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l was really asked to talk about remote sensing, and indeed I will 

introduce this talk through the teclmology and some of the activities of the 

remote sensing community, in order to convey to you what obviously I believe: 

that by hijacking for our purposes the sort of stuff they do with their rather 

extensive budgets, we can actually buy ourselves some very useful teclu1ology 

and insights into how we can analyze complex biological systems. 

First, my credit slide at the beginning (Figure 1). A colleague, Jem 

Rowland, in our Computer Science Deparhnent and J collaborate in this general 

area (Figure 2), and the aim of much of what we try and do is to acquire as many 

different data types as possible from the same object and crunch the numbers to 

lum those data into information (Figure 3). So today l am really talking about 

infrared spech·oscopy and the folk who have done that mainly are Mike Winson 

and Roy Goodacre. The numbers have been crunched by Andy Woodward and 

Bj0rr1 Alsberg and Alun Jones. This is in fact a collaboration with Glaxo 

Wellcome and Bruker Spectrospin, and the Glaxo people are from Tony Buss's 

group: Martin Todd, Brian Rudd and Mike Dawson. 

To start then with the essential take~home messages: there are many 

techniques you can read about in the pages of analytical chemical journals, 

' To whom all correspondence should be addressed. 
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including some such as CT scanners and magnetic resonance imaging. Geoffrey 

Hounsfield got his Nobel prize (in 1979; http://www.nobel.se/laureates/medicine-1979-

press.html) not in fact particularly for that but for the radon transform that 

allowed them to take the data and turn it into the pretty pictures you see in CT 

scans. There is thus a history of using these sorts of heavy signal processing 

methods on spectroscopic data in biology. But I think there has been less of a 

b·end to use these complex or modern data processing methods in many other 

kinds of spectroscopies perfectly well known to our medicinal chemists. My 

argument is, and I hope to illustrate it with examples, that we can hijack these 

methods too, and apply them in much more complex biological systems in which 

we are interested and extract important and useful information and get ans\·Vers 

not just data. 

In particular, although chemometrics (Figure 4) is not a subject to discuss 

in public at all, let alone after lunch on the last day of a conference, J want to 

ITwke one or two points about the general sorts of methods that tend to work 

better, which means the supervised methods, and that is a relatively new game 

in town. People recognized that these modern methods can extract information 

from the data in a way where traditional data processing methods in fact fell 

over rather horribly and didn't do very well at all. This sort of area is usually 

called chemometrics. You could call it signal processing, of course; nowadays 

it is often referred to bioinformatics, although chemometrics was coined about 

25 years ago so it does have some historical precedence. The major journal in the 

field Che1110111etrics 1111d !11tellige11t LnbomtonJ Systems started in 1986, so it is 

perfectly reasonable to call these methods chemornetrics. 

The usual definition is the application of mathematical and statistical 

methods to chemical data, though of course chemical data can come from 

biological organisms. Although there are many in the Artificial Intelligence (Al) 

community who would not accept this statement, I will also say that this 
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therefore includes any type of Al-based approaches to exh·acting information 

from complex vectors and mah·ices. 

The analogy I like to use about chemomeh'ics (Figure 5) is that it is a tool 

box. There is a huge zoo of methods. We try not to let the animals escape too 

often. You can see partial least squares1 discriminant function analysis, 

hierarchical cluster analysis, genetic algorithms, genetic programming, principal 

components analysis, principal components regression, denoising, classification 

and regression rrees, fuzzy rules, multivariate induction and many more. The 

point is that the tool box is very rich, it contains a lot of useful tools, and what we 

have to learn to do is to apply the right tools to extract the information from our 

data. In particular, these tools coming into their own when we deal with highly 

multivariate data. 

The general area of multivariate data is covered in Figure 6. In the jargon, 

the samples are called objects and the characters are called variables. In many 

cases, traditional methods cam1ot be applied to circumstances in vvhich the 

number of variables is greatly in excess of the number of objects. That 

circumstance is often (probably generally) true for spectroscopic data, where you 

often have telatively few samples. Of course, in the HTS community it rings less 

true, but the point is that you have huge numbers of characters, particularly 

spectroscopic characteristics, from each object. 

