate constant 52. For some values of the rate constants k9 and k52 there is no influ-

ence of either on the time to the first oscillation (T1). However, when k9 is low increasing k52 increases T1 while when k9 is high the same

increase in k52 decreases T1. Thus the effect of inhibiting a particular step can have qualitatively (directionally) different effects depending

on the value of another step. This makes designing safe drugs aimed at targets in such pathways without understanding the system fully a

challenging activity. This type of systemic nonlinearity can also account for the unexpected synergism often observed when different meta-

bolic steps or drug targets are affected together, both in theory [349–352] and in practice [294,353,354].
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control over the timings and amplitudes of the oscilla-

tions in the nuclear NF-jB concentration [18], that the

nonlinearity of the model implied: (a) both a differen-

tial control of the frequency and amplitude [18,19] of

the first and subsequent oscillations; (b) that inter-

actions between different elements of the model were

synergistic [20] (Fig. 4C); and (c) most importantly

that it was not so much the concentration of nuclear

NF-jB but its dynamics that were responsible for

controlling downstream activities [19]. This leads to a

profound emphasis on the role of ‘network motifs’

[21,146,147] as ‘downstream’ signal processing elements

that can discriminate the dynamical properties of

inputs that otherwise use the same components. Biolo-

gical signalling is then best seen or understood as

signal processing, a major field (mainly developed in

areas such as data communications, image processing

[148] and so on), in which we recognize that the struc-

ture, dynamics and performance of the receiver entirely

determine which properties of the upstream signal are

actually transduced into downstream (and here biologi-

cal—see also [149]) events. The crucial point is that in

the signal processing world these signals are separated

and discriminated by their dynamical, time- and fre-

quency-dependent properties. Normally we model

enzyme kinetics on the basis of the effects of a static

concentration of substrate or effector [81–84]. Thus,

the irreversible Michaelis–Menten reaction ðv ¼ Vmax�S
SþKm

Þ
includes only the ‘instantaneous’ concentration but not

the dynamics of S. However, if detectors have fre-

quency-sensitive properties, this allows one in principle

to solve the ‘crosstalk problem’ (how do cells distin-

guish identical changes in the ‘static’ NF-jB concen-

tration that might lead either to apoptosis or to

proliferation, when these are in fact entirely orthogo-

nal processes?). Although other factors can always

contribute usefully (e.g. spatial segregation in micro-

compartments or ‘channelling’ [150–153], and ⁄or fur-

ther transcription factors that act as a logical AND,

OR or NOT [154]), encoding effective signals in the

frequency domain allow one to separate signals inde-

pendently of their amplitudes (i.e. concentrations)

while still using the same components.

In the most simplistic way, one could imagine a

structure (Fig. 5A) in which there was an input signal

that could be filtered via a low-pass or high-pass filter

before being passed downstream—a low-frequency sig-

nal would ‘go one way’ (i.e. be detected by only one

‘detector’ structure) and a high-frequency signal the

other way. In this manner the same components can

change their concentrations such that they may be at

the same instantaneous levels while nevertheless having

entirely different outcomes, solely because of the signal

processing, frequency response characteristics of the

detectors. Of course the real system and its signal-pro-

cessing elements will be much more complex than this.

We note that there is also precedent for the nonlinear

and frequency-selective (bandpass) responses of indi-

vidual multistate enzymes to exciting alternating elec-

trical fields [155–159].

While the recognition that electrical circuit (signal

processing) elements and biological networks are fun-

damentally similar representations is not especially

new [22,47,146,160–167], Alon [21,147,168,169], Arkin

[146], Tyson [22] and Sauro and colleagues [167],

among others [170] have made these ideas particularly

explicit. Any element (Fig. 5B) in a metabolic or signal

transduction pathway acts as a resistor–capacitor

A

B

Fig. 5. The importance of signal dynamics and of downstream

signal processing in affecting biological responses. (A) A simple

system illustrating how two different frequency-selective filters can

transduce different features of the identical signal into two different

downstream signals and hence two different biological events

responses or events. Such downstream responses might be pro-

cesses as different as apoptosis and cell proliferation. (B) Simple

resistor-capacitor (RC) electrical filters (above) can act as a delay

line when they are concatenated in series (below), and every biolo-

gical reaction can act as an RC element, and this may account in

part for the use of such serial devices in biology.
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element [160] (as indeed do any ‘relaxing’ elements

responding to an input, such as an alternating electri-

cal signal [171]). A series of them acts as a delay line

(Fig. 5B [17] and see [172] or any other textbook of

electrical filters, and in a biological context [173]). This

ability to act as a delay element provides another poss-

ible ‘reason’, besides signal amplification, for the serial

arrangements of kinases and kinase kinases (etc.) in

signalling cascades, since amplification alone could

(have evolved to) be effected simply by increasing the

rate constants of a single kinase. Similarly, a suitably

configured (‘coherent’) feedforward network serves to

provide resistance to temporally small input perturba-

tions (noise—or at least an amount of fluctuating ⁄dif-
fusing nutrient not worth chasing) whilst transducing

longer-lasting ones of the same amplitude into output

(biological effects) [174,175]. Other network struc-

tures ) which like all such network structures effect-

ively act as ‘computational’ or ‘signal processing’

elements ) can exhibit robustness of their output(s)

to sometimes extreme variations in parameters

[22,165,176–187]. Indeed, the evolution of robustness is

probably an inevitable consequence of the evolution of

life in an environment that changes far more rapidly

than does the genotype [179].

