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I was really asked to talk about remote sensing, and indeed I will
introduce this talk through the technology and some of the activities of the
remote sensing community, in order to convey to you what obviously I believe:
that by hijacking for our purposes the sort of stuff they do with their rather
extensive budgets, we can actually buy ourselves some very useful technology
and insights into how we can analyze complex biological systems.

First, my credit slide at the beginning (Figure 1). A colleague, Jem
Rowland, in our Computer Science Department and I collaborate in this general
area (Figure 2), and the aim of much of what we try and do is to acquire as many
different data types as possible from the same object and crunch the numbers to
turn those data into information (Figure 3). So today | am really talking about
infrared spectroscopy and the folk who have done that mainly are Mike Winson
and Roy Goodacre. The numbers have been crunched by Andy Woodward and
Bjorn Alsberg and Alun Jones. This is in fact a collaboration with Glaxo
Wellcome and Bruker Spectrospin, and the Glaxo people are from Tony Buss's
group: Martin Todd, Brian Rudd and Mike Dawson.

To start then with the essential take-home messages: there are many

techniques you can read about in the pages of analytical chemical journals,
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including some such as CT scanners and magnetic resonance imaging. Geoffrey
Hounsfield got his Nobel prize (in 1979; http:/iwww.nobel.se/laureates/medicine-1979-
press.html) not in fact particularly for that but for the radon transform that
allowed them to take the data and turn it into the pretty pictures you see in CT
scans. There is thus a history of using these sorts of heavy signal processing
methods on spectroscopic data in biology. But I think there has been less of a
trend to use these complex or modern data processing methods in many other
kinds of spectroscopies perfectly well known to our medicinal chemists. My
argument is, and I hope to illustrate it with examples, that we can hijack these
methods too, and apply them in much more complex biological systems in which
we are interested and extract important and useful information and get answers
not just data.

In particular, although chemometrics (Figure 4) is not a subject to discuss
in public at all, let alone after lunch on the last day of a conference, I want to
make one or two points about the general sorts of methods that tend to work
better, which means the supervised methods, and that is a relatively new game
in town. People recognized that these modern methods can extract information
from the data in a way where traditional data processing methods in fact fell
over rather horribly and didn’t do very well at all. This sort of area is usually
called chemometrics. You could call it signal processing, of course; nowadays
it is often referred to bioinformatics, although chemometrics was coined about
25 years ago so it does have some historical precedence. The major journal in the
field Chemometrics and Intelligent Laboratory Systems started in 1986, so it is
perfectly reasonable to call these methods chemometrics.

The usual definition is the application of mathematical and statistical
methods to chemical data, though of course chemical data can come from
biological organisms. Although there are many in the Artificial Intelligence (Al)

community who would not accept this statement, I will also say that this
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therefore includes any type of Al-based approaches to extracting information
from complex vectors and matrices.

The analogy I like to use about chemometrics (Figure 5) is that it is a tool
box. There is a huge zoo of methods. We try not to let the animals escape too
often. You can see partial least squares, discriminant function analysis,
hierarchical cluster analysis, genetic algorithms, genetic programming, principal
components analysis, principal components regression, denoising, classification
and regression trees, fuzzy rules, multivariate induction and many more. The
point is that the tool box is very rich, it contains a lot of useful tools, and what we
have to learn to do is to apply the right tools to extract the information from our
data. In particular, these tools coming into their own when we deal with highly
multivariate data.

The general area of multivariate data is covered in Figure 6. In the jargon,
the samples are called objects and the characters are called variables. In many
cases, traditional methods cannot be applied to circumstances in which the
number of variables is greatly in excess of the number of objects. That
circumstance is often (probably generally) true for spectroscopic data, where you
often have relatively few samples. Of course, in the HTS community it rings less
true, but the point is that you have huge numbers of characters, particularly
spectroscopic characteristics, from each object.

One way of looking at these huge number of dimensions of data we have
is to think that for each variable — which might be an absorbance at a certain
wavelength —a sample has a certain value, and it therefore can be said to have a
position in n-dimensional hyperspace for each of those n values. In pyrolysis
mass spectrometry (which I am not going to discuss here) we have 150
dimensions in the way we typically use them. The infrared data I will talk about
today have 882 variables. The key point of this is that by definition, such very

high dimensional data and methods must have a high resolving power, and a
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much higher resolving power than the univariate or oligovariate methods more
traditionally employed.