One way of looking at these huge number of dimensions of data we have 

is to think that for each variable -which might be an absorbance at a certain 

wavelength-a sample has a certain value, and it therefore can be said to have a 

position in 11-dimensional hyperspace for each of those /1 values. In pyrolysis 

mass spectrometry (which I am not going to discuss here) we have 150 

dimensions in the way we typically use them. The infrared data I will talk about 

today have 882 variables. The key point of this is that by definition, such very 

high dimensional data and methods must have a high resolving power, and a 
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much higher resolving power than the univariate or oligovariate methods more 

traditionally employed. 

There are two major ways in which we analyze these data. First, the so­

called unsupervised methods (Figure 7), which are the more traditional ones in 

which we might have a series of spectra, we extract some features we may be 

interested in, and we look to see how alike the spectra area. When an unknown 

spectrum comes along, we say, "which one does it look like most?." After 

deciding we therefore say it probably means that the sample was like it. The big 

disadvantage of those types of methods is they are totally undiscriminating. 

Every variable is effectively given equal weight, whether or not it contributes to 

the discrimination of the characters in which you are interested. 

What the big new game in town (effectively-not so new in some areas) is 

the concept of supervised learning methods (Figure 8) in which we have our 

spectra and we have some knowledge of what the characters of interest are: the 

biological characters, the name of an organism, how much stuff is it making, 

which target in the cell have I hit, whatever it is that we are interested in which 

we have measured by some rather tedious method which I will call "the hard 

way." We want to relate the spectra to the thing we are interested in, using a 

mathematical model known as a multivariate calibration model. But we do it 

iteratively so that we muck about with the model mathematically until we can 

take the spectra, feed them through the model, and it gives us the answer we are 

interested in. 

Then, of course, we come along with new spech·a the thing hasn't seen, 

and we can tell whether it has done a good job or not. Under these circum­

stances, the methods essentially ignore the irrelevant variance in the data we 

have and concentrate on the variance that matter for the purposes we are 

interested in. To cut a long story short, this is a new game in town and it is an 

incredibly much more powerful way of extracting the information from the data 

we have got. 
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Let's go back now to chemomefrics and why we are obviously going to 

need these rnathernatical and computer methods to extract the data from these 

high dimensional spaces. We are going to look at the remote sensing side of 

things, and I might start here ,,vith a quotation from Sir Alistair Hardy (Figure 9), 

who was a Professor of Zoology when I was at Oxford, and who latterly retired 

to run a Religious Experience Research Unit. He was on a frans-Atlantic flight, 

and noticed that the colors of the sea varied in different places. He recognized 

that it vvas probably because the numbers of chlorophyll-containing micro­

organisms varied in different places. Since fish can eat these things and get 

nutrients from them, this might well be a good idea, if you could only 

understand what that meant, you could then tell your fishern1en where to go and 

fish. 

So the idea of essentially remote sensing of chemical and biologically 

relevant information begins to happen and, with rather expensive satellites of 

course, turns into reality. The object in Figure 10 is known as a Coastal Zone 

Color Scanner. I don't exactly know the price of these things, but that is 

probably the right decade to be in. The Coastal Zone Color Scanner has been 

flying around for some time, and it comes up with pictures like the one in Figure 

11, chemical images (in which in the key there is a high concentration at the 

bottom for some reason). It is essentially relying on the spectral properties of 

chlorophyll, and you can see that the up-wellings in the shallow regions are 

indeed connected with high amounts of microbial productivity and out in the 

deeper part of the ocean, the productivity is relatively low. 

Remote sensing methods can be and have been used to affect chemical 

imaging in a way we know quite well (Figure 12). Another nice example well 

known to you all I am sure is the observation of the ozone hole (Figure 13). This 

is done in the ulfraviolet where ozone has a particular absorbance, and we all 

know about the ozone hole in 1992. 
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These sorts of h·aditional methods, though, Landsat and Spot for instance, 

the satellites you have certainly heard of, use five and seven wave bands 

respectively because they weren't very good at collecting photons. The human 

visual apparatus, of course, uses three different types of cone, like television sets: 

red, green, and blue. Most of these things thus use very small numbers of wave 

bands to produce the chemical information one is interested in. 

What happens if instead of using these very small numbers of wave 

bands, five in this case, we use hundreds of wavelengths simultaneously (Figure 

14)? Do we buy ourselves anything apart from a lot of grief? The effective 

answer is yes, because one way to consider this is that there are many things 

with the same spectrum as those where there are only five variables, but there is 

only one thing that has the same spectrum as when there are, say, 224 variables. 

