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Our interest in the role of electric interactions in enzyme catalysis and biological free-energy 
transduction prompts us to examine to what extent dielectric phenomena, experiments, and theory 
may bear on these issues. In this paper we review linear dielectric theory and show that issues of 
interest for catalysis and free energy transduction lie outside the scope of linear dielectric theory (even 
in a somewhat extended form). This is due to the rather strict limitations imposed by the definition of 
linearity, which we discuss in detail. The review given here will provide a basis for the elaboration of 
nonlinear dielectric theory able to address the interaction between nonstationary electric fields and 
enzyme catalysis. 

1 Department of Botany and Microbiology, University College of Wales, 

1. INTRODUCTION 

Electric potentials play central roles in organisms, both in free-energy transduc- 
tion [1,2] and in signal transmission [3,4]. Consequently, it is hardly surprising 
that exogenous electric fields have been shown to affect the physiology of living 
systems [5-101. Yet, three problems surround our understanding of such 
physiological effects. The first [11,12] is that at frequencies below 1 MHz or so, 
the impedance ( = effective resistance) of biomass is so much higher than that of 
extracellular fluids that, especially without connecting electrodes, electric fields in 
the air will hardly penetrate organisms. 

The second problem occurs more generally in cell biology: even if one knew 
what the effects of electric fields were at the level of the elementary biochemical 
and biophysical reactions, it would still be a nontrivial problem to relate these 
effects to observations at the physiological level. It is only recently that 
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developments in theoretical biology, such as the emergence of mosaic non 
equilibrium thermodynamics and metabolic control theory (reviewed in [2]) have 
built the first pillars in the gap between molecular and physiological events. Both 
theories have served to identify the conceptual differences between fluxes through 
metabolic pathways and the turnover numbers of enzymes that participate in 
them [2,13-241. Yet, even these theories are not sufficient to completely 
illuminate the complexities of organized cellular metabolism [17 and references 
therein]. 

These two twin papers are concerned with a third major problem, i.e., the 
problem that, especially in an area as interdisciplinary as bioelectrochemistry , it is 
often unclear as to what are reasonable expectations of how a dynamic electrical 
field can affect the turnover number of an enzyme, and therefore what constitutes 
a satisfactory explanation of a bioelectrical phenomenon at the enzyme level [25]. 
The search for mechanistic explanations has been furthered by experimental 
demonstrations in well-defined in vitro systems of effects of nonstationary electric 
fields on single biochemical reactions (reviewed in [20] and [26]). 

In these two papers therefore, we combine dielectric theory, the theory of 
enzyme kinetics and non equilibrium thermodynamic principles to find out how 
dynamic electric fields and enzyme catalysis may interact. One subsequent aim is 
to investigate if dynamic electric fields may already play an endogenous rofe in 
processes of biological free-energy transduction. A second will be to design a 
variant of dielectric spectroscopy that may be exclusively sensitive to detecting 
enzyme properties that are involved in such processes. In the present paper, we 
will consider the limitations of linear dielectric theory vis a vis the mechanistic 
description of biological processes. It will become apparent that, despite the 
immense body of work that has been carried out on the linear, passive electrical 
properties of biological systems (reviews: [25,27-32]), linear dielectric theory is 
incongruent with enzyme kinetics and not apt to describe the interactions of 
enzymes with dynamic electric fields. We conclude that an extension to the 
non-linear domain, and the development of the formalisms relevant to such 
non-linear dielectric properties, represent urgent necessities. The accompanying 
article provides one such extension. 

2. THE “LINEAR”, PASSIVE ELECTRICAL PROPERTIES OF 
CONDENSED MATTER 

Permittivity and conductivity for a single relaxation process: Debye 
dispersion 

2.1. 

