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Network modelling in metabolic systems biology and biotechnology:                        why, how and whither

Understanding the      languages of cells
Let me start by saying what I am not going to do, and that is to seek to define systems biol-
ogy! However, it is widely recognized that the chief differences between Systems Biology and 
traditional molecular biology are (i) the concentration of systems biology (and systems biolo-
gists) not on the molecules involved, but on the dynamics of their interactions, and (ii) that 
systems biology should involve a judicious interplay between modelling, theory, experiment 
and technology development 1. As the modelling element is really the key, it is this aspect that 
I stress here. 

literature data7, and an important feature being the 
use of principled descriptors for metabolites5 and 
their disambiguation8 from the many synonyms 
prevailing. A second qualitative stage adds known 
effectors, while the third and fourth stages add the 
known kinetic rate equations and the values of their 
parameters. Armed with such information, prefer-
ably encoded properly in a suitable manner, e.g. 
in the Systems Biology Markup Language (SBML; 
http://sbml.org/)9, it is then possible to provide a 
stochastic or ordinary differential equation model 
of the entire metabolic network of interest. Running 
such a model (using software such as COPASI; www.
copasi.org/10,11) provides the time evolution of the 
variables of the system that may be compared with 
experimental data on the variables. One can then 
seek to adjust the parameters of the network so that 
they more nearly reproduce the variables12. Methods 
in which one starts with the variables and seeks to in-
fer the topology and other parameters of the system 
that generated them are known as inverse methods 
or system identification methods, and are consider-
ably more demanding computationally (e.g. 13–15). It 
is also usually the case that such systems are under‑ 
determined, i.e. that many combinations of param-
eters can give rise to very similar values of the varia-
bles. This is in part due to the fact that natural evolu-
tion selected for robustness (especially in topology3), 
which has the advantage (from the experimenter’s 
point of view) that one can then concentrate on those 
comparatively few (combinations of ) parameters that 
have the greatest effect16.

The purposes and benefits of modelling

I have set these out systematically elsewhere17, 
and they include (i) testing whether the model can 
be made to reflect known experimental facts, (ii) 

Although much of what I shall say also applies to sig-
nalling pathways, for reasons of focus I shall mainly 
concentrate on metabolic networks. These also have 
two especially useful properties over signalling 
networks, namely that they are subject to specific 
stoichiometric and thermodynamic constraints that 
offer considerable advantages in modelling them.

Parameters and variables

It is at once useful to distinguish the parameters 
and variables of a system (or model thereof)2. The 
parameters of a dynamical system are those prop-
erties of a system that are either inherent to the 
system of interest or whose values are controlled 
by an experimenter. In metabolic networks, these 
include the initial concentrations of enzymes and 
metabolites, and enzyme kinetic properties such as 
Km, kcat and Ki. The variables, by contrast, are those 
things that change during the time evolution of the 
system, typically concentrations of metabolites and 
metabolic fluxes. It is important to recognize that the 
parameters control the variables and not vice versa, 
although it is probably more common to measure 
the variables than the parameters. Especial virtue 
attaches to seeking to do both simultaneously (i.e. 
comparing modelled metabolic networks with their 
metabolomic properties3,4).

Metabolic network modelling

It is usual to recognize that the successful mod-
elling of metabolic networks involves a four-stage 
process1,5. The first two stages are qualitative, with 
the first involving listing all the reactions that are 
known to occur in the system or organism of inter-
est; nowadays these reaction lists are mainly derived 
from genomic annotations6, with curation based on 
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three enzymes, as may in fact quite commonly be the 
case (e.g. 25), in silico analyses allow one to identify 
them fairly easily (i.e. the computational require-
ments are very modest, and, because the algorithms 
can be parallelized efficiently12, actually scale close 
to linearly with the available processors). It is then a 
simple piece of molecular biology to make the neces-
sary constructs. This fundamental relationship be-
tween a small number of important parameters and 
a very large number of combinations of those param-
eters means that the modelling strategy is necessarily 
highly efficient (and really the only sensible way to 
do industrial biotechnology in the modern era). 

Having established which individual proteins 
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analysing the model to understand which parts of 
the system contribute most to some desired proper-
ties of interest (especially here the use of so-called 
sensitivity analysis), (iii) hypothesis generation and 
testing, allowing one rapidly to analyse the effects of 
manipulating experimental conditions in the model 
without having to perform complex and costly ex-
periments (or to restrict the number that are per-
formed) – so-called ‘what if?’ experiments, and (iv) 
testing what changes in the model would improve 
the consistency of its behaviour with experimental 
observations. Overall, given the ability to annotate 
models in a principled manner, including with the 
necessary literature references5,18, metadata19 and 
integrated links20, it is at least arguable that it is 
the model itself that represents our knowledge of a 
biochemical system21. Certainly, the recognition that 
our knowledge is dispersed among multiple databas-
es means that there is advantage to be had in joining 
them up in a loosely coupled manner1, for which we 
have found the Taverna system (www.taverna.org.
uk/) to be of considerable utility22,23. What might we 
then do with this knowledge