Again, we come back to the point that the high dimensional data are by 

definition intrinsically more highly resolving than the low dimensional data, and 

this isn't just hypothetical. 

There is a thing that has been built called AVIRIS, a predictable acronym 

(Figure 15), which flies around collecting data in, in fact, 224 bands between 400 

nanometers and 2.5 microns, i.e., the visible and the near infrared, collecting 

spectra from each location. This is known as imaging spectroscopy / so you are 

collecting a spectrum from every place in space. The game then of course is to 

take these spectra and ask what was it that was on the ground? Obviously it is 

very easy to discriminate water and trees and so forth (Figure 16), but one would 

hope to be much more discriminating. How can we use these hyperspectral data 

(as the jargon has it; Figure 14) to go from the data we are not particularly 

interested in at all to the biology that we are interested in? 

What comes out, then, of these types of approaches, are datacubes like 

that in Figure 17; it bears looking at this picture for a couple of seconds to get 

one's mind around it. We are always going to have a 2-D image in the XY plane, 

and in the Z plane effectively an entire spectrum, here encoded by intensities as 

224 

Supplied by the British Library 27 Feb 2020, 09:24 (GMT) 



Chapter 2.5 Douglas Kell et al. 

colors in ,,vhich at the top ,.ve are talking about 400 nanometers and at the bottom 

2.5 microns. So we have a data hypercube in which the XY plane is indeed the 

XY plane, and the Z plane is the spectral plane with hundreds of absorbances at 

once. 

VVhen you use these sorts of things, you can come out with very pretty 

pictures (Figure 18). All of these have been compared with what the remote 

sensing people call the ground truth which is, "if l get in there with a bucket and 

spade, what do I find?" It gets it all right, all these different kinds of minerals 

can be remotely sensed (Figure 19). There is an example now with vegetation 

(Figure 20), with a nice tale about how the European Union used this to 

advantage to discover that a particular Mediterranean counlTy had not in fact 

grown 4.2 mjllion tons of durum wheat as it claimed, but only 1.7 million tons. 

There was quite a big scandal about that, apparently. 

The point is that one can indeed use the spectral data from reflectance 

measurements. The sun, of course, in tills case is the source of the photons, the 

photons are going to hit the ground, rattle around in the target, and bounce back 

to where the satellite is going to see them. It is diffuse reflectance, and of those 

that come back, some of them have been absorbed, and therefore that is why it is 

diffuse reflectance absorbance spectroscopy and the DRASTIC acronym. We are 

going to use this, if possible, to give ourselves chemical information about 

complex biological systems for pharmaceutical systems in which we are 

interested. I tend to be interested in natural products and microbiological 

systems. 

There are two problems with the remote sensing approach, however. First 

is, when it goes wrong, it goes wrong spectacularly (as in the Ariane rocket 

exploding). The second problem is you have to use the visible and mid-infrared 

really, because although you might like to use the mid-infrared, it is almost 

entirely absorbed by the water and the C02 in the atmosphere (Figure 21). You 

can use this imaging spectroscopy in the lab to get around the first of those, but 

225 

Supplied by the British Library 27 Feb 2020, 09:24 (GMT) 



Chapter 2.5 Douglas Kell et al. 

again they are using the visible and very near infrared spectrum. What we want 

to do is recognize that in the mid-infrared there are huge amounts of chemical 

specificity, as I am sure most of you know. Every molecule has a rich infrared 

spectrum that is due to normally vibrational modes of the individual chemical 

bonds in the molecules of interest. 

In the laboratory, v,re don't have this problem of water absorbance and 

C02 absorbance that the remote-sensing people have. We then can probably 

hijack this sort of approach in the laboratory to do diffuse reflectance absorbance 

spectroscopy in the infrared for, as it says, rapid noninvasive chemical analysis. 

When you combine infrared spectrometry in the lab, where we happen to 

collaborate with Bruker (Figure 22), obviously the price is a bit more favorable 

relative to the coastal zone color scanner. 

An important point to make, although I am not going to discuss it in detail 

here, is that miniaturization is very straightforward because all the manufac­

hirers have microscopes as well (Figure 23). Because of the wavelengths we are 

talking about, you tend to be able to go down to about only 10 microns direct 

spatial resolution, and so that is a very straightforward thing. 