In this section we shall summarize linear dielectric theory. As discussed in several 
biologically orientated reviews and monographs (e.g. [27-32]), the “linear”, 
passive electrical properties of condensed matter, including biological systems, 
are completely characterized by their frequency-dependent conductivity a( &) and 
permittivity E ( & )  (where Q is the frequency of the sinusoidal input electric field). 
a(Q) and E ( Q )  are commonly assessed by measuring the conductance, G, and 
electrical capacitance, C, of an electrochemical cell containing the substance of 
interest. In a standard set-up for dielectric experiments, one places a sample 
between two electrodes, and measures the potential difference developed as a 
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result of the movement of charge (by the use of an external current source). 
Alternatively, one sets a certain voltage and determines how much charge must 
move between the electrodes to sustain this voltage. In practice, applied voltages 
or currents are not constant but vary periodically with time. In ideal cases the 
applied current or voltage is a sinusoid of a single frequency. It is simplest to view 
the electrodes as the two plates of a parallel-plate capacitor. The electric field 
between the plates of the capacitor is determined by the total displacement of 
charge, consisting of the charge (D) displaced from one plate to the other by the 
external current source and the charge displacement resulting from the electric 
polarization ( P )  of the material between the plates. Since the net displacement of 
charge amounts to D - P ,  electrostatic considerations require that for the electric 
field E :  

where eo is the permittivity of free space ( = 8.854 x F m-’). The polariza- 
tion of the material between the capacitor plates consists of the movement of 
charges and the reorientation of permanent dipoles, as well as the induction of 
dipole moments [28]. Since these processes take time, the polarization and the 
dielectric displacement will lag behind the electric potential. The time lag (or 
rather the relaxation time) will depend on the magnitude of the apparent 
resistance versus polarization as well as on the extent of polarization (the 
apparent capacitance). 

In linear dielectric theory it is assumed that the polarization current is linearly 
related to the field, or: 

kE and k P l  are first-order rate constants. This equation also expresses the fact 
that, because the polarization involves the ordering of molecules as well as the 
increase of counteracting forces, the rate of polarization is inhibited by the extent 
of polarization. This inhibition is also taken to be linear. After a step change in 
electric field, the polarization will approach the value: 

e o E = D - P  (1) 

d P / d t  = kEE - k-1 P (2) 

P, = EEo( E - 1) (3) 
P, is the polarization at t infinity. The dielectric displacement will approach: 

with: 
(4) 

( 5 )  

eS is the “relative” dielectric “constant” of the material between the plates 
relative to the dielectric constant of vacuum ( E ~ ) ,  for direct current (“DC”) 
measurements. 

In the case of a step change in E the polarization will approach the magnitude 
given by Equation 3 in an exponential manner, with a time constant of l/kd1. 
When the applied electric field is not a step function but continuously varying 
with a frequency Q/(23t) as given by cos(Qt), the dielectric displacement will 
behave as the same cosine, but with a phase shift. This can be seen by solving the 
differential equation Equation 2 for E = Eo cos(Qt). The simplest way to do this 
for the stationary state is to assume that: 

P = p0 c o s ( ~ t  - e) (6) 
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and insert this into Equation 2. The result is: 

and: 
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tan(8) = Q / k - l  (7) 

(8) Po/&= E O ( E ,  - l) /d[l  + (Q/k -# ]  
8 is the phase angle between the polarization and the electric field, indicating 
what fraction of the cycle lies between the moment the polarization is maximal 
and the moment at which the field is maximal. Equation 7 shows that the phase 
lag between the polarization and the electric field will become greater the faster 
the field oscillates up to a value of 90" at very high frequencies. The same ratio 
between frequency and relaxation rate constant of the dielectric (kv1 )  enters the 
expression (Equation 8) for the amplitude of the polarization relative to that of 
the field: at low field frequencies the ratio of polarization to field amplitude is the 
same as in the case of a constant electric field (Equation 3), whilst at high 
frequencies the amplitude of the polarization tends to zero. 

The variation with time of a sinusoidal electric field can be described as the 
projection on the x-axis of the position of a point that moves in a circle around 
the origin at a distance Eo from it and with an angular velocity of Q radians per 
second. In such a description the polarization can be described by a point moving 
on a circle with radius Po, again around the origin, at the same angular velocity, 
lagging an angle 8 behind the point describing the oscillating electric field. Such a 
description is in fact achieved (cf., Figure 1) by treating the oscillating electric 
field as the real part of a complex quantity (the real part is the projection on the x 
(or 'real-') axis of a point in the complex plane) and the oscillating polarization as 
the real part of another complex quantity: 

and 
E = Eo exp(jQt) 

P = Po explj(Qt - 8)] 

(Complex quantities are in bold type.) j represents d( - 1). Po/& and 8 are given 
by Equations 8 and 7 respectively. One of the advantages of this treatment is that 

FIGURE 1 
details, see text. 

