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A recent paper in this journal sought to counter evidence for the role of

transport proteins in effecting drug uptake into cells, and questions that

transporters can recognize drug molecules in addition to their endogenous

substrates. However, there is abundant evidence that both drugs and

proteins are highly promiscuous. Most proteins bind to many drugs and

most drugs bind to multiple proteins (on average more than six), including

transporters (mutations in these can determine resistance); most drugs are

known to recognise at least one transporter. In this response, we alert

readers to the relevant evidence that exists or is required. This needs to be

acquired in cells that contain the relevant proteins, and we highlight an

experimental system for simultaneous genome-wide assessment of carrier-

mediated uptake in a eukaryotic cell (yeast).

Introduction
As part of a continuing discussion [1–6], Di and colleagues [7] recently published a paper in this

journal in which they sought to counter the rather voluminous (and increasing) evidence for the

proteinaceous carrier-mediated cellular uptake of pharmaceutical and other drugs (by genetically

identified carriers) being the norm in favour of passive diffusion through the putative protein-free

bilayer portions of biological membranes.

Di et al. [7] sought to dismiss a set of 38 articles that we mentioned [5] in favour of transporter-

mediated drug uptake and referred to them as ‘opinion pieces and not research articles’. These 38

were of course chosen on the basis that they represented review articles that summarised many

hundreds of research articles. Moreover, our own first survey [1] had more than 300 references

alone (a restricted subset [8–10]). There is burgeoning evidence for the carrier-mediated view of

drug uptake, and such reviews continue to appear [11–102].
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FIGURE 1

A ‘mind map’ [519] of the contents of this article.
Here, we seek to set down the kinds of experiments that might

usefully be done (or indeed have already been done) and that

would provide evidence for the overwhelming importance of drug

and xenobiotic carriers in real biological membranes. Specifically,

in studying transport into and out of cells it is sensible to study

living cells rather than artificial membranes. The study of black

lipid membranes or any other artificial constructs that are not

themselves biological membranes (and thus lack carriers or other

proteins) tells us nothing significant about the properties of real

biological membranes that possess such carriers, and that is where

our in vivo interest lies. We lay particular stress on the evidence

that proteins and drugs are rather promiscuous with regard to their

interactions with each other, because this lies at the heart of the

interactions of drugs with multiple carriers. Moreover, we would

remind readers of our previous stricture [5], epistemologically

based [103], that absence of evidence is not evidence of absence.

A ‘mind map’ summarising this article is shown in Fig. 1.

Lipids versus proteins
As rehearsed previously [5], there is little evidence that specific

lipid moieties of the kinds typically found in eukaryotic mem-

branes have substantially different biophysical properties from

each other, and thus we assume that any transfer of xenobiotics

across biomembranes that is claimed to go via lipid bilayers is

similarly constrained. A factor of at most two in the variation of

any flux for this seems reasonable. However, because carrier-

mediated uptake requires the presence of genetically encoded

proteins (any of which may be subject to post-translational mod-

ification) our focus is going to be on the evidence that named

proteins with identified genetic loci have marked, reasonable and

testable (or, indeed, tested) influences on the rate of transport of

xenobiotics (and intermediary metabolites) across biological

membranes. We shall also seek to avoid making claims not based

simply on these facts. Many molecules have negligible permeabil-

ity in artificial membrane assays, but much greater ones in biolo-

gical cells; one of many examples is from a recent study [104] of

cyclic peptides whose artificial membrane permeability, despite

substantial lipophilicity, is both largely negligible and very poorly

correlated with lipophilicity.
We also ignore discussions of artificial membranes lacking

proteins. Whether biological membranes have protein:lipid ratios

of 3:1, 1:1 or 2:3 is not of itself the issue, because one thing is

certain [105]: the value is not 0:1. Also it is effectively the area ratio

that governs the appearance of a membrane to a substrate as seen

from the outside; the molar ratio of proteins to lipids [7] is a poor

guide because lipids are so much smaller than proteins, although

we certainly recognise the role of lipids in the barrier function of

membranes. In addition, we note the rather elastic analysis by

which a hexadecane layer either helps or hinders the passage of

drugs through aqueous pores (cf. Figs 1 and 2 of Di et al. [7]). We

note further that a membrane arrangement containing a hexade-

cane layer of unstated thickness is not really an adequate model for

a phospholipid bilayer, if only because hexadecane (unlike pure

phospholipid bilayer membranes, and even erythrocyte ghosts

[106]) almost certainly does not admit transient aqueous pores.

Equally, Di and colleagues [7] cite a remarkable paper [107] in

which the correlation between rat brain permeability and the

octanol–water partition coefficient is made reasonable solely by

excluding the least convenient five of the 27 compounds mea-

sured. Finally, in contrast to the view of Di and colleagues [7],

cellular membranes and lipid bilayers retain a high capacitance

at frequencies low relative to their inverse charging time

even when their conductance is quite substantial [108–112].

However, it is worth pointing to evidence that well-made

bilayers have a background permeability to ions that is negli-

gible, a fact exploited in nanopore-based methods of nucleic

acid sequencing [113,114].

