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Abstract 

In biological dielectric spectroscopy, where dispersions are substantially broader than that expected 
from a purely Debye-like process, it is not always possible, because of technical limitations, to obtain 
data over a wide enough range of frequencies to encompass the entire dispersion(s) of interest. 
Similarly, because of the breadth of the dispersions, it is common to seek to characterize the dielectric 
behaviour of interest by means of the Cole-Cole function. Whilst it is possible to fit dielectric data to 
this equation using appropriate non-linear least-squares methods, these methods are computationally 
rather demanding, and must be performed iteratively for each set of data. We show here, for the first 
time, that it is possible to train an artificial neural network to learn to extract the parameters of the 
Cole-Cole equation from small sets of dielectric data (permittivities measured at various frequencies) 
which can thus give an essential instantaneous output of the limiting permittivities at frequencies that 
are both high and low with respect to the characteristic frequency. 

INTRODUCTION 

In the dielectric spectroscopy of biological and other systems, it is usual to find 
areas of strong frequency dependence, known as dielectric dispersions, in which 
the measured permittivity decreases with increasing frequency, with a shape (when 
the frequency is plotted logarithmically) approximating an inverse sigmoid [I-121. 
To characterize the behaviour of the system of interest quantitatively, one fits the 
measurements (permittivity and conductivity at different frequencies) to an appro- 
priate equation, that proposed by Cole and Cole [I31 being perhaps the most 
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popular in biological work. The Cole-Cole equation is a modification of the Debye 
[14] formulation of molecular dielectric behaviour which contains, in addition to 
the dielectric increment A E ,  the characteristic frequency f, and the high-frequency 
permittivity E, , ,  an empirical parameter, the Cole-Cole a ,  which can be used to 
describe (if not to explain) the fact that real dielectric spectra are much broader 
than those due to a simple Debye-like dispersion. Whilst the Cole-Cole cw has no 
theoretical justification (although it is widely interpreted in terms of a distribution 
of relaxation times), Schwan [I51 showed that a great many types of relaxation-time 
distribution could accurately fit the Cole-Cole function. In addition, the Cole-Cole 
function permits one to extract the parameters describing an entire dielectric 
dispersion, even if, for technical reasons, one cannot measure over the whole 
frequency range across which it occurs. For these and other reasons, the Cole-Cole 
formulation remains very popular as a means of characterizing the dielectric 
properties of biological systems. 

We have shown that the radio-frequency dielectric properties of biological cells 
at one or two appropriate frequencies can be used as a rapid (on-line) method for 
measuring levels of cellular biomass in fermentors and elsewhere, and for this 
purpose we have constructed a high-resolution dielectric spectrometer, capable of 
measuring in the range 0.2-10 MHz [16-201. The method relies upon the fact that 
the P-dielectric dispersion exhibited by all biological cells is dominated by the 
charging of their plasma membrane(s), and that intact biological cells, but nothing 
else likely to be found in a fermentor, possess relatively non-conducting plasma 
membranes [16]. However, this approach requires that (i) at least one of the 
frequencies of measurement is low with respect to fc, and (ii) the fc does not 
change appreciably during the fermentation of interest. The fc of the /3 dielectric 
dispersion depends upon both the internal and external conductivity [15], and 
whilst the former is likely to be a relatively constant property (at least for cells in a 
given medium) the latter may well change significantly [21]. 

One way round the above problem would be to take measurements at a number 
of frequencies and fit the data to the Cole-Cole equation, thereby obtaining the 
dielectric increment which is what truly reflects the biomass present [16-201. 
Methods for fitting dielectric data are usually based on non-linear least-squares 
algorithms [1,22], and we ourselves (see later) have found that the popular 
Levenberg-Marquardt algorithm [23,24] provides excellent fits to real dielectric 
spectra. However, these methods are computationally rather intensive, and for the 
fermentor example would have to be carried out for every data set at every time 
point. 