The relationship between polarization and the electrical field inducing it. For further 
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Equation 3 is retained, be it that now: 

(11) E - 1 = P/(E,E) = [P,/(E,E,)] exp( - j8) = E ’  - 1 - je” 

Here, the real part of the permittivity is: 

E’ = 1 + (E ,  - 1)/{1+ (Q/k- , )2}  

and the so-called dielectric loss E” equals: 

El’= {(Q/k-l)(% - 1)/[1 + (Q/k - l )” }  + G,,/(QE,) (13) 
These equations characterize the so-called Debye dispersion, which is the best 
known variation of the complex dielectric permittivity with the frequency of the 
electric field. They follow from the direct solution of the differential equation 
(Equation 2). They are, of course, consistent with Equations 7 and 8, except that 
the term ~ , / ( Q E , )  has been added to the equation for the dielectric loss. This 
term results from any frequency-independent conductivity, giving rise to an 
apparent polarization in phase with the electric field. With this treatment the 
relationship between the charge displacement and the electric field also remains 
simple: 

In dielectric measurements one often measures the current between the elec- 
trodes rather than the dielectric displacement (using dE/dt = jS2E): 

D = E,EE (14) 

I = dD/dt = oE = (a’ + jd‘)E (15) 
with the complex conductivity, (r, consisting of the real component a’ and the 
imaginary component a”, being: 

O / E ,  = j Q E  = QE” + j Q E ’  (16) 
Thus, the imaginary component of the dielectric permittivity, the dielectric loss, 
corresponds to a real conductivity divided by the frequency of the field: 

E”(Q) = a ’ ( Q ) / ( Q E o )  = [as + 4(Q)]/(Q€”) (17) 
where a, is the DC- or low-frequency conductivity and aL(Q) is the real, 
frequency dependent conductivity arising from electric polarization. Similarly, the 
imaginary conductivity (a”) corresponds to a capacity (real dielectric permittivity, 
E ’ )  multiplied by the frequency of the field: 

o”(c2) = c2€,€’ (18) 

It is common to make measurements in the frequency domain, that is to say to 
measure the voltage and current (and the phase angle 8 between them) at a 
certain frequency, and repeat this at various frequencies so as to build up what is 
commonly referred to as a dielectric relaxation spectrum. This spectrum may be 
represented as (i) the amplitude (relative to the exciting field) of the dielectric 
displacement and the phase angle, (ii) the dielectric permittivity and the 
conductivity, (iii) the real and imaginary components of the complex permittivity, 
or (iv) the real and imaginary components of the complex conductivity, all as 
functions of frequency. For a simple system exhibiting but a single time constant 
(relaxation time), the dependencies are related through the relationship between 
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the conductivity and the imaginary part of the permittivity (Equation 17) and 
(Equations 12 and 13) the variation of E ’  with E” as the frequency of the electric 
field is modulated. Thus: 

z = [ E ’ ( Q )  - l]€o/[a’(Q) - as] (19) 
The relaxation time t = l / k 1  (cf., Equation 2) is also given by l / z  = !& = 2nL, 
where fc is the characteristic frequency, i.e., that frequency at which the 
dispersion is half-completed as judged by measurement of either E ‘  or a’. 
Equation 19 implies that as the frequency is scanned, the change in conductivity is 
directly proportional to the change in permittivity [28]. The dielectric loss peak of 
such a (Debye) dispersion is such that it has a breadth of 1.1 decades of frequency 
at half-peak height. 

For each of the four ways of analyzing the dielectric dispersion one may also 
plot how one component varies with the other component, the frequency being 
the independent variable. A plot of E” versus E‘ using frequency as the parameter 
gives a semicircle whose center lies on the abscissa and which has the maximum 
value of E”(Q,) .  

Since any periodic waveform may be described (via Fourier’s theorem) as the 
sum of a set of sinusoids of defined amplitude and phase, it is also possible to 
determine the frequency response of a linear system by measuring the time course 
of current/voltage flowing in response to a voltage/current step (e.g. [27,33-371 
and references therein), or to an extrinsically noisy input [38,39]. Additionally, it 
has been possible to investigate the kinetics of a number of chemical reactions by 
periodic field perturbation [40-44] , following Schwarz’s [45] presentation of a 
theory for the chemical contribution to the dielectric increment relevant for 
homogeneous solutions. 