Exploiting our knowledge of biochemical systems 
properties in biotechnology and medicine

It has long been recognized that the optimiza-
tion of biotechnological processes needs to be ap-
proached rationally24 (such approaches contrasting 
with the very sluggish programmes of random muta-
tion and selection that were traditional). The basic 
issue is that, in part because of the selection by evo-
lution for robustness (something that contrasts with 
human-made networks such as transport networks, 
incidentally), it is normally necessary to modify 
the activities of several different enzymes in order 
to increase productivity significantly. This involves 
a purely (and fundamental) combinatorial problem 
that is much less easily attacked (initially) by experi-
ment than by simulation. This follows because the 
number of combinations scales exponentially with 
the number of things one might wish to change, such 
that choosing combinations of one, two, three or 
four enzymes from a palette of 1000 involves 1000, 
499 500, 1.66×108 and 4.14×1010 possibilities respec-
tively. However, if one does need to change only (say) 

Figure 1. A metabolite-centric model of a metabolic network, here focusing on ADP as part of 
glycolysis. The yeast glycolytic network, encoded as SBML53, was visualized using the Arcadia 
software54. PEP, phosphoenolpyruvate; PYR, pyruvate; BPG, bisphosphoglycerate; P3G, 3‑phos-
phoglycerate; F26bP, fructose 2,6‑bisphosphate; F6P, fructose 6‑phosphate; F16bP, fructose 
1,6-bisphosphate; GLCi, intracellular glucose; G5P, glucose 5‑phosphate.
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important aspects, such as iron metabolism16,32,33, do 
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particular focus for purposes of drug discovery is 
the recognition that, as with the improvement of 
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tive drugs to interact with multiple targets simulta-
neously38 (whether with one polypharmacologically 
active drug39 or with cocktails40). Abundant evidence 
suggests that successful drugs have been ‘evolution-
arily’ selected accordingly32, whether intentionally  
or otherwise.

Quo vadis for metabolic systems biology

The problem of biology is (and always has been) 
the problem of complexity. As we move to ultra-high-
throughout measurements of genome sequences and 
of other ‘‑omes’, personalized medicine will soon be 
a reality. In agriculture, we can anticipate principled 
plant and animal breeding, as molecular markers 
for genotype–phenotype mapping41 are then avail-
able for what amounts to every base. Of the many 
things one might wish to do with a metabolic net-
work model4, visualization remains a key element42,43 
(e.g. Figure 1), as well as the bringing together of our 
knowledge, for which automated text mining and re-
lated methods are going to be de rigueur (e.g. 20,44–46). 
We still know much less than we would wish about 
the interactions between small molecules and pro-
teins47,48, and high-throughput mass spectrometric 
methods show promise here49–51. Automation is very 
important52. Comparative network analysis, tissue-
dependent models (see, e.g., http://proteinatlas.org/), 
comparative metabolomics, genotype–phenotype 
mapping and inverse problem solving are likely to be 
among the chief areas of study, all of which contain 
substantial elements of modelling and computation. 
It is a truism that 3 months in the laboratory can save 
one a whole afternoon on the computer. ■
I thank many colleagues for useful discussions.

might need improving, the same combinatorial issue 
pertains for their directed evolution. Thus the number 
of possible sequences of a protein of 300 amino acids 
is 20300 (~10390). The number of sequence variants for 
m substitutions in a given protein of n amino acids is 
19m·n!/[(n−m)!m!]. For a protein of 300 amino acids 
with changes in just one, two and three amino acids, 
this is 5700, ~16 million and ~30 billion respectively. 
However, evolutionary optimization methods26 can 
speed up such searches considerably, and I might 
also point to a recent synthetic biology approach27 
in which we evolved efficient nucleic acid aptamers 
from a very small number (4×104) of those (430≈1018) 
possible with 30mers. This said, the advance of 
technology meant that in a related project we could 
screen all DNA 10mers to understand the nature of 
the protein sequence-activity landscape28.

Biomedical applications remain an important 
focus of systems biology, and one of the goals of 
metabolic systems biology is the construction of a 
human metabolic network model29, with encourag-
ing progress already reported30,31. Note that some 

Figure 2. Metabolic network showing the links between enzymes and metabolites that inter-
act with the Arabidopsis TCA cycle KEGG classification M00009. Enzymes and metabolites are 
the nodes (red), interactions are the lines. In total, 43 enzymes and 40 metabolites are shown. 
Created on Cytoscape using data from VirtualPlant 0.9. (Wiki)
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