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Diffuse-reflectance absorbance spectroscopy in the mid-infrared is a novel method of 
producing data with which to effect chemical imaging for the rapid screening of biological 
samples for metabolite overproduction. We have used mixtures of ampicillin and Escherichia 
coli, and Streptomyces citricolor producing aristeromycin and neplanocin A, as model 
systems. Deconvolution of the hyperspectral information provided by the raw diffuse 
reflectance-absorbance mid-infrared spectra may be achieved using a combination of principal 
components analysis (PCA) and supervised methods such as artificial neural networks 
(ANNs) and partial least squares regression (PLS). Whereas a univariate approach necessitates 
appropriate data selection to remove any interferences, the chemometrics/hyperspectral 
approach could be employed to permit filtering of undesired components either manually, or 
by taking the Fourier transform of the spectral information (in order to help isolate the signal 
from the baseline variation or noise) prior to applying linear multivariate regression 
techniques. Equivalent concentrations of ampicillin between 0.2mM and l3.5mM in an E. coli 
background could be quantified with good accuracy using this approach. 

1. INTRODUCTION 

There is a large and continuing interest in the screening of microbial cultures for the 
production of biologically active metabolites (e.g. [l-18)), which can provide structural 
templates for synthetic programmes using rational methods of drug design. As well as the 
increasing use of combinatorial chemical libraries [19-25], methods based on phage display 
[26-28], synthetic oligonucleotides [29; 30] and DNA shuffling [31-35] can provide further 
levels of diversity from biological starting points. Recognising the biochemical novelty 
increasingly being uncovered by genomics [36], modern screens for such metabolites tend to 
be targeted on the modulation of particular biochemical steps that are thought to be important 
in the disease process of interest, and can show a high degree of both specificity and 
sensitivity. This sensitivity means that metabolites showing activity during screening need 
nowadays be produced only in very small amounts by the organism. In such cases, increasing 
the titre of the metabolite is vital to provide enough material for further biological evaluation 
and chemical characterization and, eventually, for commercial production. 

The process of titre improvement will normally involve the search for overproducing 
mutants derived from the original producing organism (see e.g. [6]), but titre-improving 
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mutants are rare, typically at frequencies of 10-4 or less [37], and therefore many thousands of 
mutants need to be screened in search of an overproducing strain [38]. Previous methods of 
high-throughput mutant screening have included the assessment of antibiotic activity of the 
metabolites (e.g. [39]) or use rapid chromatographic methods such as thin layer 
chromatography (e.g. [40]) or fluorescence and luminescence methods such as the scintillation 
proximity assay [41-45]. Such methods can typically accommodate 10,000 to 50,000 isolates 
per month. 

The ideal method for culture screening on plates (and indeed for the analysis of fermentor 
broths generally) would have minimum sample preparation, would analyse samples directly 
(i.e. be reagentless), would give information about recognizable chemical characters, and 
would be rapid, automated, noninvasive, quantitative and (at least relatively) inexpensive. 
These requirements indicate a spectroscopic solution, and we have recently demonstrated that 
the use of pyrolysis mass spectrometry (PyMS) in combination with a variety of chemometric 
methods allows rapid screening of cultures for metabolite overproduction [46-48], some 2 min 
per sample once these have been introduced to the carousel. However, the important 
conclusion that we would stress is that whole-cell or whole-broth spectral methods which 
measure all molecules simultaneously do contain enough spectral information from target 
molecules of interest to allow their quantification at biotechnologically interesting levels 
when the entire spectra are used as the inputs to modem chemometric methods based on 
supervised learning. The discriminatory power of these chemometric methods is such that in 
one study [46] we were able to assay quantitatively for the concentrations of ampicillin in 
mixtures with the Gram-positive Staphylococcus aureus when the training set consisted of 
mixtures of ampicillin and an entirely different biological background, viz. the Gram-negative 
Escherichia coli. This shows, importantly, that chemometric methods of this type, which are 
designed to effect the quantification of biomolecules in complex biological backgrounds, may 
indeed be made highly resistant to changes in the background concentrations of metabolites 
and macromolecles. 