There are two major ways in which we analyze these data. First, the so-
called unsupervised methods (Figure 7), which are the more traditional ones in
which we might have a series of spectra, we extract some features we may be
interested in, and we look to see how alike the spectra area, When an unknown
spectrum comes along, we say, “which one does it look like most?.” After
deciding we therefore say it probably means that the sample was like it. The big
disadvantage of those types of methods is they are totally undiscriminating,
Every variable is effectively given equal weight, whether or not it contributes to
the discrimination of the characters in which you are interested.

What the big new game in town (effectively —not so new in some areas) is
the concept of supervised learning methods (Figure 8) in which we have our
spectra and we have some knowledge of what the characters of interest are: the
biological characters, the name of an organism, how much stuff is it making,
which target in the cell have I hit, whatever it is that we are interested in which
we have measured by some rather tedious method which I will call “the hard
way.” We want to relate the spectra to the thing we are interested in, using a
mathematical model known as a multivariate calibration model. But we do it
iteratively so that we muck about with the model mathematically until we can
take the spectra, feed them through the model, and it gives us the answer we are
interested in.

Then, of course, we come along with new spectra the thing hasn’t seen,
and we can tell whether it has done a good job or not. Under these circum-
stances, the methods essentially ignore the irrelevant variance in the data we
have and concentrate on the variance that matter for the purposes we are
interested in. To cut a long story short, this is a new game in town and it is an

incredibly much more powerful way of extracting the information from the data

we have got.
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Let’s go back now to chemometrics and why we are obviously going to
need these mathematical and computer methods to extract the data from these
high dimensional spaces. We are going to look at the remote sensing side of
things, and I might start here with a quotation from Sir Alistair Hardy (Figure 9),
who was a Professor of Zoology when I was at Oxford, and who latterly retired
to run a Religious Experience Research Unit. He was on a trans-Atlantic flight,
and noticed that the colors of the sea varied in different places. He recognized
that it was probably because the numbers of chlorophyll-containing micro-
organisms varied in different places. Since fish can eat these things and get
nutrients from them, this might well be a good idea, if you could only
understand what that meant, you could then tell your fishermen where to go and
fish.

So the idea of essentially remote sensing of chemical and biologically
relevant information begins to happen and, with rather expensive satellites of
course, turns into reality. The object in Figure 10 is known as a Coastal Zone
Color Scanner. 1 don’t exactly know the price of these things, but that is
probably the right decade to be in. The Coastal Zone Color Scanner has been
flying around for some time, and it comes up with pictures like the one in Figure
11, chemical images (in which in the key there is a high concentration at the
bottom for some reason). It is essentially relying on the spectral properties of
chlorophyll, and you can see that the up-wellings in the shallow regions are
indeed connected with high amounts of microbial productivity and out in the
deeper part of the ocean, the productivity is relatively low.

Remote sensing methods can be and have been used to affect chemical
imaging in a way we know quite well (Figure 12). Another nice example well
known to you all I am sure is the observation of the ozone hole (Figure 13). This
is done in the ultraviolet where ozone has a particular absorbance, and we all

know about the ozone hole in 1992.
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These sorts of traditional methods, though, Landsat and Spot for instance,
the satellites you have certainly heard of, use five and seven wave bands
respectively because they weren’t very good at collecting photons. The human
visual apparatus, of course, uses three different types of cone, like television sets:
red, green, and blue. Most of these things thus use very small numbers of wave
bands to produce the chemical information one is interested in.

What happens if instead of using these very small numbers of wave
bands, five in this case, we use hundreds of wavelengths simultaneously (Figure
14)? Do we buy ourselves anything apart from a lot of grief? The effective
answer is yes, because one way to consider this is that there are many things
with the same spectrum as those where there are only five variables, but there is
only one thing that has the same spectrum as when there are, say, 224 variables.
Again, we come back to the point that the high dimensional data are by
definition intrinsically more highly resolving than the low dimensional data, and
this isn’t just hypothetical.

There is a thing that has been built called AVIRIS, a predictable acronym
(Figure 15), which flies around collecting data in, in fact, 224 bands between 400
nanometers and 2.5 microns, i.e., the visible and the near infrared, collecting
spectra from each location. This is known as imaging spectroscopy, so you are
collecting a spectrum from every place in space. The game then of course is to
take these spectra and ask what was it that was on the ground? Obviously it is
very easy to discriminate water and trees and so forth (Figure 16), but one would
hope to be much more discriminating. How can we use these hyperspectral data
(as the jargon has it; Figure 14) to go from the data we are not particularly
interested in at all to the biology that we are interested in?