I am going to talk about something rather more mesoscopic today. This is 

based on an attachment that Bruker markets for looking at thin layer 

chromatography plates (Figure 24), in which they have implemented diffuse 

reflectance. So there is a source of infrared photons, various optics, and a 

detector and it bounces off the target on the TLC plate. The thing is mounted on 

an XY stage so that you can effectively fly over the thing doing what we want to 

do. But instead of having used a TLC plate and done a bit of chromatography 

first (which we are not very interested in), we simply use it as a sample 

presentation device so that we can whack all our different samples into little 

wells on this plate (Figure 25), as obviously we have made various 10 x 10, 

100 x 100 and :So on (nowadays standard 384-well plate coordinates in fact). You 

are talking then about typical 20 ~tl down to 5 µl sample volumes. 
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Now, I describe a couple of studies we have actually done using this 

diffuse reflectance approach- one a relatively easy one, as it \Vere, and one a 

relatively hard one. The easy one (Fig-ure 26) is a simple model in which \Ve are 

just going to mix up what I will call drug and bug, and see if the thing can 

estimate the drug in a background of the bug, because if it can't do it with 

mixtures of known drug plus known bug, then it is clearly going to fail when 

you get to something much more difficult. So the model bug is E.coli and the 

model drug is ampicillin, and we can collect a lot of spectra. 

Note, for instance, the h·ace with the lowest concentration of ampicillin 

in this case, none, does not have the lowest reflectance (Figure 26). That is 

because even at the National Bureau of Standards you can't make a plate th<lt is 

perfectly hornogeneously reflecting, and even if you could you are only going to 

cover it with gloop anyi;.vayi you needn't have bothered in the first place. 

Chemometrics isn't going to mind that. It is worth noticing that dealing with 

baselines is in principle going to be a problem. Note the peak band, vvhich is in 

fact at 1767 cm-1. It is known that this band at 1767 cm-1 is actually the carbonyl 

stretch (Figure 27)1 but the carbonyl stretch is slightly different from where it 

would normally be because it is constrained in the beta-lactarn ring of the 

ampicillin moiety. 

You can show that in two ways, the main one of which is by zooming in 

and looking at it as an amount of stuff (Figure 28). Clearly, just sitting at one 

univariate wavelength and measuring the absorbance would fall over horribly, 

(i) because of the changes in the baseline I have told you about, and (ii), because 

the absorbance itself is evidently by inspection by eye not wonderfully linear 

with the amount of stuff. You could also show the peak is due to what I say by 

adding Jactamase and it disappears. 

If you then say, okay, let's just integrate the band (Figure 29). We know 

this band is essentially selective for the ampicillin in this case, and you ask the 

question, if I integrate this band and look at the disfribution of absorbance over 
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space in my 100-well plate you see something like the map in Figure 30. We 

clearly loaded this so that there is none down at the bottom and plenty up top, 

and clearly it gets it all right. But we would like to be quantitative, and the way 

v.re like to do that is by using whole spectral methods rather than the rather 

unimaginative band integration methods you tend to be able to get from people 

with commercial software and spectrophotometers. 

After this, we are going to use neural networks and we are also going 

to use partial least squares. As you know, what you have in a typical back 

propagation neural network is an input, a hidden layer and an output. The 

spectral data (not, in this case, PyMS but the infrared absorbances) are going to 

be on the input. \A/hat these lines-known as weights-do is multiply the inputs 

by numbers and the circles-known as nodes; add them up and multiply them 

by a sigmoidal function and spit out a number. You muck about with the 

weights using a more or less intelligent algorithm until the spectra you add at the 

front of the neural network gives you the output you want. When you have 

trained the neural network appropriately, you interrogate it both with the data 

you have trained it with-the training set-and totally unseen data in the test set; 

obviously it has become quite good at giving you a reasonably accurate 

prediction of the amount of arnpicillin in your mixture. 

So the information is there. We can use it (Figure 31). Note that because 

of the sigmoidicity here amongst other things, the predictions at the end are 

really not very good. Here we are using 882 inputs, that is the absorbances at all 

of those 882 bands, which are the wavenumbers between about 4,000 

wavenumbers and 600 wavenurnbers with four-wavenumber resolution. 