As recently reviewed by Magee [49], the chemically-based discrimination of intact 
microbial cells, referred to as whole-organism fingerprinting, involves the concurrent 
measurement of large numbers of spectral characters that together reflect the overall cell 
composition, the commonest spectral approach for this indeed being PyMS. There are, 
however, four general problems with using PyMS data as the input to supervised learning 
systems of this type: (i) the method is hardly non-destructive (although this is unimportant for 
broths, and for plates this could be dealt with by replica plating), (ii) it does not lend itself to 
in situ measurements, (iii) it still suffers somewhat from spectral drift (although recent 
advances suggest that this problem may be overcome [50; 51]), and (iv) data acquisition still 
requires nearly 2 minutes per sample. Recently, a number of studies [52-57] have illustrated 
how even visible spectroscopy of petri plates could be used to identify colonies with high 
levels of electron transport chain components of interest, though this would not of course 
work directly for most target molecules. Most importantly, however, just as has been widely 
done with PyMS, Naumann and coworkers in particular (e.g. [58-64]) have shown that Ff-IR 
absorbance spectroscopy (in the mid-IR range, defined by IUPAC as 4000-200 crrrl = 2.5-50 
µm) provides a powerful tool with sufficient resolving power to distinguish intact microbial 
cells at the strain level. 
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In view of the above, we therefore considered that the combination of Ff-IR and supervised 
learning methods would, when applied judiciously [65], permit us to extract the chemical 
concentration of the substance of interest, in a similar manner to that which we developed 
with PyMS. Sample preparation for absorbance measurements on biological samples of this 
type is rather tedious, however. Instead, and because Ff-IR may be carried out using 
reflectance methods, we considered that one should seek to obtain spectra as a function of 
spatial location, and by combining the spectroscopy with supervised learning methods obtain 
images in which metabolite concentrations are encoded as colours or contours, i.e. to 
construct a metabolic microscope. In this regard, it is particularly noteworthy that White's 
group [66; 67] have shown the ability of diffuse reflectance Ff-IR (DRIFf) spectroscopy 
without any chemometric processing, to effect the discrimination of microbes on surfaces. In a 
related vein, Yan and colleagues [68] recently showed that Ff-IR could be used to analyse 
solid-state pins as used in combinatorial chemistry, whilst Gremlich and Berets [69] used Ff
IR internal reflection spectroscopy for a similar purpose. 

We therefore here describe the realisation of our development of diffuse 
reflectance/absorbance Ff-IR spectroscopy as a quantitative tool for the rapid analysis of all 
samples of biotechnological and other interest, specifically by exploiting the ability of 
modem, supervised learning methods to take multivariate spectral inputs and map them 
directly to the concentration of one or more target determinands (see above and [70]), using as 
before [46] mainly mixtures of ampicillin and E.coli as a model system. 

2. EXPERIMENTAL 

2.1 Preparation of the ampicillin mixture with Escherichia coli. 
E. coli HB 101 [71] was used; this is ampicillin-sensitive, indicating that any spectral 

features observed are not due for instance to B-lactamase activity. The mixtures were 
prepared as previously [46]. The strain was grown in 41 liquid medium (glucose (BDH), 
10.0g; peptone (LabM), 5.0g; beef extract (LabM), 3.0g; per litre water) for 16h at 37°C in a 
shaker. After growth the cultures were harvested by centrifugation, washed and resuspended 
in saline. Ampicillin (desiccated D[-]-a-aminobenzylpenicillin sodium salt, ~98% (titration), 
Sigma) was prepared in the bacterial suspensions to give concentration ranges of 0-13.46mM 
(0 to 5000 µg ml- l in 250 µg mi-1 steps) in 40mg ml-1 E. coli (dry weight) and 0 to 2mM in 
200µM steps in 3mg mr 1 E.coli (dry weight). 

2.2 Diffuse reflectance-absorbance FT-IR 
20µ1 aliquots of the above samples were evenly applied onto a flat, sand-blasted 

aluminium plate (measuring lOcm by 10 cm) and dried at 50°C for 30 min. The plate was 
mounted onto a motorised stage and the samples analysed using a diffuse reflectance TLC 
accessory [72-7 4] connected to a Bruker IFS28 Ff-IR spectrometer (Bruker Spectrospin Ltd., 
Banner Lane, Coventry CV4 9GH, U.K.) equipped with a liquid N2-cooled MCT (mercury
cadmium-telluride) detector. A schematic of the general optical arrangement of this accessory 
is shown in Fig 1. 
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Fig 1. Schematic of the Bruker Diffuse Reflectance Accessory used in the present work 

The IBM-compatible PC used to control the IFS28 was programmed (using OPUS 
version 2.1 software running under IBM OS/2 Warp provided by the manufacturers) to collect 
spectra over the wavenumber range 4000 cm-1 to 600 cm-1. Spectra were acquired at a rate 
of 20.s-1. The spectral resolution used for the higher concentration experiments was 8 cm-1 
(whilst the data point spacing in the Fourier transform of the interferogram (after using a zero
filling factor of 2) was 4 cm-1 ), and for the lower concentration experiments was 4 cm-I (as 
was the data point spacing in the Fourier transform of the interferogram using a zero-filling 
factor of 1). To improve the initial signal-to-noise ratio at least 32 spectra were co-added and 
averaged. Each sample was represented by a spectrum containing 882 points, and spectra 
were displayed in terms of absorbance as calculated from the reflectance-absorbance spectra 
using the Opus software and Kubeika-Munk theory. ASCII data were exported from the Opus 
software used to control the FT-IR instrument and imported into Matlab version 4.2c.l (The 
Math Works, Inc., 24 Prime Park Way, Natick, MA, USA), which runs under Microsoft 
Windows NT on an IBM-compatible PC. 