2.2. 

For heuristic purposes we consider the simplest dielectric relaxation mechanism, 
namely the orientation of a hard dipolar sphere (“billiard ball”, see Fig. 2) in a 

A Physical Mechanism for “linear” dielectric relaxation 

I r------7 I 

FIGURE 2 The dipolar billiard ball. This type of model constitutes the simplest and classical 
mechanism of dielectric relaxation. The system studied is taken to consist of a hard dipolar sphere 
which, in the presence of a sinusoidally-modulated field, will attempt to rotate in train with the field, 
its rotational mobility being independent of that of any other spheres in the ensemble, and 
constrained by hydrodynamic forces alone. 
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non-polarizable Newtonian fluid of macroviscosity q. Here we depict a body of 
dipole moment p = qs Coulomb metres, consisting of a hard dipolar sphere 
containing point charges +q and -q separated by the diameter s. It is common to 
express the dipole moment in the non-SI unit Debye where 1 D = 3.336 x 
lop3” Cm. The body in Figure 2 is representative of an ensemble of the same. We 
assume that the dipoles are sufficiently dilute that there are no dipole-dipole 
interactions. From the Stokes-Einstein relation, such a dipole will have a 
dielectric relaxation time t = qa3/(kBT) where a is the radius of the sphere, kB is 
Boltzmann’s constant, q the viscosity of the medium and T is the absolute 
temperature. In the absence of an exogenous electrical field there will be a 
random orientation of the dipoles within the ensemble. In the presence of an 
electric field, the molecular dipoles will orient, which in our model is described by 
the orientation of the single dipole in the field till it makes an angle a with the 
field. The resulting component of the dipole moment pp in the direction of the 
field is: 

Pp = P cos(a) (20) 

In a DC-electric field, the steady orientation of the model dipole (or the average 
orientation of an ensemble of such molecular dipoles) is dependent on the 
Boltzmann factor exp[-PE/(k,T)]. The average magnitude of cos(a) is given by 
the Langevin function [28]: 

(COS a) = coth(x) - l / x  z x/3 - x3/45 -t 2w5/945 (21) 

where x = p E / k B T .  This relationship between (cos a) and x is strongly linear 
(note the absence of a second order term in x )  for values of x up to about 1 
[28,46], which is equivalent [46] to an electric field strength per unit dipole 
moment of 1.2 x lo9 V (m Debye)-’. In such cases (cos a) = pE/3kBT, and 
according to Equations 20 and 21 the average dipole moment becomes: 

Consequently, whenever l pE l5  kBT,  the polarization depends linearly on the 
electric field. 

The conditions of “linearity” employed in the derivation of the Debye 
equations (12,13) and required for the emergence of a voltage-independent 
dielectric permittivity, imply (see also above) that the polarization should be a 
linear function of the DC electric field (Set dP/dt  to zero in Equation 2). 
Equation 22 demonstrates that for orientational polarization of dipoles this is only 
true within the linear regime of Equation 21. Since the orientation achieved in a 
sinusoidal field will always tend to be smaller than the orientation achieved in a 
DC-field of the same amplitude, I @ (  5 kBT also guarantees the applicability of 
linear dielectric theory for sinusoidal fields to orientational polarization. Put 
another way, the fact that in the positive going-part of an AC cycle only a 
minuscule fraction of the dipoles actually moves to align with the field means that 
their motions do not affect the dielectrically observable behavior during the 
negative-going phase of the same cycle. It is, most often, correctly considered 
that in the absence of the field a priori energies (i.e., probabilities) of all possible 
orientations of the dipole are identical, and that during the exposure to the field 
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the system remains close to internal equilibrium. It is also important to note that 
the value of E to be used in the general case is actually the local electric field 
strength (which in our simple example is the same as the macroscopic field 
strength), but this will in general be unknown, especially for the complex 
biological systems in which our interest lies. 