What comes out, then, of these types of approaches, are datacubes like
that in Figure 17; it bears looking at this picture for a couple of seconds to get
one’s mind around it. We are always going to have a 2-D image in the XY plane,

and in the Z plane effectively an entire spectrum, here encoded by intensities as
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colors in which at the top we are talking about 400 nanometers and at the bottom
2.5 microns. So we have a data hypercube in which the XY plane is indeed the
XY plane, and the Z plane is the spectral plane with hundreds of absorbances at
once.

When you use these sorts of things, you can come out with very pretty
pictures (Figure 18). All of these have been compared with what the remote
sensing people call the ground truth which is, “if I get in there with a bucket and
spade, what do I find?” 1t gets it all right, all these different kinds of minerals
can be remotely sensed (Figure 19). There is an example now with vegetation
(Figure 20), with a nice tale about how the European Union used this to
advantage to discover that a particular Mediterranean country had not in fact
grown 4.2 million tons of durum wheat as it claimed, but only 1.7 million tons.
There was quite a big scandal about that, apparently.

The point is that one can indeed use the spectral data from reflectance
measurements. The sun, of course, in this case is the source of the photons, the
photons are going to hit the ground, rattle around in the target, and bounce back
to where the satellite is going to see them. It is diffuse reflectance, and of those
that come back, some of them have been absorbed, and therefore that is why it is
diffuse reflectance absorbance spectroscopy and the DRASTIC acronym. We are
going to use this, if possible, to give ourselves chemical information about
complex biological systems for pharmaceutical systems in which we are
interested. I tend to be interested in natural products and microbiological
systems.

There are two problems with the remote sensing approach, however. First
is, when it goes wrong, it goes wrong spectacularly (as in the Ariane rocket
exploding). The second problem is you have to use the visible and mid-infrared
really, because although you might like to use the mid-infrared, it is almost
entirely absorbed by the water and the CO in the atmosphere (Figure 21). You

can use this imaging spectroscopy in the lab to get around the first of those, but
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again they are using the visible and very near infrared spectrum. What we want
to do is recognize that in the mid-infrared there are huge amounts of chemical
specificity, as I am sure most of you know. Every molecule has a rich infrared
spectrum that is due to normally vibrational modes of the individual chemical
bonds in the molecules of interest.

In the laboratory, we don't have this problem of water absorbance and
COz absorbance that the remote-sensing people have. We then can probably
hijack this sort of approach in the laboratory to do diffuse reflectance absorbance
spectroscopy in the infrared for, as it says, rapid noninvasive chemical analysis.
When you combine infrared spectrometry in the lab, where we happen to
collaborate with Bruker (Figure 22), obviously the price is a bit more favorable
relative to the coastal zone color scanner.

An important point to make, although I am not going to discuss it in detail
here, is that miniaturization is very straightforward because all the manufac-
turers have microscopes as well (Figure 23). Because of the wavelengths we are
talking about, you tend to be able to go down to about only 10 microns direct
spatial resolution, and so that is a very straightforward thing.

I am going to talk about something rather more mesoscopic today. This is
based on an attachment that Bruker markets for looking at thin layer
chromatography plates (Figure 24), in which they have implemented diffuse
reflectance. So there is a source of infrared photons, various optics, and a
detector and it bounces off the target on the TLC plate. The thing is mounted on
an XY stage so that you can effectively fly over the thing doing what we want to
do. But instead of having used a TLC plate and done a bit of chromatography
first (which we are not very interested in), we simply use it as a sample
presentation device so that we can whack all our different samples into little
wells on this plate (Figure 25), as obviously we have made various 10 x 10,

100 x 100 and so on (nowadays standard 384-well plate coordinates in fact). You

are talking then about typical 20 ul down to 5 pl sample volumes.
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Now, I describe a couple of studies we have actually done using this
diffuse reflectance approach—one a relatively easy one, as it were, and one a
relatively hard one. The easy one (Figure 26) is a simple model in which we are
just going to mix up what [ will call drug and bug, and see if the thing can
estimate the drug in a background of the bug, because if it can’t do it with
mixtures of known drug plus known bug, then it is clearly going to fail when
you get to something much more difficult. So the model bug is E. coli and the
model drug is ampicillin, and we can collect a lot of spectra.