It is also worth stressing that if biological membranes were

permeable to all kinds of solutes (whether via the bilayer portion

of membranes or otherwise) they would not display osmotic

properties at all. Because it is well known that they do so, it is

clear that the non-carrier-mediated permeability of biological

membranes to most solutes is, in fact, negligible. Recent evidence

indicates that even the passage of extremely small molecules, such

as water [115], glycerol [116–121], urea [122–125], hydroxyurea

[126], ammonia/ammonium [127–132], bicarbonate [133–135],

and CO2 [136–138] across real biomembrane requires (or at least

uses) protein transporters.
www.drugdiscoverytoday.com 219
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Finally, it is worth pointing out that (i) efflux pumps are well

known for removing drugs from cells, which rather begs the

question of why influx carriers did not accumulate them in the

first place, and (ii) given that proteins (and not lipids) are normally

the targets of pharmaceutical drugs, one might reasonably recog-

nise that drugs can then be bound to and be transported by

proteins, a fact for which there is a huge amount of evidence

alluded to in the ‘38 reviews’ and elsewhere above. Extensive other

evidence for the promiscuous binding of drugs to multiple pro-

teins, including transporters, is given below.

Evidence from enzyme kinetics
We will now rehearse the most relevant issues on drug transport

that derive [139–141] from basic enzyme kinetics.

(i) Rates of reactions of enzyme catalysts, including those of

transporters, are (and are to be determined as) a function of at

least the concentration of the enzyme catalyst molecules in

question (linear over a wide range), the concentrations of

substrates and products and inhibitors (usually nonlinear

and interacting with each other in a manner accurately

described by well-established equations). Unless one knows

which enzymes are in a membrane, and their properties, one

cannot say anything about their contribution to catalytic or

transport activity, but neither can one ignore it when one

knows which proteins are present.

(ii) The rate of reaction of an enzyme is pH-dependent both

because of the effects of pH on the enzyme and (if

protonatable in the relevant pH range) of the substrate.

(iii) The assumed degree of substrate specificity of any individual

or (membrane-colocated) set of enzymes tells one precisely

nothing about either the actual specificities or the mechan-

isms of enzyme-mediated transport (including about diffu-

sion), in that some enzymes are comparatively specific while

many are exceedingly catholic (nonspecific) with respect to

their substrate choice [142–146]. Well-known examples of

substrate non-specificity in the world of pharmaceutical drugs

and xenobiotics include the drug-metabolising enzymes

cytochromes P450 [147–150] and carboxylesterase 1 [151],

influx transporters such as the organic anion [152,153] and

cation [154–157] SLC (solute carrier) transporters, and efflux

pumps such as the Multidrug And Toxin Extrusion (MATE)

proteins [16,60,69,158–160] and P-glycoprotein [144,161–

164] (and with promiscuous efflux transporters also being

important in antiparasitic [165–167] and bacterial antibiotic

resistance [168–177] and pharmacokinetics [88]). Many of

these have exceptionally wide substrate specificities.

(iv) ‘Saturability’ (or the lack of it) should not be used to exclude

the involvement of a transporter protein if it is not known

what kinds of multiple and parallel reactions are present,

especially using multiple proteins [178]. The comment [7]

‘the high local concentrations in the gut after oral dosing of

drugs will saturate active drug transporters’ has no meaning

in the absence of knowledge of drug concentrations and

transporter Km,app values (that are often mM). Note that even

in real (as opposed to ideal and infinitely dilute) solutions,

the diffusion coefficient is a function of substrate concentra-

tion because there is always a back reaction. Similarly, for an

individual enzyme obeying typical reversible Briggs–Haldane
220 www.drugdiscoverytoday.com
or Henri–Michaelis–Menten (HMM) kinetics, reactions may

have substrate concentration-dependent kinetics indistin-

guishable from diffusion as (i) the rate of reaction versus

substrate concentration can be linear over a wide range that

is simply reflected in the apparent Km; (ii) after what may be a

very short time in an initial velocity measurement, the back

reaction may become very significant [and this is governed

by the thermodynamics of all the coupled reactions,

including those reflected in the Haldane relation (see

below)].

(v) The direction of transport of a substrate is governed by

thermodynamics, and all transporters, such as enzyme

catalysts, can transfer substrates in both directions across

a membrane. The equilibrium constant Keq for the

overall reaction of a Michaelis–Menten enzyme is related

to the forward and reverse Michaelis constants and

maximal velocities according to the Haldane relation:

Keq = (Vm,f�Km,r)/(Vm,r�Km,f) [179,180]. Beyond this there is

no intrinsic ‘polarity’ of an enzyme or set of enzymes.

(vi) Consequently, to establish the contributions of the various

transporters to effecting the flux of drugs across particular

membranes, we need to know two things in particular: (i) the

concentrations of those transporters in the relevant mem-

branes, (ii) something about the kinetics of each of them,

such as their maximal turnover numbers and the concentra-

tions of substrates and inhibitors that modify those rates, for

example, by 50% (Ks, Km and Ki values).

We next look at some of the carriers that have been identified

experimentally using a parallel analysis of ‘all’ enzymes, that we

have developed in baker’s yeast (Saccharomyces cerevisiae).