Thus the recognition that we need to concentrate

more on the dynamics of signalling pathways rather

than instantaneous concentrations of their compo-

nents, means that we need to sample very fre-

quently ) preferably effectively in real time – and

using single cell measurements to avoid oscillations

and other more complex and functionally important

dynamics being hidden via the combination of signals

from individual, out-of-phase cells. It also means that

assays for signalling activity, for instance in drug

development, should not focus just on the signalling

molecules themselves but on the structures that the cell

uses to detect them.

A forward look

By concentrating on a restricted subset of issues within

the confines of a single lecture, many topics had to be

treated only superficially or implicitly, and it is appro-

priate to set down in slightly more detail some of the

directions in which I think progress is required,

important or likely.

Data standards and integration

The first is the need to integrate SBML (and other

[188]) biochemical models and model representations

into postgenomic databases with schemas such as those

for genomics (e.g. GIMS [189]), transcriptomics (e.g.

MAGE-ML [190]), protein interactions [191], proteo-

mics (e.g. PEDRo [192] and PSI [193,194]) and meta-

bolomics (e.g. ArMet [195] and SMRS [196]). Progress

is being made (e.g. [197]), but significant problems

remain before the considerable benefits [198] of extens-

ible markup languages can be fully realized [199], and

before well-structured ontologies (http://suo.ieee.org/)

become the norm [200].

In a related manner, there are many things one

might wish to do with an SBML or other biochemical

model, including creating it, storing it, editing it, com-

paring it with other stored models, finding it again in

a principled way, visualizing it, sharing it, running it,

analysing the results of the run, comparing them with

experimental data, finding models that can create a

given set of data, and so on. No individual piece of

software allows one to do all of these things well or

even at all (for a starting point see http://dbk.ch.umist.

ac.uk/sysbio.htm#links). However, plan A (start from

scratch and write the software that one wished existed)

would require an enormous and coherent effort invol-

ving many person-years. Consequently we are attracted

by plan B. This is to create a software environment

in which individual software elements appear to – and

indeed do ) work together transparently [201], such

that ‘only’ the software ‘glue’ needs to be written,

somewhat in the spirit of the Systems Biology

Workbench [202] or of software Application Program-

ming Interfaces more generally. Distributed environ-

ments using systems such as Taverna [203] or others

[204–206] to enact the necessary bioinformatic work-

flows may well provide the best way forward, and

since the difficulties of interoperability seem in fact to

be much more about data structures (syntax) than

about their meaning (semantics) [207], this task may

turn out to be considerably easier than might have

been anticipated.

Synthetic biology

Another emerging and important area is becoming

known as ‘synthetic biology’ [208–213] (a portal for

this can be found at http://www.syntheticbiology.org/).

Although this has a variety of subthreads [213], an

‘engineering’-based motivation [214–216] is the one

which I regard as paramount. Here one seeks, some-

what in the manner of the ‘network motifs’ mentioned

above, to develop principled strategies for determining

the kind of networks and computational structures in

biology that can effect specific metabolic or signal

processing acts or behaviours, and to combine them

effectively. Ultimately, as a refined and improved
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strategy for metabolic engineering [30,78,217–223] one

may hope that this will give sufficient understanding

to allow one to design these and more complex bio-

processes (and the organisms that perform them).

Similar comments apply to the de novo design, synthe-

sis and engineering of proteins [224–234] (where there

is already progress with building blocks or elements

such as foldamers [235–238]), initially as a comple-

ment to effective but more empirical strategies based

on the directed evolution and selection of both pro-

teins (e.g. [239–252]), and nucleic acid aptamers (e.g.

[253–274]).

Chemical genetics and chemical genomics

The modulation by small molecules of biological

activities has proven to be of immense value historic-

ally in the dissection of biological pathways (e.g. in

oxidative phosphorylation [275,276]). Chemical genet-

ics or chemical genomics (e.g. [277–292]) describes an

integrated strategy for manipulating biological func-

tion using small molecules (the integration aspect spe-

cifically including cell biology-based assays and the

databases necessary to systematize the knowledge and

from which quantitative structure–activity relation-

ships may be discerned [293]). This chemical manipu-

lation is considered to be more discriminating than

strategies based on knocking out genes or gene prod-

ucts using the methods of molecular biology since

they can be selective towards individual activities that

may be among several catalysed by specific gene

products. Also, chemical genetics can be used to

study multiple effects when the small molecules are

added both singly and in combination [294], and such

studies ) involving only the addition of small mole-

cules ) can be performed with far more facility than

those requiring complex and serial molecular biologi-

cal manipulations. As with ‘biological’ genetics, it is

usual to discriminate ‘forward’ and ‘reverse’ chemical

genetics. In ‘forward’ chemical genetics, the logic

goes: screen a library fi find cellular or physiological

activity fi discover molecular target [295], this being

somewhat akin to the ‘traditional’ (pregenomic) drug

discovery process in the pharmaceutical industry. In

‘reverse’ chemical genetics we start with a purified

target, then with the chemical library look for binding

activity and then test in vivo to see the physiological

effects, much as is done (with decreasing success) in

the more recent approaches preferred by Pharma.