Note, for instance, the trace with the lowest concentration of ampicillin
in this case, none, does not have the lowest reflectance (Figure 26). That is
because even at the National Bureau of Standards you can’t make a plate that is
perfectly homogeneously reflecting, and even if you could you are only going to
cover it with gloop anyway; you needn’t have bothered in the first place.
Chemometrics isn’t going to mind that. It is worth noticing that dealing with
baselines is in principle going to be a problem. Note the peak band, which is in
fact at 1767 cml. It is known that this band at 1767 cm is actually the carbonyl
stretch (Figure 27), but the carbonyl stretch is slightly different from where it
would normally be because it is constrained in the beta-lactam ring of the
ampicillin moiety.

You can show that in two ways, the main one of which is by zooming in
and looking at it as an amount of stuff (Figure 28). Clearly, just sitting at one
univariate wavelength and measuring the absorbance would fall over horribly,
(i) because of the changes in the baseline I have told you about, and (ii), because
the absorbance itself is evidently by inspection by eye not wonderfully linear
with the amount of stuff. You could also show the peak is due to what I say by
adding lactamase and it disappears.

If you then say, okay, let’s just integrate the band (Figure 29). We know

this band is essentially selective for the ampicillin in this case, and you ask the

question, if I integrate this band and look at the distribution of absorbance over
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space in my 100-well plate you see something like the map in Figure 30. We
clearly loaded this so that there is none down at the bottom and plenty up top,
and clearly it gets it all right. But we would like to be quantitative, and the way
we like to do that is by using whole spectral methods rather than the rather
unimaginative band integration methods you tend to be able to get from people
with commercial software and spectrophotometers.

After this, we are going to use neural networks and we are also going
to use partial least squares. As you know, what you have in a typical back
propagation neural network is an input, a hidden layer and an output. The
spectral data (not, in this case, PyMS but the infrared absorbances) are going to
be on the input. What these lines —known as weights — do is multiply the inputs
by numbers and the circles — known as nodes; add them up and multiply them
by a sigmoidal function and spit out a number. You muck about with the
weights using a more or less intelligent algorithm until the spectra you add at the
front of the neural network gives you the output you want. When you have
trained the neural network appropriately, you interrogate it both with the data
you have trained it with — the training set—and totally unseen data in the test set;
obviously it has become quite good at giving you a reasonably accurate
prediction of the amount of ampicillin in your mixture.

So the information is there. We can use it (Figure 31). Note that because
of the sigmoidicity here amongst other things, the predictions at the end are
really not very good. Here we are using 882 inputs, that is the absorbances at all
of those 882 bands, which are the wavenumbers between about 4,000
wavenumbers and 600 wavenumbers with four-wavenumber resolution.

We can be a little more intelligent than that. I am not going to go into too
many chemometrics methods, but just give you a flavor of the sort of things one
can do to improve things. If I extract what are called the principal components,
which is an unsupervised method, and ask for each of my samples, what

happens if I input the value of the first several principal components to the net,
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rather than 882 variables? A) of course, it trains one heck of a lot quicker, and B)
we can ask the question how many of these principal components should I use?
The answer appears to be nine when we look at the test set (Figure 32) and when
we look at the output then, we have cleaned that up very nicely and we have got
the straight line anyone would be proud of (Figure 33).

That is ampicillin in E. coli. Of course, the question is, what happens when
you make it a bit more demanding and throw in something else, in this case
Staphylococcus aureus? It has learned very well to discriminate the amount of
ampicillin in S. aureus, and clearly you see a nice straight line. What more can
one say?

That was in effect an easy one, where we were adding known mixtures of
drug plus bug, and we could more or less follow fairly exactly what we thought
was going to happen and make it happen and get a nice straight line at the end.
Now we are going to do a hard one (Figure 34), which is looking at a real
Streptomyces fermentation in what any of you would know what Streptoniyces
fermentations are like —a pretty gloopy broth with all sorts of complex media
constituents inside. We are going to be making (or, the bug is going to be
making) two carbocyclic nucleosides called aristeromycin and neplanocin A. As
I mentioned, this project is a collaboration with GlaxoWellcome (Figure 35).

We are going obviously to see if we can quantify them and discriminate
them, and that is quite hard, because chemically they are very similar. The only
difference is the chirality here, and there is a double bond there, and there isn’t
one there (Figure 36). The strategy essentially is as before. First we can just look
at the diffuse reflectance-absorbance spectra of the compounds themselves
(Figure 37). You don’t need me to tell you can gawp at those for a long time and
it is not going to do very much for you; only the computer will solve this.

So you grow the cultures, take the broth (this is an organic, wholemeal
experiment—nothing added, nothing taken away), and you look at some spectra.