Genetic evidence for specific drug carriers in yeast
In a recent paper [181] (trailed earlier [4]), we exploited the fact

that the early systematic sequencing of the S. cerevisiae genome

[182,183] allowed the production of a series of bar-coded mutant

strains that individually lacked one (or both alleles in the homo-

zygous diploid deletant) of each of the protein products encoded

in that organism’s genome [184–186]. The fraction and identity of

those that are carriers is known from genomic (and in some cases

biochemical) analyses. We could therefore exploit the fact that if

we could add a drug that was toxic at a certain concentration (we

chose a concentration that had been determined to decrease the

rate of growth of the wild type by 90%) we could detect which

strains were more resistant to the drugs, and thereby determine

those strains that lacked the specific carriers whose decreased

concentrations provided or improved resistance (Fig. 2). We could

then test those strains directly and individually relative to the wild

type and thereby establish, by single-gene differences, those that

were presumably carriers of the drugs. Further evidence for this

came from the ability of known natural substrates of those carriers

to compete for uptake with the drug and thereby relieve its

toxicity. This is very straightforward evidence indeed, and in most

cases tested we found very clear evidence for multiple carriers

with varying degrees of effectiveness in lowering the toxicity (in

deletion strains) of the drugs tested, presumably by decreasing the

uptake that was normally effected when the carrier was present.

Figure 3 provides an example using diphenyleneiodonium, an

NAD(P)H oxidase inhibitor [187,188] that seems to be taken up
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FIGURE 2

The principle of assessing carriers involved in drug uptake using the bar-

coded yeast deletion strain collection [4,181]. Strains are competed against

each other in a growth assay in the presence of a concentration of a drug that

decreases the growth rate of the wild type by 90%. Strains (the lower three in
the figure) expressing a carrier for the toxic substance take it up and are more

or less likely to be killed, whereas those that lack the relevant carrier (top

strain) do not take up the substance via that carrier and are more resistant
(albeit other carriers may still be used). The numbers of each strain surviving

after a certain period are assessed via the binding of their specific barcodes to

complementary sequences in a microarray (or by ‘deep sequencing’). The

‘individual’ strains can then be tested directly in axenic culture. By performing
such tests in parallel, however, we assess the relative importance of all carriers

in vivo simultaneously.
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predominantly by one transporter, whereas Fig. 4 displays some

data for fluconazole, where four transporters are clearly detectable.

These [181] are the kinds of experiments that make clear precisely

which drugs use which transporters, without any ‘speculation’. It

is also important to note the use of multiple carriers by most of the

different drugs [181], which explains in large measure why such

carriers are not identified when absolute (qualitative) growth/no

growth experiments are done with mutant strains lacking one of

them, because deleting one still allows considerable flux through

others. Only quantitative measurements of the type that we

described [181] reflect the relative contributions of the multiple

transporters. Of course this is not the first line of evidence for drug

transporters, but the approach may be used more generally and the

findings were unequivocal.

An example of multiple drug carriers detected through
drug resistance studies in trypanosomes
While we shall have to await more extensive pharmacogenomics

studies in humans, where most drug carriers have native functions

and deleterious mutations in the host tend not to be selected, there

is a clear class of drug in which selection for resistance may be

expected, and those are cases in which drugs are designed to kill

the target organism. Trypanosomes such as Trypanosoma brucei

gambiense or T. brucei rhodesiense are the causative agents of sleep-

ing sickness, a typically fatal disease (in the absence of chemother-

apy), and we use the resistance of trypanosomes to the arsenical

drug melarsoprol and the diamidine drug pentamidine as an

example. These two drugs have entirely separate modes of action,
in that melarsoprol is thought to act mainly via the formation of a

toxic trypanothione adduct known as Mel T [189,190], whereas

pentamidine binds DNA and is concentrated in mitochondria

where it disrupts free energy conservation [191]. Cross resistance

to these two drugs might therefore not be expected to occur via

mutations in their targets, but is nonetheless known [192], and is

mediated in particular by a trypanosomal aquaglyceroporin 2 that

works (whether directly or otherwise [190]) to transport them

towards their cellular targets [193]. In addition, both pentamidine

and melarsoprol are also transported via the adenosine transporter

AT1 [194–200], pentamidine is transported using NT11.1 and

NT12.1 [201] while the source of energy for concentrative penta-

midine uptake is provided by three H+-ATPases HA1–3 [190] (a

mitochondrial pentamidine uptake carrier is not yet known). Both

melarsoprol [202] and pentamidine are also substrates for the

multidrug ABC efflux transporter MRPA [203]. Thus we find multi-

ple transporters capable of (with at least some being functionally

necessary for) the transport of (and or resistance to) either or both

of the antitrypanosomal drugs melarsoprol and pentamidine, a

fact of considerable and demonstrable significance in the devel-

opment of drug resistance in the target organisms. Transporter-

mediated resistance to each of the three other major antitrypano-

somal drugs (eflornithine, nifurtimox and suramin) is reviewed by

Alsford et al. [190].

Similar phenomena are found in other parasites such as Leish-

mania [204–206], while resistance to the antimalarial drug chlor-

oquine is also mainly transporter-mediated [77,166,207–214].

Overall, genome-wide RNAi screens look to have considerable

potential for unravelling and identifying the multiple drug trans-

porters in parasites and other organisms [190,215–219].

Summary of other evidence for the use of named SLC
transporters by drugs
Despite the extensive evidence gathered before in the references

cited [1,5], Di et al. [7] claim that ‘Although hundreds of carrier

proteins exist in many organisms, it is unlikely that the majority of

these transporters recognize drugs’. In fact, as we discuss below,

most proteins bind to multiple drugs and drug-like substances.