Let us now pretend that our sphere is actually a spheroidal protein molecule, 
which for present purposes is assumed to be in internal equilibrium with all its 
possible conformational and configurational states. (Arguments against the 
realism of this assumption are summarised for instance in [47-511.) The dielectric 
increment of the dispersion, 8 ~ ’ ,  which is a macroscopic observable, is related 
[52,53] to the dipole moment p and the concentration of solute c mol m-’ in a 
solvent by: 

where R is the gas constant and g is a parameter introduced by Kirkwood to 
account for local interactions between the dipole and the solvent (so that if g = 1, 
there are none). Of course, real proteins are both polarizable and exhibit a 
substantial and collective conformational flexibility, so that there will, in the case 
of such proteins, be other contributions to the observable dipole moment and 
dielectric increment than those caused by Debye-like rotation. However, it is 
usually taken that these effects are both small and fast [27,32,54,55], so that over 
the usual frequency range considered in this case (up to say 10MHz) they are 
ignored at this stage of the development. Another reason why this cannot be 
accurate, however, is that the catalytically-relevant transitions in enzymes occur 
with time constants around a millisecond, and many of these transitions should be 
expected to be electrically active (e.g. [48,56]). 

8 E ’  = Cg&(2EoRT) (23) 

2.3. 

Referral to the simple example of relaxation of molecular polarizations given in 
the previous section as relevant for the dielectric behavior of actual systems 
carries with it many implicit assumptions, which are necessary to lead to linear 
dielectric behavior. Thus, if more than one (type of) dipole is present, the 
superposition principle is assumed to apply. That is, it is assumed that the 
dielectric relaxation spectrum is described by equations (12) and (13) summed 
over all of the dipoles present. This requires the motions of the (dipolar) particles 
to be independent of each other, and to be dependent only upon the strength of 
the exciting field. The field is assumed not to change the permanent dipole 
moment of the particles in the system. Collective motions are neglected, and the 
force exerted by the field on the dipoles is entirely independent of the 
instantaneous state of the system; thus, the particles rotate to and fro in train with 
the positive- and negative-going phases of the alternating voltage. After applica- 
tion of the electric field the dipoles in the system are assumed to approach 
equilibrium with first-order kinetics, leading to the production of heat by the 
expression of frictional forces between the protein dipole and the solvent bath. 
Further, any non-linearity occurring due to the properties of the Langevin 
function is assumed to result simply in a lower apparent admittance as the voltage 

What is meant by “linear ” 
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is increased, with the electric currents flowing only at the same sinusoidal 
frequency as the exciting voltage. 

This enumeration of assumptions in the usual discussions of relaxation of an 
ensemble of oriented dipoles leaves the impression that linear dielectric theory is 
rather limited and only relevant for cases in which the various polarizations are 
completely independent of one another. We shall now attempt to examine this 
impression in more detail. To this end we shall first give a precise definition of the 
properties required for a system to exhibit “linear” dielectric behavior. This is 
important for our purposes, because there are many possibilities by which 
nonlinearities may be introduced into the system and it is our purpose to 
investigate what types of nonlinearities can induce the system to behave in a way 
such that it betrays its molecular mechanisms. In the back of our minds, we shall 
have enzymes as the system of principal interest. 

Basically, a “linear” dielectric system is a system the electric behavior of which 
can be simulated by a linear electric network. A linear electric network consists of 
a number of ideal capacitances, resistances and inductances interconnected in any 
possible way. An ideal resistance is one in which the current is strictly 
proportional to the voltage. In an ideal capacitance the current is proportional to 
the change of the voltage with time, whereas the voltage across an inductance is 
proportional to the change of the current with time. Finally, there is an external 
voltage source. 

Writing the external voltage as E, realizing that electric current is the analogue 
of the rate of change of the polarization and that polarization itself is the 
analogue of an internal voltage, the condition of linearity can also be formulated 
as : 

where Pk is the component of the polarisation due to component k (cf. Equation 
2). 

This equation implies three conditions: The polarization may consist of a 
number of polarizations, each with its own relaxation depending (i) linearly on its 
own polarization and (ii) linearly on the electric field, (iii) in such a way that 
these dependencies are additive. Condition (i) means that k - ,  be independent of 
P,, condition (ii) means that kk be independent of E, and condition (iii) means 
that k - ,  be independent of E and k, be independent of P,. 