Here are four different classes of producer (Figure 38). One makes lots of
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aristeromycin; one makes lots of neplanocin A; one makes aristeromycin only;
and one that makes both. These are typical spectra. The one on the right side of
Figure 38 is a blow up of the region between 1700 and 1000 wave numbers.
Clearly, there are differences but equally clearly, in contrast with the ampicillin
case, there are no unique bands; no univariate analysis could possibly give you a
vague chance of extracting the concentration of either the aristeromycin or the
neplanocin A. Only the whole spectral, hyperspectral analysis can do that.

What we have to do in all of these things is set up a training set and a test
set, but the one thing not widely recognized is what you should choose to be in
the training set and what you should choose to be in the test set (Figure 39). In
principle, the training sets should encompass the test set, so that it doesn’t
extrapolate, but if there are 882 dimensions, it is kind of hard to tell that. Usually
people just put them in at random. This can cause these methods to fail horribly,
and people don’t recognize why. To cut a long story short, we (or more precisely
Alun Jones in the group) have got around it by writing some software that can
recognize these problems and deal with them and make the training and test sets
correctly.

So you make the training set, and you look in this case first with the
partial least squares method, which is essentially a regression method for when
the number of variables is grossly in excess of the number of objects. Happily
enough, if you are trying to predict metabolite concentrations, this is aristero-
mycin plus neplanocin A (Figure 40, left); obviously it does jolly well. For
aristeromycin only, it also does jolly well (Figure 40, right). It doesn’t do as well
as we would like in terms of being quantitative, but it does pick all the high-
producing strains which, after all, is all it is supposed to be doing.

We do the same with neural nets, the same sort of story, just showing the
test set this time as one really should, and there is a similarly nice prediction of
the combined, and a nice prediction of the aristeromycin on its own (Figure 41).

When we look at the neplanocin A tests—again with PLS (Figure 42) or with
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neural nets (Figure 43) — it has again gotten all the high yielding strains, although
we would be happier if it also got the right answer (Figure 44).

How are we going to deal with that? There are lots of potential ways. The
way I will describe to you is that the model is probably getting confused because
there is a lot of spectral overlap between the aristeromycin and the neplanocin A
(Figure 36). There are not enough objects in the training set anyway in reality in
this experiment, and it just hasn’t the ability to discriminate them. But if you
could tell it which class of producer it was first, you would have a different
model then to the aristeromycin only or the neplanocin A only. Then you would
have solved the problem because you wouldn’t be trying to look at organisms in
which you are making both of them. You would only be looking at organisms
making one or the other, so you want to make that decision first, This is known
as the “divide-and-conquer” approach.

You encode high aristeromycin only, both, neither, or high neplanocin,
and when you do that, you can then just produce the model secondarily. The
way we do this is with a discriminant function analysis (Figure 45). The four
different classes are represented. If you take away class 1, you don't initially
have the ability to discriminate 2 and 3 very easily, but once you have identified
1, you take them out, and you can easily affect the discrimination of the others.
Then you have essentially solved the problem because now you only need to
make the model for the ones you are interested in.

The conclusion then (Figure 46) is that these whole broth, whole spectral,
hyperspectral analyses do have sufficient chemical information to affect the kind
of discrimination in which we are interested. In this case, I have concentrated on
high yielding strains and titer improvement programs. I could make the same
arguments about many other kinds of pharmacological assay of interest.

The nice thing, of course, is it is rapid and non-invasive. 1 didn’t say how
rapid. The spectrometer can do twenty a second. Obviously it is noninvasive,

There has been talk about reagent costs during this meeting; here, there are none,
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a slight advantage. There has also been talk to the effect that, okay, we can do
105 assays, but no one can provide me with 105> molecules from the combichem.
But in the high-throughput screening, titer-improvement programs, neither of
those statements is true. It really is the more the merrier. If you have 105
organisms in a milliliter and observe them in terms of optical density you won't
even see them. We are not short of possible numbers of organisms so in titer-
improvement programs, it really is a matter of the more the merrier because it is
easy to generate the mutants we would want to put through a titer improvement
program.

You may well want to ask me about sensitivity and limit of detection.
That is somewhat harder to speak about than I would wish because the thing is
limited not so much by the intrinsic sensitivity of the infrared machine, which is
easily in the nanomolar, but by the variance in the background that could, on a
bad day, swamp it. Equally, it can work to your advantage because you are
interested in looking at things that correlate with what you are interested in, and
it doesn’t necessarily mean you have to measure them directly in these cases. So
small chemical changes can be amplified, and indeed will be amplified by the
cells in a way that you can use those as the spectral features of interest rather
than looking directly. So if you were to ask me about limits of detection, I have

to say there isn’t a simple answer to that.
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QUESTIONS AND ANSWERS

Question: Who uses this sort of technology to sort out which one is which, what
have you made, and that sort of thing?