However, we do not have to speculate whether it is ‘unlikely’

because we know the SLC families [220,221] and could determine,

for each one, whether they do or do not transport a known drug

(and note that new discoveries continue to emerge [222]), and very

many do [1,5,99,223–225]. We would also point out, however,

that this is not the correct question because, if even just one

transporter type effected major flux for all anionic drugs and

another type, say, for all cationic drugs, that alone would be

sufficient to account for the transport of drugs by carriers rather

than via trans-phospholipid diffusion. Thus, the more pertinent

question is not ‘do all transporters recognise a drug?’ but ‘do all

drugs recognise a transporter?’ To answer this, we can take both a

generic and a more specific approach. The generic approach uses

electronic means [8,226] to query the public databases (some are

listed in Table 1) as to whether one or more carriers is known for

each known drug. Of course in many cases the specific interest

hinges upon those drugs that are seen as most ‘important’ as

judged for instance by sales, and we have therefore investigated

each of the ‘top 10’ small-molecule drugs by sales (amounting, in

2010, to some US$63Bn). As shown in Table 2, there is evidence
www.drugdiscoverytoday.com 221
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FIGURE 3

Identification and validation of the diphenyleneiodonium chloride (DPI) transporter, Nrt1p. (a) Array of diploid yeast (Saccharomyces cerevisiae) strains, each
carrying a homozygous deletion for a gene encoding a plasmamembrane transporters. These were spotted (by a Singer RoToR� HAD robot) in quadruplicate onto

synthetic medium plates containing 8 mM DPI or a solvent control. Strains lacking the gene encoding the nicotinamide riboside transporter Nrt1p (nrt1D) were

able to grow in the presence of high-doses of DPI, suggesting that in the absence of Nrt1p, the drug can no longer enter yeast cells. (b) Growth curves of wild-type

(WT) and nrt1D/nrt1D yeast strains in the presence of 0–20 mM DPI demonstrates that the absence of the proposed DPI transporter (Nrt1p) confers resistance to
the drug. (c) Comparison of the maximum specific growth rate achieved by the WT strain in the presence of various concentrations of DPI and nicotinic acid (NA, a

natural substrate of Nrt1p and consequently a competitor for this particular import route) confirms that in the presence of an alternative (or preferred) Nrt1p

substrate, WT cells become resistant to higher doses of DPI, because the natural substrate outcompetes the drug for import by the transporter. Error
bars = standard error of the mean; n = 3. See [181] for further experimental details.
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that each is indeed known to interact with one or more transporter

molecules.

In general, the correct approach to enzyme kinetics and systems

biology is to see which transporters are expressed where, and to

determine the structure–activity relationships for each of them (or

at least those carrying the majority of the flux). Armed with this,

one can create a suitable systems biology model [227–243] that

accounts for the relevant fluxes (even in the absence of knowledge

of detailed kinetics [244,245]). All else being equal, the flux via a

specific carrier is determined by its intrinsic kinetic rate equation

at the operating concentrations of the relevant substrates, pro-

ducts, and inhibitors multiplied by the concentration of the

protein. We need to know something about all of these. Inferen-

cing methods can allow one to estimate the important parameters

[246–249] from measurements of fluxes and concentrations and a

‘structural’ (topological) model of the relevant networks [250–

252].

Expression profiling
It is now entirely straightforward to determine which gene pro-

ducts are expressed in which tissues, and this has been widely done
222 www.drugdiscoverytoday.com
at both transcriptomic and proteomic levels, including for trans-

port proteins in tissues of interest to this community. As we

mentioned before [5], it is known that the plasma membrane of

Caco-2 cells contains several hundred transporters [253–258] of

broad (and usually unknown) specificity, while the membranes of

MDCK (Madin-Darby Canine Kidney) cells contain over 800 such

proteins [259]. Expression profiling studies have also been carried

out in different tissues, such as the BBB [260], in human intestine

[261], in the proximal tubule [262], and in the NCI 60 cancer cell

lines (where they can predict drug sensitivities [263], albeit that a

more refined machine learning analysis [264] might have proved

more effective). Other studies concentrate on transporter subsets

[265,266], for example, of multidrug resistance (MDR) proteins

[164] or the SLCO and SLC22A gene super-families [94], while

further studies [267–269] are more global in nature and determine

the expression of the cell surface proteome (of which transporters

are a part). Together, such studies provide the data necessary to

assess which transporters are expressed, differentially in which

tissues. Similarly, antibody-based proteomics studies are providing

considerable data on the tissue distributions of individual proteins

[270,271], including for most of the known solute carrier families



Drug Discovery Today � Volume 18, Numbers 5/6 �March 2013 REVIEWS

(a) (b)

(c) (d)

Control

Fluconazole

Identity

Quantification

Drug Discovery Today 

FIGURE 4

Identification and validation of fluconazole transporters. The experiment was performed as in Fig. 3a. In this case, the deletion of any of four transporter genes

(ITR1, FTR1, FET3, and FCY2) provides resistance to the antifungal drug, indicating that they may all contribute to the uptake of fluconazole.
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(http://www.proteinatlas.org/). This expression profiling evidence

is an important component of the evidence necessary for deter-

mining which protein carriers might be used in specific tissues. As

phrased by Sprowl et al. [98] ‘Considering the sheer magnitude of

the number of transporters in humans identified thus far, it is not

hard to imagine that the work done so far can only represent, at

best, the tip of the iceberg’.