We can be a little more intelligent than that. I am not going to go into too 

many chemometrics methods, but just give you a flavor of the sort of things one 

can do to improve things. If I extract what are called the principal components, 

which is an unsupervised method, and ask for each of my samples, what 

happens if I input the value of the first several principal components to the net, 
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rather than 882 variables? A) of course, it trains one heck of a lot quicker, and B) 

we can ask the question how many of these principal components should I use? 

The answer appears to be nine when we look at the test set (Figure 32) and when 

we look at the output then, we have cleaned that up very nicely and we have got 

the straight line anyone \Vould be proud of (Figure 33). 

That is ampicillin in £. coli. Of course, the question is, what happens when 

you make it a bit 1nore demanding and thrnw in something else, in this case 

Stap/Jylococcus 1111reus? It has learned very well to discriminate the amount of 

ampicillin in S. 11ure11s, and clearly you see a nice straight line. What more can 

one say? 

That was in effect an easy one, where we were adding known mixtures of 

drug plus bug, and we could more or less follow fairly exactly what we thought 

was going to happen and make it happen and get a nice straight line at the end. 

Now we are going to do a hard one (Figure 34), which is looking at a real 

Strcptomyces fermentation in what any of you would know what Strepto111yces 

fermentations are like- a pretty gloopy broth with all sorts of complex media 

constih1ents inside. We al'e going to be making (or, the bug is going to be 

making) two carbocyclic nucleosides called aristeromycin and neplanocin A. As 

I mentioned, this project is a collaboration with GlaxoWellcome (Figure 35). 

We are going obviously to see if we can quantify them and discriminate 

them, and that is quite hard, because chemically they are very similar. The only 

difference is the chirality here, and there is a double bond there, and there isn't 

one there (Figure 36). The strategy essentially is as before. First we can just look 

at the diffuse reflectance-absorbance spectra of the compounds themselves 

(Figure 37). You don't need me to tell you can gawp at those for a long time and 

it is not going to do very much for you; only the computer will solve this. 

So you grow the cultures, take the broth (this is an organic, wholemeal 

experiment-nothing added, nothing taken away), and you look at some spectra. 

Here are four different classes of producer (Figure 38). One makes lots of 
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aristeromycini one makes lots of neplanocin A; one makes aristeromycin only; 

and one that 1nakes both. These are typical spectra. The one on the right side of 

Figure 38 is a blow up of the region between 1700 and 1000 wave numbers. 

Clearly, there are differences but equally dearly, in contrast with the ampicillin 

case, there are no unique bands; no univariate analysis could possibly give you a 

vague chance of extracting the concentration of either the aristeromycin or the 

neplanocin A. Only the whole spectral, hyperspectral analysis can do that. 

What we have to do in all of these things is set up a training set and a test 

set, but the one thing not widely recognized is what you should choose to be in 

the h·aining set and what you should choose to be in the test set (Figure 39). In 

principle, the h·aining sets should encompass the test set, so that it doesn't 

extrapolate, but if there are 882 dimensions, it is kind of hard to tell that. Usually 

people just put them in at random. This can cause these methods to fail horribly, 

and people don't recognize why. To cut a long story short, we (or more precisely 

Alun Jones in the group) have got around it by writing some software that can 

recognize these problems and deal with them and make the training and test sets 

correctly. 

So you make the training set, and you look in this case first with the 

partial least squares method, which is essentially a regression method for when 

the number of variables is grossly in excess of the number of objects. Happily 

enough, if you are trying to predict metabolite concentrations, this is aristero­

mycin plus neplanocin A (Figure 40, left); obviously it does jolly well. For 

aristeromycin only, it also does jolly well (Figure 40, right). It doesn't do as well 

as we would like in terms of being quantitative, but it does pick all the high­

producing strains which, after al11 is all it is supposed to be doing. 

We do the same with neural nets, the same sort of story, just showing the 

test set this time as one really should, and there is a similarly nice prediction of 

the combined, and a nice prediction of the aristeromycin on its own (Figure 41). 

When vve look at the neplanocin A tests - again with PLS (Figure 42) or with 

230 

Supplied by the British Library 27 Feb 2020, 09:24 (GMT) 



-

Chapter 2.5 Douglas Kell et al. 

neural nets (Figure 43)-it has again gotten all the high yielding strains1 although 

we would be happier if it also got the right answer (Figure 44). 