Artificial neural networks (ANNs) consists of highly interconnected parallel- 
processing elements known as nodes, which are arranged in layers representing a 
set of inputs, one or more so-called hidden layers and a set of outputs. Each node 
acts to sum its own inputs (which are the outputs of the elements of previous 
layers), and the sum is passed through a transfer function (which must be 
continuously differentiable and is normally non-linear) to the element(s) in the 
next layer. In the classical version, the transfer function is sigmoidal (via the 
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Fig. 1. The principle of a classical feedfonvard neural network. (A) The construction of a 4-2-2 neural 
network in which inputs and outputs are connected to each other via one or more hidden layers. Layers 
other than the input layer may also be connected to a bias. In the architecture shown, adjacent layers of 
the network are fully interconnected, although other architectures are possible. (B) Information 
processing by a neuron. An individual neuron sums its inputs from neurons in the previous layer, 
transforms them via a transfer function, and outputs them to the next neurons to which it is connected. 

exponential term) and is normalized between 0 and 1. The output oj of node j is 
given by 

where 

In eqn. (2), 6, is a bias term, oi is the output from the ith node of the previous 
layer, wi, represents the so-called weight or strength between node i and node j 
and y is known as the gain. Other popular functions include the sinh, tanh and 
sine functions, and the general principles of such networks are illustrated in Fig. 1. 

It is possible to train such networks by initially setting the weights and biases to 
small random values, presenting the networks with known inputs and outputs, and 
comparing the output of the net with the "true" (known) outputs. By adjusting the 
weights using information based on the difference (the error e,) between the 
output of the net and the true values, a principle known as the back-propagation of 
error (or, more simply and more commonly, back-propagation or back-prop), it is 
therefore possible to train the network accurately to deliver a desired output when 



presented with a novel (previously unseen) input [25]. This process is repeated 
from the output through each hidden layer to the input. The actual weight updates 
for this so-called delta rule are 

where LR and M are user-defined values of the so-called learning rate and 
momentum respectively. In this way, weights are changed according to both the 
error and the input to the connection of interest. Training can be continued until a 
defined root mean square error (between the "true" outputs of the training set 
and the outputs of the network) is obtained, or simply for a fixed number of 
presentations of the training set. 

The great interest in ANNs has therefore been aroused by their ability to act as 
pattern recognition or signal processing elements, among other applications, and 
ANNs are the subject of a number of books [25-351. This is not the place to review 
in detail what is a very substantial literature, but the following outline comments 
are in order. First, it has been shown that (given sufficient time) an appropriately 
trained network with sufficient nodes can simulate any function to an arbitrary 
degree of accuracy [36]. Second, whilst back-propagation methods are nowadays 
considered to be computationally rather inefficient, and many other possible 
algorithms and architectures exist [37-421, they remain the most popular methods 
and their behaviour is reasonably well understood. Third, although the training of 
a network may be a lengthy procedure, once trained the network processes the input 
into the output virtually instantaneously. Fourth, it is widely believed that, owing to 
the parallel distributed processing that they effect, the networks are robust with 
respect to both noise in the inputs and "damage" to the neurons [43,44]. Finally, 
for our present purposes, it is pertinent to note that ANNs have been used with 
success in the analysis of nuclear magnetic resonance (NMR) spectra [45] and 
fluorescence spectra [461, and in chromatography [471. 

The question therefore arose as to whether it might be possible to train an 
ANN using simulated dielectric data (permittivity values at a number of fixed 
frequencies) as the inputs and the parameters of the Cole-Cole equation that had 
generated the data as the outputs, and thereby teach the network to give (say) the 
dielectric increment of a dispersion when presented with a set of dielectric data 
that have (realistically) variable values of E,, f, and a. In the present work, we 
show that this is indeed the case. 

METHODS 

All simulations and networks were run on a Viglen Vig I11 80386-based 
PC-compatible microcomputer, incorporating an 80387 coprocessor. Simulations 
were run using programs written in-house in Microsoft QuickBasic (Version 4.5). 