Prof, Kell: There is a group at Merck” that has published several papers on
measuring solid-phase combichem beads, essentially saying, yes, we can take
microspectroscopic data from individual beads and see that it has an infrared
spectrum consistent with what I thought I had made. ButI haven’t seen any

other group yet publishing it.

‘Yan, B., Fell, ].B., and Kumaravel, G. Progression of organic-reactions on resin
supports monitored by single bead FTIR microspectroscopy. Journal of Organic
Chemistry 61:7467-7472, 1996.

Yan, B., and Kumaravel, G. Probing solid-phase reactions by monitoring the IR
bands of compounds on a single flattened resin bead. Tetrahedron 52:843-848,
1996.

Yan, B, Kumaravel, G, Anjaria, H., Wu, A, Petter, R.C,, Jewell Jr., CF.,, and
Wareing, J.R. Infrared spectrum of a single resin bead for real-time monitoring
of solid-phase reactions. J. Org. Chem. 60:5736-5738, 1995.

Yan, B., Sun, Q., Wareing, ].R., and Jewell, C.F. Real-time monitoring of the
catalytic oxidation of alcohols to aldehydes and ketones on resin support by
single-bead Fourier transform infrared microspectroscopy. J. Org. Chem. 61:8765-
8770, 1996.
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The essential or take-
home messages

e Many/most modern instrumentation-
based technigues have had their
origins in analytical chemistry

Some (e.g. CAT/ MRI) innately require
intensive signal processing, and have
been exploited by biologists (especially
in medicine)

Many other such techniques which
chemists routinely use for analysing
purified material might be exploited for
answering complex biological questions
provided that they give answers and
not just dala

Modern, and especially “supervised”,
chemometric methods when correctly
applied to multivariate data can give
these answers, rapidly and precisely, ir]
a large number of areas of interest to
the pharmaceuticals industry

Aol

Figure 3,
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Chemometrics

Chemometrics is the
discipline concerned
with the application of
statistical and
mathematical methods
to chemical data

As such it may be
taken to encompass
the methods of ‘artificial
intelligence’

Figure 4.
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Some methods discussed

Unsupervised — Supervised

Just work on use y-data too
Xx-data
® Principal o Back-prop
component neural
s analysis networks
® Kohonen e Partial least
neural
networks Squares
e Autoassociativ * Principal
e neural components
networks - non regresgign
linear PCA

® Canonical variales analysis

e Genetic Algorithms

e Genetic programming

e Classificiation and Regression trees

Figure 5.
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Multivariate data

e Multivariate data consist of the
results of observations of many
different characters (variables) for
a number of individuals (objects).

@ Each variable may be regarded as
constituting a different dimension,
such that if there are n variables
each object may be said to reside
at a unique position in an abstract
entity referred to as n-dimensional
hyperspace.

e FTIR data of the present type have
882 dimensions - hence this is a
very high-resolution technique.

Figure 6.
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Unsupervised learning

The system is shown a set of
inputs (spectra) and then left
to cluster the spectra into
groups. For multivariate
analysis this optimization
procedure is usually for

l simplification or

SPECTRA dimensionality reduction. This
means that a large body of
data (the spectral inputs) are
summarised by means of a

FEATURE few parameters with minimal

EXTRACTION loss of information. After
clustering, the results then
J have to be interpreted.
CLUSTERINCl J HUMAN

[INTERPRETATION)E

Figure 7.
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Supervised learning

SPECTRA L TARGET

l

CALIBRATION
SYSTEM ERROR

l il S /
£ s }

l OUTPUT I P COMPARISON

When we know the desired responses (targets
associated with each of the inputs (spectra)
then the system may be supervised. The goal
of supervised learning is to find a model that
will correctly associate the inputs with the
targets; this is usually achieved by minimising
the error between the target and the model's
response (output).

Figure 8.
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Chemical imaging -
relation to biomass
production

These different waters may also be
sometimes discernable by a difference
in their colour, a contrast of shades of
blue and green making a line across
the sea...

If these marked colour changes can be
correctly interpreted we may in the
future find aircraft being used to make
rapid surveys of the surface conditions

in relation to the fisheries.

SIR ALISTER HARDY
The Open Sea, 1929

Figure 9.
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The Coastal Zone
Colour Scanner

Cost unknown, presumably
$10°-10°.