How are we going to deal with that? There are lots of potential ways. The 

way I will describe to you is that the model is probably getting confused because 

there is a lot of spech'al overlap between the aristeromycin and the neplanocin A 

(Figure 36). There are not enough objects in the h'aining set anyway in reality in 

this experiment, and it just hasn't the ability to discriminate them. But if you 

could tell it which class of producer it was first1 you would have a different 

model then to the aristernmycin only or the neplanocin A only. Then you would 

have solved the problem because you wouldn't be trying to look at organisms in 

which you are making both of them. You vvould only be looking at organisms 

making one or the other, so you want to make that decision first. This is known 

as the 'divide-and-conquer' approach. 

You encode high adsteromycin only, both, neither, or high neplanocin, 

and when you do that, you can then just produce the model secondarily. The 

way we do this is with a discriminant function analysis (Figure 45). The four 

different classes are represented. If you take away class 1, you don't initially 

have the ability to discriminate 2 and 3 very easily1 but once you have identified 

11 you take them out, and you can easily affect the discrimination of the others. 

Then you have essentially solved the problem because now you only need to 

make the model for the ones you are interested in. 

The conclusion then (Figure 46) is that these whole broth, whole spectrat 

hyperspech'al analyses do have sufficient chemical information to affect the kind 

of discrimination in which we are interested. In this case1 I have concentrated on 

high yielding sh'ains and titer improvement programs. I could make the same 

arguments about many other kinds of pharmacological assay of interest. 

The nice thing, of course, is it is rapid and non-invasive. I didn't say how 

rapid. The spectrometer can do twenty a second. Obviously it is noninvasive. 

There has been talk about reagent costs during this meeting; here, there are none, 
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a slight advantage. There has also been talk to the effect that, okay, we can do 

105 assays, but no one can provide me with 105 molecules from the combichem. 

But in the high-throughput screening, titer-improvement programs, neither of 

those statements is true. It really is the more the merrier. If you have 1Q5 

organisms in a milliliter and observe them in terms of optical density you won't 

even see them. We are not short of possible numbers of organisms so in titer­

improvement programs, it really is a matter of the more the merrier because it is 

easy to generate the mutants we would want to put through a titer improvement 

program. 

You may well want to ask me about sensitivity and limit of detection. 

That is somewhat harder to speak about than I would wish because the thing is 

limited not so much by the intrinsic sensitivity of the infrared machine, which is 

easily in the nanomolar, but by the variance in the background that could, on a 

bad day, swamp it. Equally, it can wotk to your advantage because you are 

interested in looking at things that correlate with what you are interested in, and 

it doesn't necessarily mean you have to measure them directly in these cases. So 

small chemical changes can be amplified, and indeed will be amplified by the 

cells in a way that you can use those as the spectral features of interest rather 

than looking directly. So if you were to ask me about limits of detection, I have 

to say there isn't a simple answer to that. 
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QUESTIONS AND ANSWERS 

Question: Who uses this sort of technology to sort out which one is which, what 

have you made, and that sort of thing? 

Prof. Kell: There is a group at Merck' that has published several papers on 

measuring solid-phase cornhchem beads, essentially saying, yes, we can take 

microspectroscopic data fron1 individual beads and see that it has an infrared 

spectrum consistent with what I thought I had made. But I haven't seen any 

other group yet publishing it. 
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r--~1--~~~~--0-"---ll--~-t---I-~~~ 

e essen 1a or a e-
home messages 

Many/most modern instrumentation­
based techniques have had their 
origins in analytical chemistry 

Some (e.g. CAT/ MRI) innately require 
intensive signal processing, and have 
been exploited by biologists (especially 
in medicine) 

Many other such techniques which 
chemists routinely use for analysing 
purified material might be exploited for 
answering complex biological question 
provided that they give answers and 
not just data 

Modern, and especially "supervised", 
chemometric methods when correctly 
applied to multivariate data can give 
these answers, rapidly and precisely, i 
a large number of areas of interest to 
the pharmaceuticals industry 

Figure 3. 
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tri 

Chemometrics is the 
disciplin concerned 
with the application of 
statistical and 
mathematical methods 
to chemical data 

As such it may be 
taken to encompass 
the methods of 'artificial 
intelligence' 