Di et al. [7] make much of an expression profiling study [253] in

which it is found that there is a correlation coefficient of 0.85

between the jejunal and Caco-2 permeabilities of various drugs

when ‘removing compounds that are mainly transported by car-

rier-mediated processes’. While a study of 12,000 gene tags, 443

carriers and no proper hold-out set is not capable of explaining

robustly [272,273] the permeability properties of just 26 drugs, our

focus lies on the drugs studied. Specifically, the list of compounds

that were not removed, and thus presumably taken to lack

significant interactions with carriers, is as follows, but now with

non-exhaustive references added by us to show that all of

them possess, or interact with, known (and, often, multiple)

transporters: furosemide (six transporters, e.g. http://www.

drugbank.ca/drugs/DB00695#transporters, [274,275]), hydrochlo-

rothiazide [275–280], atenolol [281–284]; cimetidine (12 trans-

porters http://www.drugbank.ca/drugs/DB00501#transporters,

e.g. [60,164,285–294]), mannitol (believed to be transported, if
at all, via a paracellular route [295–297]), terbutaline [294], meto-

prolol [298–300], propranolol [299–304], desipramine [305–307],

piroxicam [308–315], ketoprofen [312,314,316–318] and

naproxen [308,312,316,319].

As before (Fig. 2b of [5]), we would point out that claims about

the absence (or that ignore the presence) of a transporter inter-

acting with a named drug may often be dismissed following

a simple literature search or an inspection of public databases

[320–322] such as DrugBank (http://www.drugbank.ca/) or others

in Table 1 and elsewhere. Contrary to the claim of Di et al. [7],

therefore, analysis of the paper by Sun et al. [253] does not at all

‘suggest that passive diffusion is the major mechanism for the

uptake of the compounds rather than carrier-mediated processes’

[7], because – apart from mannitol, whose role is precisely to

act as an osmoticum – we could find evidence for transporters

interacting with each of the compounds mentioned.

Di and colleagues [7] drew attention to a study of 197 drugs by

Tsinman and colleagues [323] in a paper designed to promote an

artificial membrane method (again with all the slopes in log–log

plots significantly below unity – see previous discussion [5]).

However, most of these 197 drugs (listed in Table 1 of that paper)

also have known interactions with carriers (for reasons of space we

do not, in this case list, all the references). Consequently, it is not

clear what understanding such studies in artificial systems can
www.drugdiscoverytoday.com 223
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TABLE 1

Some web-accessible resources for assessing (potentially promiscuous) drug–target (including drug–transporter) interactions (‘drug’
here often meaning small molecule ligand rather than licensed drug)

Database URL Drugs Targets Reference

BindingdB http://www.bindingdb.org/bind/index.jsp >180,000 3.673 [520]

ChEBI http://www.ebi.ac.uk/chebi/init.do >28,000 [521]

ChEMBL https://www.ebi.ac.uk/chembldb/ >1 million >8.800 [522]

ChemProt http://www.cbs.dtu.dk/services/ChemProt/ >700,000 >30,000 [523]

ChemSpider http://www.chemspider.com/ >26 million None [321]

DRAR-CPI http://cpi.bio-x.cn/drar/ [492]

Drug Adverse Reaction Target Database http://xin.cz3.nus.edu.sg/group/drt/dart.asp 1080 236 [524]

DrugBank http://www.drugbank.ca/ 6.711 4.227 [525]

iPHACE http://cgl.imim.es/iphace/ 739 181 [394]

MATADOR http://matador.embl.de/ 775 [147]

PDSPKi http://pdsp.med.unc.edu/kidb.php [526]

PharmGKB http://www.pharmgkb.org/ [527]

Potential Drug Target Database (PDTD) http://www.dddc.ac.cn/pdtd/ – 841 [528]

PROCOGNATE http://www.ebi.ac.uk/thorntonsrv/databases/procognate/ [529]

PROMISCUOUS http://bioinformatics.charite.de/promiscuous/ >25,000 [393]

PubChem http://pubchem.ncbi.nlm.nih.gov/ >31 million >1.600 assays [530]

PubChem promiscuity http://chemutils.florida.scripps.edu/pcpromiscuity [531]

SePreSA http://sepresa.bio-x.cn/ [532]

SIDER2 http://sideeffects.embl.de/ 996 4.199 [533]

SuperTarget http://bioinformatics.charite.de/supertarget/ 195,770 6219 [150]

TarFisDock http://www.dddc.ac.cn/tarfisdock [375]

TDR Targets http://tdrtargets.org 825,814 [534]

Therapeutic Target Database (TTD) http://bidd.nus.edu.sg/group/ttd/ 17,816 2.015 [535]

Toxin, toxin-target database (T3DB) http://www.t3db.org/ 2900 1.300 [536]

Transporter Classification DataBase (TCDB) http://tcdb.org/ [537]

Some others are listed, for example in [457,538,539,587]. Other commercial offerings also exist, including Bioprint/Cerep [370].
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bring to the question of which carriers are used by specific drugs in

biological membranes, and how that affects their distribution in

living cells and organisms.

So what precisely do we need to measure (or simulate)?
Given the availability of approximate metabolic networks

[237,239,324], including tissue-specific versions [325,326], the

only other data required to produce a reasonably accurate systems

biology (ordinary differential equation) model are those for the

concentrations of the enzymes in each tissue and their approx-

imate kinetics for the substrates of interest.

The blood–brain barrier (BBB)
The BBB (hence the name) is widely recognised as being com-

paratively impermeable to most drugs that can enter other cells

[327–341]. Certainly the BBB lacks paracellular transport and is

known to contain a number of efflux pumps [333,335,342,343].