Figure 10.
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Remote sensing of
microbes:
phytoplankton (1)

o Wammmet

Phyloplankton
Pigment
Concenlralion
(ma/m3)

NABA/GSFC

Figure 11.

244

Supplied by the British Library 27 Feb 2020, 09:24 (GMT)




Chapter 2.5 Douglas Kell et al.

Remote sensing of
microbes:
phytoplankton (2

Phytoplankion
Plgment

Colcenimlion
(mg/m)

Figure 12.
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Ozone distributions

Monthly Mean
Total Ozone
Concentration
in
Dobson Units
NASA 1 GHIEC

Figure 13.
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Multispectral vs
Hyperspectral Imaging

~ Muldspectrall
- Hypersneciral Comparison

Figure 14.
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AVIRIS - Airborne
Visible InfraRed Imaging

Spectrometer
400-2500 nm, 224 bands
(1 pixel = ca 20 m)

Figure 15.
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The AVIRIS concept

APL
AVIRIS CONCEPT

EACH SPATIAL ELEMENT HAS A o ‘ _ g
CONTINUOUS SPECTRUM THAT 7 o
1S USED TO ANALYZE THE y .
SURFACE AND ATMOSPHERE //ﬂ o
e b T M T
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D
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Figure 16.
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AVIRIS Hyperspectral image
cube of Moffett Field, CA.
Sides of cube represent visible
(top) through NIR (bottom),
intensity being colour-encoded

250

Supplied by the British Library 27 Feb 2020, 09:24 (GMT)




Chapter 2.5 Douglas Kell et al.

AVIRIS Land and lake
in Switzerland

IVquyﬁght: : Remole Senéing Labumidﬂés’)— Univamity of Ziirich

Figure 18,
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Mineralogical mapping
via AVIRIS

Cuprite, Nevada
AVIRIS 1995 Data
USGS

Clark & Swayze

Tricorder 3.3 product
amorphous lron
oxides

nano-Hematite

Fine-grained to
medium-grained
Hematite
Large-grained
hematite

Goethite
Lepidocrosite

Jarosite

Fe*'-pearing
minerals +
Hematite

2%
Fe -bearing
minerals

"1 Fe -bearing
- minerals: broad
absorptions

Note F»:-ztbeanng
minerals are maknty
muscovites and
chiotites

N

2km

Figure 19.
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Vegetation mapping

M. &)Y e . 7))
Pl ;‘7' ) f ° %
- r"'\,' ,.a-i—;'"i e i

T4

San Luis Valley, CO - Vegetation Distrubution Map
AVIRIS Sept. 3, 1993 Data U. 8. Geological Survey

J Alfalfa -Burley .()at Hay . Chico/Pasture
Canola .Potato Dsl’i““d\ -nodlingnmpped

Figure 20.

Supplied by the British Library 27 Feb 2020, 09:24 (GMT)




Chapter 2.5 Douglas Kell et al.

Wavelengths used

@ Mid-IR radiation (2.5-25 um)
gives much chemical specificity

® However, the above systems
used visible and near-IR
radiation (0.4 - 2.5 wm), since
mid-IR is strongly and variably
absorbed by atmospheric
moisture

® This is not a problem in the
laboratory, which opens up the
possibility of using mid-IR
diffuse reflectance spectroscopy
for rapid, noninvasive chemical
analysis

Figure 21.
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The Bruker IFS28
(price ca $3.5 x 10%)

Figure 22,
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Figure 23.
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Scheme of the TLC unit
for diffuse reflectance

souree wd parabolic mirror

sand-blasted
Al plate vl

elliptical mirror

surface oo With Bole in centre
T reflectance to remove specular
y reflectance

X-y-stage et
X

elliptical mirror

o

detector

Adapted from Glauniger, G., Kovar, K.-A. & Hoffmann, V.
(1990) Possibilities and limits of an on-line coupling of thin-
layer chromatography and FT-IR spectroscopy. Fresenius
Journal of Analytical Chemistry 338, 710-710.

Figure 24.
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Design for metal plates
for diffuse reflectance

LY

2 ABCDIF(‘HIJ

7 T@.O.@O.@O@
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‘CEOOE0OOQO0
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BlOGOBOOOO0VO
INOBOOOOOO®O
woOoOOLOOOOOLOO

[
b2

FE, I R PN O

f0h

o

45 Circular pits in plate

|
Not more :l: U.SI :\ ] ;
S

than 1.5 mm

* Small locating hole

Not to Scale. All measurements are mm.