Figure 4. 
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·------------ -----------·--~--------~ __ , ______ _ 

Some methods discussed 

Unsupervised 
Just work on 
x-data 

Principal 
component 
s analysis 
Kohonen 
neural 
networks 

• Autoassociativ 
e neural 
networks - non 
linear PCA 

Supervised 
use y-data too 

• Back:-prop 
neural 
networks 

• Partial least 
squares 

• Principal 
components 
regression 

• Canonical variates analysis 

• Genetic Algorithms 

•Genetic programming 

• Classificiation and Regression trees 

Figure 5. 
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Multivariat data 

Multivariate data consist of the 
results of observations of many 
different characters (variables) for 
a number of individuals (objects). 

Each variable may be regarded as 
constituting a different dimension, 
such that if there are n variables 
each object may be said to reside 
at a unique position in an abstract 
entity referred to as n-dimensional 
hyperspace. 

FTI R data of the present type have 
882 dimensions - hence this is a 
very high-resolution technique. 

Figure 6. 
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Unsupervised learning 

~-S_P_E_CTRA_j 

l 
FEATURE 

EXTRACTION 

l 

The system is shown a set of 
inputs (spectra) and then left 
to cluster the spectra into 
groups. For multivariate 
analysis this optimization 
procedure is usually for 
simplification or 
dimensionality reduction. This 
means that a large body of 
data (the spectral inputs) are 
summarised by means of a 
few parameters with minimal 
loss of information. After 
clustering, the results then 
have to be interpreted. 

,- CLUSTE-RINJG------+f HUMAN -1 
_ [INTERPRETATION) 

Figure 7. 
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----~---------~ 

Gil 

ng S pervised lea 

SPECTRA 

l 1--------
1 CALIBRATION 1l<!lll---. 

I SYSTEM 

r--·'~l2::== ~ 
~---:------_.[ CO~PA;ISON 

hen we know the desired responses (target 
associated with each of the inputs (spectra) 

then the system may be supervised. The go l 
of supervised learning is to find a model that 

will correctly associate the inputs with the 
targets; this is usually achieved by minimisin 
the error between the target and the model's 

response (output). 

L:::=======================- -··-----' 

Figure 8. 
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• 
hemical i aging -

relation to biomas 
production 

These different waters may also be 
sometimes discernable by a difference 
in their colour, a contrast of shades of 
blue and green making a line across 

the sea ... 

If these marked colour changes can be 
correctly interpreted we may in the 

future find aircraft being used to make 
rapid surveys of the surface conditions 

in relation to the fisheries. 

SIR ALISTER HARDY 

The Open Sea, 1929 

Figure 9. 
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The Coastal on 
Colour Scann r 

Cost unknown, presumably 
$108-109

. 

--------" 

Figure 10. 
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Remote ensing of 
microbes: 

phytoplankton (1) 

-----~~·-----· 

Figure 11. 
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R mote sensing of 
microbe : 

phytoplankton (2) 

Figure 12. 
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0 one distributions 
1992 

Figure 13. 
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Multispectral vs 
yp rspectral Imaging 

Figure 14. 
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AVIRIS - Airborne 
Visible lnfraRed Imaging 

pectrometer 
400-2500 nm, 224 bands 

(1 pixel = ca 20 m) 

Figure 15. 
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The AVIRIS concept 

AVIRIS CONCEPT 

EACH SPATIAL ELEMENT HAS A 
CONTINUOUS SPECTRUM THAT 
IS USED TO ANALYZE THE 
SURFACE AND ATMOSPHERE 

224 SPECTRALIMAGES 
TAKEN SIMULTANEOUSLY 

Figure 16. 
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AVIRIS Hyperspectral image 
cube of Moffett Field, CA. 

Sides of cube represent visible 
(top) through NIR (bottom), 

intensity being colour-encoded 

Figure 17. 
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AVIRIS Land and lake 
in Swi rl nd 

Figure 18. 
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Mineralogic I mapping 
via AVI IS 

Figure 19. 
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Vegetation mapping 

Sun Luis Valley, CO - Vegetnlion Distrubution Mnp 
A VIRIS Sept. 3, 1993 Data U.S. Goologicnl Survey 

Alfnlfo Burley Out Hay Chico/Posture 

Canola Potato Ospinnch nothing tu upped 

Figure 20. 
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Wavelengths used 

Mid-IR radiation (2.5-25 µn1) 
gives much chemical specificity 

However, the above systems 
used visible and near-IR 
radiation (0.4 - 2.5 µm), since 
mid-IR is strongly and variably 
absorbed by atn1ospheric 
moisture 

This is not a problem in the 
laboratory, which opens up the 
possibility of using 1nid-IR 
diffuse reflectance spectroscopy 
for rapid, noninvasive chen1ical 
analysis 

Figure 21. 