2.3 PCA and PLS 
Matlab was used to perform Principal Components Analysis (PCA) according to the 

NIPALS algorithm [75], so that exploratory data analysis could be conducted. PCA is a 
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multivariate statistical technique which can be used to identify correlations amongst a set of 
variables (in this case 882 wavenumbers) and to transform the original set of variables to a 
new set of uncorrelated variables called principal components (PCs). The objective of PCA 
is to see if the first few PCs account for most (>90%) of the variation in the original data [76]. 
If they do reduce the number of dimensions required to display the observed relationships, 
then the PCs can more easily be plotted and 'clusters' in the data visualized [77]; moreover 
this technique can be used to detect outliers [78]. Matlab routines were also used to perform 
PLS modelling [79]. PLS is a multivariate technique similar to PCA, but with the components 
extracted using both x- and y-data and then regressed onto the (known) training results while 
forming the model. This results in a more parsimonious model in situations where the 
variance of interest may not be the largest variance in the samples. Data were mean-centred 
and scaled to unit variance prior to the performance of PCA and PLS, and cross-validation 
was performed on the test set via the leave-one-out method. 

2.4 Artificial neural networks 
All artificial neural network (ANN) analyses were carried out with a user-friendly, neural 

network simulation program, NeuFrame version 1,l,0,0 (Neural Computer Sciences, Lulworth 
Business Centre, Nutwood Way, Totton, Southampton, Hants), which runs under Microsoft 
Windows NT on an IBM-compatible PC. In-depth descriptions of the modus operandi of this 
type of ANN analysis [80; 81] in our hands [46-48; 50; 74; 82-92] are given elsewhere. 

3. RESULTS AND DISCUSSION 

Many studies on the quantification of particular determinands in mixtures, using FTIR, have 
been based on the contribution of only one or a few spectral feature& The carbonyl bond in the 
~-lactam ring of ampicillin displays a characteristic marker band in the IR spectrum at -1767 
cm- 1 [93] and, in theory, this property could be used to quantify the concentration of the 
antibiotic where a good signal-to-noise ratio exists. (The contribution of the carbonyl bond to 
the spectral pattern was confirmed by incubation of the ampicillin with ~-lactamase resulting 
in ~-lactam ring cleavage and a reduction of the absorbance in this region (data not shown).) 
However, closer analysis of the region between 1850-1700 cm-l indicated that too much 
baseline variability occurs between individual s~Tples to derive an accurate linear 
relationship between the absorbance at 1767 cm and the known ampicillin concentrations 
(data not shown). Analysis of the whole spectrum from 4000-600cm-l indicated that 
variation in the baseline was evident throughout the whole measured range. Tests on uncoated 
plates and areas of plates uniformly coated with determinand indicated that this variation was 
in the background reflectance of the plate fer se. However, a chemical images of these plates 
based on integrating the peak at 1767 cm- is given in Fig 2. 
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Fig 2. Spatial variation in ampicillin concentration in mixtures with E. coli on a diffusely 
reflecting metal plate. The abscissa is the distance in mm, whilst the ordinate, based on 
integrating the peak at 1767 cm- 1, is arbitrary. Ampicillin concentration increases from lower 
left to upper right. 

Although in this case single spectral features could not be used for accurate quantification of 
the ampicillin, the implementation of modern chemometric techniques such as PLS and ANNs 
allowed us to predict the ampicillin concentration using full-spectrum calibration. PLS 
analysis [79; 94-96] on the full spectral results from the 0-SOOOµg mI-1 ampicillin/E. coli 
samples, where the data were split into a training set (0-SOOOµg mI-1 ampicillin in SOOµg ml-
1steps) and a test set (250µg ml-1-4750µg ml-l ampicillin in SOOµg ml-l steps), resulted in an 
RMSEP of 6.66% for 7 factors (data not shown). We then used PCA to reduce the number of 
input nodes to 9 [74]. Such a network trained on a 9-4-1 architecture gave an RMSEP of 
3.49% compared to 7.1%for882-10-1. 