However, since, so far as we know, the phospholipids existing in

membranes contributing to the BBB do not differ materially from

those in other mammalian cells or tissues, it is of interest to seek to

understand why these phospholipids are now impermeable to

drugs whose uptake is supposed to be mediated normally via
224 www.drugdiscoverytoday.com
the phospholipid bilayers; Di and colleagues [7] do not comment,

but the most plausible explanation [5] is simply that drug trans-

port in vivo does not occur via phospholipid bilayers at non-

negligible rates. Here we analyse a few of the claims of Di and

colleagues [7] regarding the BBB.

‘The BBB uptake transporters have unique substrate
specificities and require specific structural motifs for
transportation to be possible’. [7]

It is not clear what is meant here, since probably no transporter

has a ‘unique substrate specificity’ in the sense of binding and

transporting only a single molecular type (but all have an identifi-

able pattern of substrate specificities, including some that are

rather specific relative to the considerable promiscuity of many

others – see the numerous comments on promiscuity, above). In

fact, the evidence for substrate promiscuity is overwhelming, and

is highlighted in many places here and elsewhere. We would

certainly agree that it is well established that there are many SLCs

expressed in the BBB, as a small sampling of review references

[34,327,329,330,335,337,339,344–348], and many others given

before [1,5], indicates. These show exactly which kinds of trans-

porters are present in the BBB. Although such information might
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TABLE 2

Interaction of ‘blockbuster’ small molecule drugs with known transporters.

Drug name Disease area Annual Sales

(2010) in $Bn

Known transporter

(family) interaction(s)

Representative

references

Lipitor (atorvastatin) Cardiovascular 10.7 ABCB1

ABCC1

ABCC4
ABCC5

ABCG2

SLCO1A2

SLCO1B1

[94,489,540–546]

Plavix (clopidogrel) Cardiovascular 9.5 ABCB1 [547–550]

Seretide/Advair (salmeterol xinafoate/fluticasone propionate) Pulmonary (COPD) 8.3 ABCB1

SLC22A2
SLC22A3

[25,551–554]

Diovan (valsartan) Cardiovascular 6.1 OATP 1B1

SLCO1B3

SLC22A9

[27,555–560]
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TABLE 2 (Continued )

Drug name Disease area Annual Sales

(2010) in $Bn

Known transporter

(family) interaction(s)

Representative

references

Crestor (rosuvastatin) Cardiovascular 5.7 ABCC1
ABCC4

ABCG2

SLCO1A2
SLCO1B1

SLCO1B3

[27,94,489,541–544,
546,561–564]

Zyprexa (olanzapine) CNS 5.1 ABCB1

SLC6A2

[565–567]

Singulair (montelukast) Allergy 5.0 ABCB1

SLCO2B1

[568–572]

Nexium (esomeprazole) Gastrointestinal 5.0 H+-K+-ATPase (target)

ATP4A

[573,574]

Gleevec (imatinib) Cancer 4.3 ABCA3

ABCB1

ABCC4

ABCG2
SLC22A1

SLC22A2

[575–584]
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TABLE 2 (Continued )

Drug name Disease area Annual Sales

(2010) in $Bn

Known transporter

(family) interaction(s)

Representative

references

Seroquel (quetiapine) CNS 4.1 ABCB1 [362,565,585,586]

The ‘top 10’ small molecule blockbuster data are taken from the LaMerie website (http://www.pipelinereview.com/free-downloads/blockbuster_drugs_2010.pdf ). Other data from

literature searches or (including structures) via DrugBank (http://www.drugbank.ca/), ChEBI (http://www.ebi.ac.uk/chebi/init.do), ChEMBL (https://www.ebi.ac.uk/chembldb/), ChemSpider

(http://www.chemspider.com/) or KEGGDrug (http://www.genome.jp/kegg/drug/). It may be noted that each of the ten drugs interacts with at least one known transporter. The total sales

of these drugs in 2010 amounted to $63.7Bn.
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sensibly be exploited [34] to get drugs into the CNS, Di and

colleagues [7] doubt this:

‘Prodrug approaches that use uptake transporters to
increase brain penetration are scarce and have limited
success’ [7]

While we have cited many papers and reviews showing exam-

ples of the exploitation of known BBB solute transport carriers in

assisting CNS uptake [1,5], we can add a few other reviews

[34,330,337,338,349–352] and papers, such as ones exploiting

the large amino acid transporter [353–356], the neutral/cationic

amino acid transporter [357], the glucose transporter [354,358,

359], the ascorbate transporter [337,360], and the organic cation

[361,362], anion [346,363], choline [364–366] and monocarbox-

ylate [346] transporters, a monoamine transporter [367], and a

H+-amine antiporter [368]. Indeed, ‘Use of endogenous transport

systems is the great, untapped strategy in drug delivery to the

brain’ [338], with the substrates of many highly expressed trans-

porters yet to be determined [369].

‘By contrast, there is a large body of strong evidence that
suggests many lipophilic small molecules cross the BBB by
passive diffusion.’ [7]

Actually, there is no such evidence, merely an interpretation of

various kinds of data (see e.g. [272,273] for why these are not at all

the same thing), not least because these kinds of studies mainly

seek to correlate some measure of lipophilicity with net uptake.

