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Curie-point pyrolysis mass spectrometry is a rapid, high-resolution technique which has enjoyed 
historical success in the operational fingerprinting and classification of microbial and other 
biological systems. More recently we have exploited the analytical power of this technique 
together with supervised learning, based on artificial neural networks and cognate chemometric 
methods, for the accurate and quantitative analysis of complex biological materials, including 
microorganisms, fermentor broths and agricultural products. When suitable standards are 
available, supervised learning is much more powerful than is unsupervised learning for the 
chemometric analysis of multivariate spectroscopic data. 

Introduction 

There is a continuing need for more rapid, precise and accurate analyses of the chemical 
composition of microbial systems, both within biotechnology and for the identification of 
potentially pathogenic organisms. An ideal method would permit the. simultaneous estimation of 
multiple determinands, would have negligible reagent costs, and would run under the control of a 
PC, to allow flexible operation of the sample handling, instrument calibration, and data analysis 
and visualisation routines. 

Pyrolysis is the thermal degradation of a material in an inert atmosphere, and leads to the 
production of volatile fragments from non-volatile material such as microorganismsl. Curie-point 
pyrolysis is a particularly reproducible and straightforward version of the technique, in which the 
sample, dried onto an appropriate metal is rapidly heated (0.6s is typical) to the Curie point of the 
metal, which may itselfbe chosen (358,480,510,530,610 and 770ºC are common 
temperatures). The volatile fragments resulting from the Curie-point pyrolysis may then be 
separated and analysed in a mass spectrometer2, and the combined technique is then known as 
Pyrolysis Mass Spectrometry or PyMS. 

Almost all biological materials will produce pyrolytic degradation products such as methane, 
ammonia, water, methanol and HiS, whose mass:charge (miz) ratio< 50, and fragments with miz 
> 200 are rarely analytically ímpoìtant-; in the commercially available instruments (cf+) the 
analytically useful data are thus constituted by a set of ( 15 O) normalised intensities versus ml z in 
the range 51-200. 
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Conventionally (within microbiology and biotechnology), PyMS has been used as a taxonomic 
aid in the identification and discrimination of different microorganisms5, such as members of the 
genera Bacillusù, Corynebacteriuml and Legioneluñ. In particular, PyMS, because of its high 
discriminatory ability, has been successfully applied to the inter-strain comparison of a wide range 
of medically important bacte~ species and groups, including: Coryn~bac~eri~m2,. Escherichia 
co!i9, Legione!la8, mycobacterìalv.U, salmonellae12 and streptococci-J, highlighting the 
usefu1ness of this technique in the detection of small differences between microbial samples. More 
complex and powerful methods such as pyrolysis tandem-MS ( e.g. 14, 15) and pyrolysis GC-MS 
( e.g. 4, 16-19) have also demonstrated their great utility in the detection of the presence of bacteria 
via chemical biomarkers. One of the major advantages that fyMS has over other diagnostic 
methods, such as ELISA ( e.g. 20-23) and nucleic acid probing24, however, is that it is rapid, both 
for a single sample and with respect to the ( automated) throughput of samples, since the typical 
sample time is less than 2 min. 

Tue reduction of the multivariate data generated by the PyMS system is normally carried out 
using Principal Components Analysis (PCA)25-28, a well-known technique for reducing the 
dimensionality of multivariate data whilst preserving most of the variance. Whilst PCA does not 
take account of any groupings in the data, neither does it require that the populations be normally 
distributed, ie. it is a non-parametric method. (In addition, it permits the loadings of each of the 
miz ratios on the principal components to be determined, and thus the extraction of at least some 
chemically significant information.) The closely-related Canonical Variates Analysis technique 
then separates the samples into groups on the basis of the principal components and some a priori 
knowledge of the appropriate number of groupings29. Provided that the data set contains 
"standards" (ie. type or centro-strains) it is evident that one can establish the closeness of any 
unknown samples to a known organism, and thus effect the identification of the former, a 
procedure known as operational fingerpriting-. An excellent example of the discriminatory power 
of the approach is the demonstration30 that one can use it to distinguish 4 strains of E. coli which 
differ only in the presence or absence of a single plasmid. 

(Artificial) neural networks (ANN s) are, by now, a well-known means of uncovering complex, 
nonlinear relationships in multivariate data (see e.g.Uand references therein for full details, 32=37 
for excellent introductions). Independently of the numerous possible network architectures for so 
called supervised learning, the principle of operation is that one can acquire sets of multivariate 
data ( e.g. normalised intensities at 150 values of miz) for mixtures of determinands whose 
concentrations are known, and train an ANN using the (known) concentrations as the desired 
outputs. Training is effected by continually presenting the networks with the training data and 
modifying ("updating") the weights between the individual neurons or processing elements, 
typically according to some kind of back-propagation algorithm32,38, until the outputs of the 
network match the "true" ( desired) outputs within a predetermined degree of accuracy. The 
network, the effectiveness of whose training is usually determined in terms of the root mean 
square error between the actual and the desired outputs, may then be exposed to unknown inputs 
(ie. spectra) and will then "immediately" output the globally optimal best fit in terms of the 
relative concentrations of the desired determinands. We have therefore sought to exploit ANN s in 
the quantitative analysis of PyMS data from a variety of biological systems, a series of studies 
which we here review. 