Multivariate analysis using PLS and ANNs clearly shows that it is possible to form a 
model capable of discriminating and quantifying unknown concentrations of ampicillin 
between 0.25 and Smg ml-l (0.67-13.46mM) from an E. coli cell background. To test the 
sensitivity of the FTIR/chemometrics approach in determining lower levels of ampicillin we 
used a concentration range from 0-2mM ampicillin with 3mg ml- l E. coli cells in a similar 
experiment. The RMSEP for the unprocessed spectra was 18.66%; however, this error was 
improved by the use [61] of the first or second derivatives for input into the PLS (9 .4 and 11 % 
for 6 factors). 

In addition to the true signal, the raw spectral data also contain noise and baseline 
shifts which may be derived from instrumental drift (and, in particular here, from variations in 



67 

the background reflectivity of the metal plates). Processing the IR spectrum through another 
level of transformation, from the spectral wavelength domain into the Fourier Domain 
spectrum (FDS) (or delay domain spectrum), can allow isolation of the signal from the 
baseline and random (homoscedastic) noise information [97-103]. Whereas the noise is spread 
throughout the original spectrum, it appears in the high-delay region of the FDS while the 
signal is concentrated into the low-delay region and the baseline information into the very
low-delay domain. By selecting those variables in the transformed spectrum that correspond 
most closely to the signal region(s), the majority of the noise and baseline can be removed. 
Variable selection methods are an extremely powerful adjunct to our hyperspectral approaches 
[65; 104; 105], and the same RMSEP may often be acquired from a very small fraction of the 
variables (e.g. wavelengths) available [106]. Not only can the effective removal of these 
variables in the PLS model improve the PLS prediction but such parimonious models are 
widely considered to be more robust and to generalise better [107]. 

PLS performed on the Fourier Domain spectra (FDS) (or delay domain spectra) produced an 
RMSEP of 4.12% with 7 regression factors. PLS similarly performed on the FDS from the 0-
5000µg ml- I ampicillin data set produced an RMSEP of 4.28% (8 factors; data not shown). 

Finally, we have used cognate methods to effect the sensitive discrimination of various 
enterococci and streptococci [74] and to provide accurate, quantitative estimation of 
aristeromycin and neplanocin A (see e.g. [108]) in S. citricolor fermentations; a full 
description of the latter is given in the paper by Winson et al. elsewhere in this volume. 
However, an important point to be made is that estimations in whole fermentor broths and the 
like differ from those in simple mixtures in that the chemometric methods can exploit 
differences in the organism or the medium which correlate with metabolite overproduction, 
rather than relying solely on spectral features due to the target molecules themselves. This can 
serve to give an extremely useful 'amplification' to the method when the target concentrations 
are partiocularly low. 

4. CONCLUSIONS 

Driven in part by the activities of the "remote sensing" community [ 109], there is much 
interest in the rapid acquisition of diffuse reflectance spectral data from various spatial 
locations on the earth, detecting hundreds of wavelengths simultaneously (most commonly in 
the visible and near infrared), and coupled increasingly to advanced data reduction and 
visualization algorithms, an approach that is nowadays often referred to [ 110-118] as 
hyperspectral imaging. Such remote-sensing analyses occasionally use the mid-IR part of the 
spectrum [ 119-122], but one of the problems with this approach to remote sensing is the 
strong and variable absorbance of radiation by the atmosphere itself [118; 123; 124], a 
problem from which we do not really suffer. 

Diffuse reflectance FfIR in combination with a multivariate calibration chemometric 
approach to data analysis could be used to effect the rapid quantification of a pharmaceutical 
product (ampicillin) in a (variable) biological background (E. coli cells), a situation 
representative of metabolite over-production in a screening or titre improvement programme 
[46]. Spectral variation contributed by shifting baseline due to instrumental interference and 
differences in the biological background between samples (which would have prevented 
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accurate univariate calibration) could largely be eliminated by PCA (as seen previously [74]) 
or by transformation to the Fourier domain prior to forming a model with ANNs or PLS. 
Although diffuse reflectance methods are well known to suffer difficulties in traditional 
quantitative work (the concentration region for which Kubeika-Munk theory [125-128] holds, 
for instance, is normally quite small (see e.g. [129]), it is clear that the combination of modern 
chemometric methods with the diffuse reflectance-absorbance approach overcomes these most 
satisfactorily. Thus we have here shown for the first time that the hyperspectral approach 
using diffuse reflectance-absorbance spectroscopy, when coupled to modern supervised 
learning methods, provides a novel, rapid, general and powerful approach to the problem of 
screening for metabolite overproduction in biological and biotechnological systems. 
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