The neural networks were produced and run using the Neural Works Explorer 
package (Scientific Computers, Burgess Hill, UK), whilst non-linear least-squares 
fitting (according to the Levenberg-Marquardt algorithm) routines were per- 
formed and displayed, together with other plots, using GraFit version 2 (Erithacus 
Software, Staines, UK). 

RESULTS AND DISCUSSION 

Figure 2 gives an illustration of the present problem of interest. Figure 2(A) 
simulates the dielectric properties of a system in which AE, E ,  and a are fixed (at 
values of 500, 100 and 0.1 respectively), whilst f, is varied from 0.3 to 0.7 MHz. 
The effect on the permittivity measured at 0.3 MHz, a typical frequency of 
measurement in this application [16-201, is striking, with the apparent permittivity 
(which one might take as a measure of the biomass) varying from 350 to nearly 500. 
As mentioned, the dielectric increment, which is the true measure of biomass, is 
constant under these conditions. 

Similar curves (in which the permittivity at 0.3 MHz varies under conditions of 
constant AE) were easily generated as a function of changes in E, (which would 
occur due to changes in the gas hold-up of a culture) or in a (caused, for instance, 
by changes in the morphology or degree of heterogeneity of a culture), but are not 
displayed herein. 

Frequency /Hz Characteristic 1"requcncy /kHz 
Fig. 2. Variation of the apparent permittivity at a fixed frequency for a dielectric dispersion of constant 
dielectric increment, high-frequency permittivity and Cole-Cole a. (A) Frequency dependence of the 
permittivity. Simulations of eqn. (4) were performed using the following values for the parameters: 
ch = 100, AE = 500 and a = 0.1. The characteristic frequency f, was varied in steps of 0.1 MHz between 
0.3 and 0.7 MHz as indicated. (B) Dependence of the permittivity at 0.3 MHz on the characteristic 
frequency. Parameters were as in (A). 



We therefore created various data sets for training an ANN to fit dielectric 
spectra to the Cole-Cole equation. The Cole-Cole equation [13] describing the 
variation of (the real part of the) permittivity with frequency is 

AE [l + ( f/fc) l -" sin (arr/2)] 
E f =  E,, + 

1 + 2( f/fC)lwa sin ( a ~ / 2 )  + ( f/fc)2-2a 

This equation was used to generate 500 sets of data for E at ten different 
frequencies, logarithmically spaced in the range 0.2-10 MHz, using randomized 
values of the parameters in the range 0 < AE < 3000, 10' < fc < lo7, 0 < E, ,  < 200 
and 0 < a < 0.5. Preliminary experiments (not shown) showed that suitable values 
of the learning rate and momentum were 0.3 and 0.4, and since the use of too 
many nodes in the hidden layer can cause the net to learn the training set 
(specifically, as opposed to learning and generalizing from it) we first used a single 
hidden layer with 15 nodes, i.e. a 10-15-4 topology, and the tanh transfer 
function. We also used an architecture in which the input nodes were connected 
directly to the output layer, in addition to their connection via the hidden layer, an 
architecture which we found (data not shown) to give better results. The net was 
shown the training set (in random order) for a total of 20000 examples (i.e. 40 
epochs) and had converged to an effectively stationary state (as judged by changes 
in the root mean square error) after some 10000 examples. The net was then 
tested with a separately generated (i.e. unseen) set of 400 test data (representing 
permittivity values at the same frequencies used in the training set). Figure 3 shows 
a typical example of the results, and compares (i) the true data (used as the inputs 
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Fig. 3. Estimation of dielectric parameters by means of a neural network. A neural network with a 
10-15-4 topology was trained as described in the text. The plot shows a typical example of the results, 
and compares the true data (o), the best fit to them using the Marquardt algorithm (- ) and the 
neural network's estimate of the dielectric behaviour based on its estimate of the parameters of the 
Cole-Cole equation ( ) .  The actual values of Ac, f,, E,, and a were 2824, 3.62 MHz, 148 and 
0.066, whilst the network's outputs were 2740, 2.17 MHz, 93 and 0.005 respectively. 