Experimental 

The pyrolysis mass spectrometer used in our work was the Horizon Instruments PYMS-200X 
. as described by Aries et al. 39_ The sample tube carrying the foil was heated, prior to pyrolysis, at 
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lOOºC for 5s. Curie-point pyrolysis was at 530ºC for 3s, with a te.rpperature rise time of 0.5s. 
This pyrolysis temperature was chosen because it has been shown40,41 to give a balance between 
fragmentation from polysaccharides (carbohydrates) and protein fractions. The pyrolysate then 
entered a gold-plated expansion chamber heated to 150ºC, whence it diffused down a molecular 
beam tube to the ionisation chamber of the mass spectrometer. To minimize secondary 
fragmentation of the pyrolysate the ionisation method used was low voltage electron impact 
ionisation (25eV). Non-ionised molecules were deposited on a cold trap, cooled by liquid 
nitrogen. Tue ionised fragments were focussed by the electrostatic lens of a set of source 
electrodes, accelerated and directed into a quadrupole mass filter. Tue ions were separated by the 

· quadrupole, on the basis of their mass-to-charge ratio, and detected and amplified with an electron 
multiplier. The mass spectrometer scans the ionised pyrolysate 160 times at 0.2s intervals 
following pyrolysis. Data were collected over the miz range 51 to 200, in one tenth of a mass-unit 
intervals. These were then integrated to give unit mass. Given that the charge of the fragment 
was unity the mass-to-charge ratio can be accepted as a measure of the mass ofpyrolysate 
fragments. The IBM-compatible PC used to control the pyrolysis mass spectrometer, was also 
programmed (using software provided by the manufacturers) to record spectral information on ion 
count for the individual masses scanned and the total ion count for each sample analysed. This software also carried out PCA and CV A 

Normalised ion count data were preprocessed using Microsoft Excel, and imported into a 
Windows-based neural network simulation program, NeuralDesk (version 1.2) (Neural Computer 
Sciences, Lulworth Business Centre, Nutwood Way, Totton, Southampton, Rants, S01 OJR, 
U.K), which runs under Microsoft Windows 3.1 on an IBM-compatible PC. To ensure maximum 
speed, an accelerator board for the PC (NeuSprint) based on the AT&T DSP32C chip, which 
effects a speed enhancement of some 100-fold over a 33MHz 386-based PC, permitting the 
analysis (and updating) of some 400,000 weights per second, was used. 
Results 

Using the above system, we and our collaborators have shown that the combination of ANNs 
and PyMS may be used for the quantification of indole production in bacteria+ê, ofbiopolymers in 
binary4

3
,44 and tertiary mixtures45, ofrecombinant protein production in whole cells of 

Escherichia col;46, of mixed microbial cultures45, and in the rapid and quantitative screening of 
cultures and fermentor broths for metabolite overproduction47_ Inter afia, we have also been the 
first to apply fyMS and ANNs to the successful identification of the adulteration of extra virgin 
olive oils48,49 and in demonstrating that canine isolates of Propionibacterium acnes strains are the 
same as human wild-type strains50, and have reviewed this material in more detail51,52_ It is worth 
mentioning that the quantification of indole production in bacteria42 represented the first occasion 
on which it was possible quantitatively to determine the concentration of a known biological 
molecule that lacked a unique ion in the pyrolysis mass spectrum of a biological system, and that 
one might expect that this principle could to be adopted for the study of a variety of other 
microbial problems of interest in the present context. 

CONCLUSIONS 

We would stress two findings in particular: (i) in our olive oil studies49, although unsupervised 
methods indicated that the variance in the PyMS between cultivars of olives dominated that 
caused by adulteration, (nonlinear) supervised learning methods were easily able to distinguish oils 
based on the presence of adulterating seed oils, and (ii) the discrimatory power of these 
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chemometric methods is such that in one study'? we were able to assay quantitatively for the 
concentrations of ampicillin in mixtur es with the Gram-positive S. aureus when the training set 
consisted of mixtures of ampicillin and an entirely different biological background, viz. the Gram 
negative E. coli. This shows, importantly, that chemometric methods ofthis type which are 
designed to effect the quantification of biomolecules in complex biological backgrounds may 
indeed be made highly resistant to changes in the background cooncentrations of metabolites and 
macromolecles. Pyrolysis mass spectrometry combined with ANNs thus represents a powerful and 
novel approach to the rapid characterization of complex biological material. 
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