In a simple case any polarization P, is independent of any other polarization P,,. 
However, Equation 24 and the requirement of “linearity” does allow the different 
polarizations to depend on each other in the sense that the relaxation rate of any 
polarization depends linearly on any of the other polarizations. This generaliza- 
tion is important for the discussion of the dielectric behavior of enzymes. As most 
macromolecules, each enzyme can occur in many states which differ in various 
thermodynamic properties [2,26,46,56], including dipole moment. For catalysis it 
is essential that the enzyme can progress through a cycle of such states and hence 
important that transitions between some (but not all) states are possible. 
Denoting each enzyme state by its polarization (i.e., dipole moment divided by 
the total volume) the time dependence of each polarization depends linearly on 
all other polarizabilities [2]. The relaxation behavior of the entire system may 
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then be described by: 
dpldt = -Mp + kEE 

Here p represents a column vector of length n, where n is the number of independent 
polarizations. For enzymes this is the number of enzyme states minus 1. k,represents 
a column vector of length n with rate constants. M is an n x n matrix with rate 
constants. We write E as Eo exp(jQ2f) and p as Po exp(jQt), where Po is a vector of n 
components. The mth component (corresponding to the mth polarization or enzyme 
state) of Po is written as Pmo exp(j(Q2t - em)}.  Pmo is a real number indicating the 
amplitude of the mth component. Po is a complex number comprising both the 
amplitude and the phase of the mth component in the usual fashion. Noting that 
dpldt = jQp, multiplying the resulting form of Equation 25 by exp(-jQp) inv(M + 
ZjQ) one obtains the stationary solution to Equation 25 as: 

Po = (M + IjQ)-lk,E, (26) 

I represents the identity matrix (n x n with all zeros except for 1's on the main 
diagonal). Here it is assumed that the matrix (M + ZjQ) is nonsingular. (M + ZjQ)-' is 
its inverse. 

This matrix becomes singular when js2 is an eigenvalue of M. This implies that 
the system would respond to a step increase in an electric field by undamped 
oscillatory behavior. For the case of an oscillatory electric field one then would 
find strongly resonant behavior of the polarization at that value of the frequency 
of the input field. In biological dielectric spectroscopy such strongly resonant 
behavior is rarely observed (except of course at very high, >THz frequencies). 
This is not unexpected, since, for a relaxation matrix to have complex 
eigenvalues, the relaxation must involve relatively strong interaction of two or 
more processes. Such coupling most often requires the action of an enzyme. And, 
for a single enzyme, the relaxation matrix M cannot have purely imaginary 
eigenvalues, though its eigenvalues may be complex [57]. If the eigenvalues of a 
relaxation matrix have an imaginary component, then the response to a step in 
the electric field will be a damped oscillation and the response to an oscillatory 
electric field may exhibit a maximum with respect to frequency. 

In the case that all the polarizabilities contribute equally to the overall 
polarization P, Equation 26 leads to the following expression for the complex 
dielectric permittivity: 

E(Q) = (1 1 1 1 1 . - .1)(M +ZjQ)-lk, (27) 
Thus, even though in this most general linear case the frequency-dependence of 

the real and imaginary parts of the complex permittivity do not obey the Debye 
equations 12 and 13, the complex permittivity is still independent of the 
amplitude of the electric field. Its real and imaginary components are determined 
by the relaxation rate constants of all the individual polarizabilities (contained in 
M) as well as by the rate constants by which the polarizations respond to changes 
in the electric field (the vector k,). 

Noting that the complex conjugate of the real k, must equal kE,  and that M is 
the matrix of real rate constants, we take the complex conjugate of both sides of 
Equation 27 such that: 

€(-Q) = C(Q) (28) 
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Here 2(Q) is the complex conjugate of E. Equation 28 can also be expressed as 
E ‘ ( - Q )  = E ’ ( Q )  and E”( -Q)  = - E ” ( Q ) .  Equation 28 is an important symmetry 
relationship (see section 2.4) and it can be proven in a more general way: If one 
describes an electric field by E0 exp(jQt), then the mathematically different 
description taking the negative frequency and the complex conjugate of that field, 
is physically identical (in both cases the field circles in the counterclockwise 
direction around the origin of the complex plane). In fact this is true for any 
periodic signal. Since both D and E in Equation 14 must have this symmetry 
property and because the complex conjugate of a ratio of numbers is the ratio of 
their complex conjugates, E must also have this symmetry property. What tends 
to remain implicit in the above description, but is of utmost importance for what 
follows in Section 3 and in the accompanying article, is that the appearance of any 
frequency components (even harmonics) other than those of the input can never 
be explained in the context of linear dielectric theory: .(a) does not depend on 
what may happen at other frequencies. Note that while the theory presented here 
can describe the linear dielectric response of a system subjected to an input field 
with an arbitrary Fourier spectrum, the output spectrum in that case will contain, 
in principle, components at all input frequencies. This should not be mistaken for 
“nonlinear” behavior, which may be diagnosed (see below and in the accom- 
panying paper) by the appearance of frequency components in the output which 
are not contained in the input. 