to the network), (ii) the best fit to them using the Marquardt algorithm with simple 
weighting and (iii) the neural network's estimate of the dielectric behaviour plotted 
according to eqn. (4) and using its estimate of the parameters of the Cole-Cole 
equation. It is evident that the network had indeed learnt features of the training 
set and had become quite good at guessing the dielectric increment, but less so at 
determining the other dielectric parameters. This was even more evident when the 
net's guesses for all 400 (unseen) test sets of data are compared with the true 
values (data not shown). Although there was a clear trend for three of the four 
parameters, the net did not appear to detect any significant influence of E ,  and 
always assumed it to have a value somewhere near the mid-point of the range of 
training values to which it had been exposed. Further studies of this network (not 
shown) indicated that a sine transfer function was slightly preferable to tanh or 
sinh functions, that the number of nodes in the hidden layer had little effect on the 
overall accuracy when varied in the range 5-30 (or when two hidden layers were 
used instead of one), and that increasing the size of the training set to 10000 and 
the number of training examples presented to the net to 100000 also did little to 
change the accuracy of the network. 

We felt that the chief cause of the net's inability to "notice" E, was the rather 
excessive (and unrealistic) range of values for fc and a that we had expected it to 
learn (using what is presently a rather modest number of examples and epochs). 
We therefore created another training set of 1000 ten-frequency inputs suitable for 
dealing with the problem as displayed in Fig. 2 and in which the parameters were 
0 < AE < 2000, 3 x 10' < fc < 7 x 10' Hz, 0 < E, < 200 and 0 < a < 0.2. Various 
networks were trained with 20000 examples, and the results from a 10-5-4 
network are displayed in Fig. 4. Again we stress that the test data were different 
from the training data. Except at the very extremes of the training set, the values 
of AE and E, returned by the network are within 10% of the true values (and in 
most cases significantly better). In addition, the net has clearly learned to make 
use of the information embodied in f, and a in providing estimates of AE and E, 
that are so much better than would have been surmised from Fig. 2, even though 
the net cannot determine fc and a perfectly. 

Two arguments can be advanced to show that the net has not simply learned the 
training set, but has actually learned to generalize from it: (i) the number of 
members in the training set greatly exceeded the content-addressable memory of 
our rather small networks (a fully connected 10-5-4 network has only 110 
neurons), and (ii) the test data had never been seen by the networks during their 
training phase. 

Whilst there are many other suitable architectures which might be tried in an 
attempt to improve both the speed of learning and the ability of our ANNs to fit 
dielectric data to the Cole-Cole equation accurately, the excellent results that we 
have obtained add weight to the view that this general approach provides a 
powerful means of solving inverse problems. Indeed, eqn. (41, containing four 
unknown parameters which interact in a complex non-linear fashion, provides a 
demanding test for ANNs which might prove useful to others in providing 



Fig. 4. Estimation of dielectric parameters by means of a neural network. A neural network with a 
10-5-4 topology was trained as described in the text and tested with 400 unseen sets of permittivity 
data. The output of the network was compared with the true values for the parameters which had been 
used to train the network (according to eqn. (4)). Values for the parameters used in the training and 
test sets were 0 < B E  < 2000, 3 X lQ5 < fc < 7 X  lo5, 0 < e h  < 200 and 0 < a  < 0.2. (A) Dielectric incre- 
ment; (B) characteristic frequency; (C) high-frequency permittivity; (D) Cole-Cole a. In each case, the 
lines are the best linear least-squares fits to the data. 

benchmarks for comparison of different neural architectures and learning algo- 
rithms. It seems evident that similar approaches might fruitfully be applied to 
other cognate "inverse" problems, such as that of obtaining the parameters of 
metabolic control theory [48-511 from experimentally measured variables such as 
fluxes and metabolite concentrations. 
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