This is probably a pointless exercise for at least two main reasons:

(i) We do not yet know the substrate specificities of all the influx

and efflux transporters in the BBB, and lipophilicity is known

to correlate quite well with the effectiveness of drug ‘efflux’

carriers, which obviously then compromises any assessment

of the effect of lipophilicity on drug uptake;

(ii) lipophilicity is also known to correlate with many things

that have nothing at all to do with diffusion through

phospholipids, for example, the binding of molecules to the

water-soluble protein luciferase, see below.
However, we can at least say that if increased lipophilicity

caused improved transport of drugs through phospholipid bilayers

in biological cells, it would be most obvious for roughly homo-

logous series in which a specific pharmacophore was made more

lipophilic. However, ‘in actual practice, the reformulation of a

water soluble drug with lipidization modifications is difficult to

execute successfully, and there is not a single example of a drug

presently sold whereby medicinal chemistry was successfully

used to convert a non-brain-penetrating drug into a molecule

that crosses the BBB in pharmacologically significant amounts’

[329].

‘This analysis predicts that a large fraction of solute-
transporting proteins with unknown function will prob-
ably not transport substrates the size of drugs.’ [7]

Even leaving aside the many SLC transporters of known func-

tion, and as discussed throughout this article with regard to the

promiscuity of drug binding, this prediction is simply not borne

out by the facts, whether for the BBB or in other tissues. We give

some more examples below.

Related areas concerning the interaction of drugs with
multiple proteins and how they have been informed by
new facts
Promiscuity of drug binding to proteins, and its relationship to
lipophilicity
Since some of the arguments we have raised imply that most drugs

are likely to bind to (or hitchhike on) multiple transporters, it is

worth having a look at how common the promiscuity of protein

binding is for known drugs (and drug-like molecules). A straight-

forward analysis of the literature shows that it is becoming

increasingly clear that individual drugs [71,370–412], and even

intermediary metabolites [413–416], do experimentally bind to

very many more entities than just the single ‘target’ via which they

were typically discovered. An analysis (http://www.bindingdb.

org/bind/ByMonomersTarget.jsp) shows that of 3673 targets, just

400 have only one known ligand, with the rest therefore being
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Drug Discovery Today 

FIGURE 5

The binding of bromoform to a hydrophobic pocket of the water-soluble

enzyme luciferase [431]. The picture (with protein side chain hydrophobicity

encoded in red) is derived from the data deposited at the protein databank

(PDB reference 1BA3; http://www.rcsb.org/pdb/explore/
jmol.do?structureId=1BA3&opt=3). Two bromoform molecules (with carbon

in grey and Br in red) are bound and may be observed.
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promiscuous. The number of targets with at least ten known

(experimentally measured) ligands is 2323, with the ‘winner’ being

a dopamine receptor with no fewer than 7317 experimentally

measured ligands. Such promiscuous or ‘off-target’ binding

(whether seen as ‘real’ or ‘adventitious’, and see also Table 2) is

typically a function of lipophilicity [371,387,391,393,395,396,

410,417–421] or size [386,422]. It is underpinned by the biophysics

of binding to just 20 main amino acids, and the finite number of

known protein folds that are reused [423] and thus bear an

evolutionary relationship to each other [145,412]. On average,

drugs are known to interact with no fewer than six targets [419],

and many proteins are known to interact with hundreds of drugs

[376]. Indeed, polypharmacology and off-target effects are prob-

ably the rule and not the exception for the discovery of effective

drugs [9,372,374,376,383,385,386,405,411,424–429]. Equally, if

off-target effects are unfavourable, this can have an important

bearing on toxicity. We next give two examples of such promis-

cuity or polypharmacology. (A discussion of the ‘off-target’ effects

of statins and glitazones appears elsewhere [9].) Overall, what is

clear is that there is abundant and increasing evidence for drugs

interacting with large numbers of proteins, partly according to

their lipophilicity.

General anaesthetics (narcotics)
As we have mentioned before [1,5], and here update, there is

another major class of compounds whose mode of action was

closely related to their lipophilicity, and that were believed [430]

(mainly because of the lack of a clear molecular structure–activity

relationship) to function solely via phospholipids. These are the

general anaesthetics or narcotics. However, it is now entirely clear

[431–448] that they bind, relatively specifically, to hydrophobic

pockets within protein receptors or targets, whether functional or

not, and that this alone can account for their actions. The binding

of bromoform to luciferase is shown in Fig. 5. Examples such as the

essential resistance to otherwise fully narcotising concentrations

of inhalational anaesthetics, such as halothane in TREK K+ chan-

nel mouse knockouts [434,435], provides just the kind of genetic

evidence necessary to clarify the crucial role of such proteins in

inhalational anaesthesia that we are here proposing for drug

transporter studies.

QSAR of molecules binding to and affecting the hERG channel
The statement is made [7] that ‘The extent to which the trans-

porters can recognize drug molecules in addition to their endo-

genous substrates is, at best, questionable’. This statement

completely ignores the facts of (i) the massively wide recognition

(it underpins the whole basis of QSAR studies [449–451]) that

individual proteins can bind any number of molecules (e.g. [452]

and vice versa [419], and see above), and (ii) that ion and neuro-

transmitter transporters are an important target class for phar-

maceutical drugs [42,376,453–455]. To this end, it is worth

pointing out that ion channel or drug transporter molecules

are well represented among the (purported) targets of marketed

drugs [456,457].