Figure 25.
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Fermentation model
® Mix 0-5000ug.ml-t ampicillin
with Escherichia coli

@ Collect FT-IR specira using
TLC unit

1.4 : - '
ampicillin (ug.ml'1 )
L2 s000
1h— 4000
— 3000
08— 2000
gl 1600
08r— 0
bt
o
04
T,
0.2¢
0
-0,2 ' " - = " ‘ '
4300 4000 3500 3000 2500 2000 1500 1000 500
Wavenumber cm”!

Figure 26.
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The band at 1767 cm-1 in
FT-IR spectra is
characteristic of the
3- lactam moiety

O/ (s

g;'o-m-jfﬁ

Ampicillin

Figure 27.
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Zoom in on fB-lactam
band at 1767cm-

] .
0.9 ampicillin (\ug.h‘]l )
— 4000
0.7 — 3000
3 0.6 — 2000
5 1000
2o __
204
0.3
0.2
0

1850 1800 17'50 1700

-1
Wavenumber cm
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Integration on B-lactam
band at 1767 cm-1

Absorbance

() L ]
1850 1800 1750 1700
Wavenumber ¢

Figure 29,
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Integration contour map
file produced using
Bruker’s Opus software

W ox e
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W em &
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O O 34
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Figure 30.

263

Supplied by the British Library 27 Feb 2020, 09:24 (GMT)



Chapter 2.5 Douglas Kell et al.

882-10-1 ANNs trained to
predict ampicillin titre

5000

9]
= .
E 4000
A ]
23000
'—E =
g -
B 2000-

3]

= .
‘T 1000
g .

’ 0 |' T T 7 T

T T T T I
0 1000 2000 3000 4000 5000
Ampicillin titre (pg.ml)

e Training set —— Calculated lincar fit
m Test set ... Expected proportional fit
Figure 31.
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Effect of varying PCs to
input nodes of x-4-1
ANNs

%RMSEP

NN
<O
\§
o Lot

p b b

L UL UL
2 4 6 8 10 12 14 16 18 20

Principal components

- Training set g Test set

Figure 32.
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9-4-1 ANNs trained to
predict ampicillin titre

Neural network's estimate

5000
4000
3000 -
2000 |
1000
0_?, I T T { { ] ¥ | T
0 1000 2000 3000 4000 5000
Ampicillin titre (ug.ml")
e Training set —— Calculated linear fit
m Testset -.-- Expected proportional fit

Figure 33.
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| 74

A DRASTIC Approach for the
Rapid Analysis of Microbial
Fermentation Products:
Quantification of
Aristeromycin and
Neplanocin A in
Streptomyces citricolor
Broths.

e Assess the DRASTIC
approach in a real
system on unexiracted
fermentor broths of a
titre improvement
programme

@ Discriminate 2 closely
related metabolites

Figure 34.
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Figure 35,
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Aristeromycin and
Neplanocin A

Figure 36.
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Diffuse Reflectance
Absorbance Spectra
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Figure 37.
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Figure 38.
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Selection of samples
for training and test

sels
@ Training set must encompass

test set if models are to
generalise.

@ This is widely recognised but
not in fact widely implemented
as it is hard for the human eye
to know, in 882 dimensions,
how to effect this split (on either
X- or y-data or both)

® Use the “Multiplex” algorithm to
do this, keeping replicates in
the same set and also allowing
a fully separate cross-validation
set if needed

Figure 39.
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PLS predictions -
Aristeromycin
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Figure 40.
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~Neural net
predictions for
aristeromycin (test
set only)
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Figure 41.
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PLS Predictions -
Neplanocin A

PLS Prediction
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Figure 42.
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Neural net predictions
for neplanocin (test set

only)
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Figure 43.
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Although almost all high-

producers are picked,
neplanocin A predictions
are not as good

e confusion with
aristeromycin because of
spectral overlaps?

e use discriminant function
analysis to decide which
model to use for different
categories of
overproducer

Figure 44,
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Discriminant

function analysis
(1 only high A, 2 both high, 3
only high N, 4 both low)
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Figure 45.
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Conclusions

® Whole-broth and whole-cell
spectral measurements do
contain sufficient chemical
information, when combined
with modern chemomettric
methods, to allow the rapid and
precise quantification of target
molecules of interest without
separation or purification

® DRASTIC provides a novel and
particularly convenient approach
to HTS for metabolite
overproduction in titre-
improvement programmes
dbk@aber.ac.uk

hitp://gepasi.dbs.aber.ac.uk/home.htm

Figure 46.
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