While these strategies should best be seen as iterative

(Fig. 6), we would have some preference for the ‘for-

ward’ chemical genetic approach as the hypothesis-

generating arm.

Text mining

With the scientific literature expanding by several thou-

sand papers per week, it is obvious that no individual

can read them, and there is in addition a large historical

database of facts that could be useful to systems bio-

logy. Text mining is an emerging field concerned with

the process of discovering and extracting knowledge

from unstructured textual data, contrasting it with data

mining (e.g. [296,297]). which discovers knowledge from

structured data. Text mining comprises three major

activities: information retrieval, to gather relevant texts;

information extraction, to identify and extract a range

of specific types of information from texts of interest;

and data mining, to find associations among the pieces

of information extracted from many different texts

[298]. As phrased therein ‘. . .hypothesis generation relies

on background knowledge, and is crucial in scientific

discovery’, the pioneering work by Swanson on hypo-

thesis generation [299] is mainly credited with sparking

interest in text mining techniques in biology. Text

mining aids in the construction of hypotheses from

associations derived from vast amounts of text that are

then subjected to experimental validation by experts.

Some portals are at http://www.ccs.neu.edu/home/

futrelle/bionlp/ and http://www.cs.technion.ac.il/�gabr/

resources/resources.html, and a national (UK) centre

devoted to the subject is described at http://www.nactem.

ac.uk. Although these are early days (e.g. [300–308]),

we may one day dream of a system that will read the

literature for us and produce and parameterize (with

linkages, equations and parameters like rate constants)

candidate models of chosen parts of biological systems.

Single cell and single molecule biology

Given the heterogeneity of almost all biological sys-

tems, and thus for reasons given above the importance

Fig. 6. Chemical genomics as an iterative process in which mole-

cules are screened for effects and their targets identified, thereby

allowing the development of mechanistic links between individual

targets and (patho-)physiological processes.
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of single cell studies, it is evident that we need to

develop improved methods for measuring omics in

individual cells, preferably noninvasively and in vivo.

Buoyed by experience with the fluorescent proteins

[309], and indeed with the more recent antibody-based

proteomics [310] (http://www.proteinatlas.org/), it is

evident that optical methods are among the most

promising here, with detectors for specific metabolites

[311] and transcripts (http://www.nanostring.com/) (see

also [312]) that can be used in individual cells coming

forward as part of the development of Bionanotech-

nology [313].

What is true about the heterogeneity of single cells

[141,142] is also true for that of single molecules

[314,315], and many assays capable of detecting the

presence or behaviour of single molecules are coming

forward. Thus, high-throughput screening for ligand

binding [316,317] and nucleic acid sequences [318–320]

are now being performed using assays based on

miniaturization and single-molecule measurements,

bringing the $1000 human genome well within sight

(although amplification techniques can of course also

be used to advantage in nucleic acid sequencing

[321,322]).

The Manchester Interdisciplinary Biocentre (MIB)

Many of the kinds of problems described above, and

certainly the solutions being developed to attack them,

require the input of ideas and techniques, and scientific

cultures, from the physical sciences, engineering,

mathematics and computer science. One solution, that

we are adopting in the Manchester Interdisciplinary

Biocentre (MIB: http://www.mib.ac.uk/, Fig. 7) and

the Manchester Centre for Integrative Systems Biology

(MCISB: http://www.mcisb.org/), is to colocate indi-

viduals with the necessary combinations of skills.

Within MCISB we are seeking to develop the suite of

techniques for the largely ‘bottom up’ systems biology

strategies set down in Fig. 2B.

Emergence and a true systems biology

The grand problem of biology, as well as the ‘inverse

problem’ (Fig. 2D) of determining parametric causes

from measured effects (variables), to which it is

related, is understanding at a lower level the time-

dependent [323,324] changes of state that are com-

monly described at a higher level of organization, an

issue often referred to using terms such as ‘self-organ-

ization’ [325], ‘emergence’ [326–328], networks

[329,330] and complexity [161,165,331–333]. Modelling

and sensitivity analysis (see above) can begin to decon-

struct such relations, but it is in areas such as ‘causal

inference’ [334–337] that we shall probably see the

most focussed development of principled explanations

of such causal linkages.

Coda

Having begun with a couple of quotations, and having

stressed the role of technology development in science

in general and in systems biology in particular, I shall

end with another quotation, from the Nobelist Robert

Laughlin [338]:

In physics, correct perceptions differ from mistaken

ones in that they get clearer when the experimental

accuracy is improved. This simple idea captures the

essence of the physicist’s mind and explains why

they are always so obsessed with mathematics and

numbers: through precision one exposes false-

hood...A subtle but inevitable consequence of this

attitude is that truth and measurement technology

are inextricably linked.
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