254 

Supplied by the British Library 27 Feb 2020, 09:24 (GMT) 



Chapter 2.5 

The 
(pric 

Douglas Kell et al. 

ruker I 
ca $3. x 104) 

Figure 22. 
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c---- --- -·"-----

Mi roscop attachm nt 

Figure 23. 
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Scheme of th LC unit 
for diffu refl ctan 

source 

sand-blasted 
Al plate ...... ~ 

x-y-stagc 

surface 
reflectance 

elliptical mirror 
(·"'" with hole in centre 

to remove specular 
reflectance 

elliptical mirror 

Adapted from Glauniger, G., Kovar, K.-A. & Hoffmann, V. 
(1990) Possibilities and limits of an on-line coupling of thin­
layer chromatography and FT-IR spectroscopy. Frese11i11s 
.Journal ofA11alytica/ Chemistry 338, 710-7 l <i. 

Figure 24. 
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esign for metal plate 
for diffu reflectance 
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Figure 25. 
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Ferm ntation mod I 

Mix 0-5000µg.ml-1 ampicillin 
with Escherichia coli 

Collect FT-IR spectra using 
TLC unit 

1.2 

l 

0.8 
<lJ 

ampicillin (~tg.mi- 1 ) 
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Figure 26. 
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The band at 1767 cm-1 in 
FT-IR pectra i 

ch racteristic of th 
B- I ctam moiety 

Ampicillin 

Figure 27. 
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m in on B-lactam 
b nd at 1767cmp1 

ampicillin (pg.i1\1 
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() 
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Figure 28. 
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Integration on B-lactam 
b nd at 1767 cm-1 
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Figure 29. 
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882-10-1 ANN trained to 
predict mpicillin titre 
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Figure 31. 
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Effect of varying P to 
input nodes of x-4-1 

ANNs 
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Figure 32. 
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9-4-1 ANNs trained to 
predict mpicillin titre 

E 4000 ·.;:; 
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aJ 
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) 

• Training set - Calculated linear fit 

11111 Test set .... Expected proportional fit 

Figure 33. 
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A DRASTIC Approa h for th 
R pid Analysi of Microbi I 

rm ntation Produ : 
Quantification of 

Ari romycin and 
N pl nocin A in 

Streptomyces citricolor 
Broths .. 

Assess the DRASTIC 
approach in a real 
system on unextracted 
fermenter broths of a 
titre im rovement 
programme 
Discriminate 2 closely 

I metabolites 

Figure 34. 
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Diffu efl n 
pectra Absorban 
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S I ction of mples 
for training nd test 

Training set must encompass 
test set if models are to 
generalise. 

This is widely recognised but 
not in fact widely implemented 
as it is hard for the human eye 
to know, in 882 dimensions, 
how to effect this split (on either 
x- or y-data or both) 

Use the "Multiplex" algorithm to 
do this, keeping replicates in 
the same set and also allowing 
a fully separate cross-validation 
set if needed 

Figure 39. 
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Neural net prediction 
for n planocin (test set 

only) 
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lthough lmost all high­
produ rs are picked, 

n plan cin A predicti n 
a not g od 

• confusion with 
aristeromycin because of 
spectral overlaps? 

• use discriminant function 
analysis to decide which 
model to use for different 
categories of 
overproducer 

Figure 44. 
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Whole-broth and whole-cell 
spectral measurements do 
contain sufficient chemical 
information, when combined 
with modern chemometric 
methods, to allow the rapid and 
precise quantification of target 
molecules of interest without 
separation or purification 

DRASTIC provides a novel and 
particularly convenient approach 
to HTS for metabolite 
overproduction in titre­
improvement programmes 

dbk@abera .uk 
http://gepasi.dbs.aber.ac.uk/home.htm 

Figure 46. 
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