Another protein receptor (and ion transporter) with a wide

affinity for more or less lipophilic drugs, and of well known and

considerable significance in the pharmaceutical industry (and

certainly not ‘at best questionable’), is the hERG channel, that
228 www.drugdiscoverytoday.com
is, the ‘human ether-a-go-go-related’ hERG-encoded cardiac K+

channel. As is well known, this molecule may bind to, and be

affected by, a very large number of drugs ([408], and http://

bindingdb.org lists over 3800 hits), with potential and dangerous

prolongation of the QT phase of cardiac performance as detected

via electrophysiology [458–463]. Here again there is little doubt,

typically from electrophysiological evidence, of the functional

relationship between the binding of drugs of very different struc-

tural properties, their lipophilicity/hydrophobicity, and their abil-

ity to inhibit the hERG channel [300,464–476].

While we could write a very large survey on the fact that

individual drugs (whether designed to or otherwise) interact with

a great many targets, and specific targets interact with a great many

drugs, especially as a function of their lipophilicity, the two well-

known examples in this section are probably sufficient to remind

readers that this is so, and is so more generally. In particular, those

who doubt it can survey the facts in the databases listed in Table 1.

However, it is worth rehearsing another highly important area

[477–479] of drug–drug interactions that realistically can only be

effected via interactions with proteins, such as transporters, rather

than phospholipids, and this is the area of adverse drug reactions.

Adverse drug reactions as off-target effects
Just as it is hard to envisage significant competition between

molecules at low concentrations for the ability to cross phospho-

lipid bilayers, the competitive (and indeed uncompetitive and

non-competitive) interaction of small molecules with each other

via binding and modulation of protein-mediated activities lies at

the core of enzymology. This is again manifested as a kind of

http://bindingdb.org/
http://bindingdb.org/
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‘promiscuity’ in which one protein interacts with multiple small

molecules.

In a similar way, the binding of individual molecules to multiple

proteins or targets, as well as providing opportunities in polyphar-

macology, can lead to some off-target effects that are undesirable;

these are commonly referred to as ‘adverse drug reactions’ (e.g.

[71,75,91,156,377,394,408,453,480–494]), and provide a further

class of evidence for considerable and important drug promiscuity,

including interactions with transporters.

Systems pharmacology
The overall result of these considerations, then, is the recognition

that we need proper (quantitative and mathematical) models of

the interactions between drugs and their multiple targets and

binding partners, including transporters. This field is emerging

as Network or Systems Pharmacology/Medicine [41,93,229,230,

234,235,238,379,426,484,488,495–514]. Without these kinds of

approaches, we shall continue to fail to identify the mechanistic

basis for the transfer of drugs across biological membranes.

Concluding remarks
As previously [5], we find it useful to summarise the issues in a

number of bullet points since, as Di and colleagues [7] comment

(and we agree), understanding the means by which drugs reach

their targets ‘has a major impact on the strategic decisions in drug

discovery and development’.
� There is overwhelming evidence, wherever it is sought, that

drugs use transporter molecules to get into and out of cells.
� The question to be asked should not be ‘do all transporters

recognise a drug?’ but ‘do all drugs recognise a transporter (or

many transporters) and, if so, which one(s)?’
� A recently described system in baker’s yeast allows one to

evaluate all drug transporters (and other enzymes) in parallel,

and thereby to establish which drugs use which transporters
� Carriers are no different from other enzymes that effect

chemical transformations in that they obey standard enzyme

kinetic laws. These include principles such as the dependence

of their rates on substrate, product, effector, and transporter

concentrations (and including any free energy coupling), a

dependence on pH (via ionisation changes in both substrates

and enzyme), and constraints on forward and back reactions as

described by the Haldane relation.
� Many, and probably all, enzymes are rather promiscuous

and can bind to and effect catalysis on multiple substrates,
including hydrophobic/lipophilic ones. Well-known examples

of interest here include efflux and influx transporters, drug-

metabolising enzymes, general anaesthetics, and the hERG

channel
� The common and substantial promiscuity of receptors for small

molecules underpins the whole of QSAR studies, and transpor-

ters and ion channels are an important class of drug targets that

are equivalently promiscuous
� For evolutionary, as well as biophysical, reasons most small

molecules interact with multiple proteins, and are thus also

promiscuous.
� It is not wise to claim that any particular drug interacts solely

with its nominal target without looking at the literature

(including online databases) carefully first. In most cases, one

can find evidence for at least one transporter (and often many)

with which it also interacts.
� Promiscuity of protein binding is commonly related to

lipophilicity, and so lipophilicity is an inadequate measure

for assessing whether such interactions are also (let alone solely)

occurring with phospholipids.
� Drug promiscuity, by which drugs bind to a wide variety of

targets, is very widespread, almost to the point of universality.

Such so-called ‘off-target’ effects may be useful or otherwise, but

they are commonplace. Thus it is entirely expected (and found)

that drugs can bind to multiple proteins, including transpor-

ters. Hundreds of examples show that they do so.

Drug uptake into cells is very largely, if not indeed exclusively

(though that cannot be proved), via proteinaceous carriers. Their

transport in vivo via phospholipid bilayers is thus negligible. A

recognition of this fact indicates that we need to produce proper

systems biology models of the human metabolic and signalling

networks. This should also have a massively beneficial effect on the

increasingly low productivity and appalling attrition rates

[495,515–518] that are still widely suffered by the pharmaceutical

industry
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