2.4. The Kronig-Kramers relations 

If one wishes to know both the real conductivity and the real permittivity at a 
certain frequency, then one can measure the in-phase and the 90” out-of-phase 
currents in response to a sinusoidal electric field of that frequency (cf., Equation 
15 and 18). In the event that out-of-phase measurements are impossible, one may 
however make use of the so-called Kronig-Kramers relations, which relate E ’  to 
the complete dielectric spectrum of E” and vice versa: 

E y Q )  = -(2/n)Q ( E ’ ( f )  - Em)/(f2 - Q2) df b 
The original proof of these equations exists in publications that are not easily 
accessible ([58,59]; for accessible accounts see [35,36,60,61]). Since we shall want 
to examine the requirements for the Kronig-Kramers relations to be valid in 
dielectrics, we shall now give a short proof of these relations, which is somewhat 
different from that given by Macdonald and Brachman [60]. 

For this purpose we define 6(Q) as the right hand side of Equation 29 minus j 
times the right hand side of Equation 30. Our task is to prove that 6(Q) is 
identical to E(Q) - E,.  We may define g(f) as [ Q ( E ’  - E,) - i f~”] / ( f~ - Q2) and 
then summarize Equations 29 and 30 by: 



D
ow

nloaded By: [The U
niversity of M

anchester] At: 16:47 28 February 2007 

70 D. B. KELL, R. D. ASTUMIAN and H. V. WESTERHOFF 

Here the integration is over the real axis and the improper integral should be 
interpreted in the Cauchy sense [62]. The second equality in Equation 31 follows 
from the symmetry property of E expressed in Equation 28. Defining c(f) as 
equal to E(Re(f)) (i.e., the dielectric permittivity at a complex frequency as the 
dielectric permittivity of the absolute magnitude of that frequency; note that this 
is possible in view of the symmetry properties of E: ~’(-f) = ~’(f)), we shall 
calculate the integral in the right-hand side of Equation 31 over a slightly different 
path. This path is described by the complex number r exp(j6). The first part of 
the path will be a straight line varying r from - R  to + R  (R > Q), keeping 6 
constant at 6,. The second part of the path will lead along a circle at r = R with 6 
increasing from 6, counterclockwise till n + 6,. The combination of the two paths 
yields a counterclockwise integral over a closed line in the complex plane. 

According to the Cauchy theorem [62] the numerical value of the latter integral 
equals the ‘residue’ 2njh(f,,), where h(f) =g(f)(f - f,) and fo is a point where the 
function g is singular (becomes infinite). If 6, lies in between 0 and n, the 
singular point is at f = -Q. Because of the symmetry properties of E’ and E”, 
h(-Q) = - [E(Q) - ~ , ] / 2 ,  so that the complete circular integral of 6 equals 
E - E,. The integral over the arc at r = R, with 6 varying between 6, and -6, 
goes to zero as R goes to infinity, provided that E ” ( Q )  goes to zero as Q goes to 
infinity. Our final act is to let 6,  g:, to zero, such that the circular integral 
converges to the integral over the real axis from --c4 to +w of @(a) (it may be 
noted that if 6,  were taken negative, the singular point would lie at +Q, which 
with the existing symmetry properties of g leads to the same result). Thus 6(Q) is 
identical to E(Q) - E,, and q.e.d. 

To summarise, the only requirements for the validity of the Kronig-Kramers 
relations were the symmetry relationship expressed in Equation 28, that the 
function Q [ E ‘ ( ~ )  - 6-1 - jc”(f)f = g(f)(f2 - Q2) be analytic within the region 
surrounded by the circular integral (e.g., that the function does not contain any 
poles), and that €”(a) go to zero as the frequency goes to infinity. As we 
reviewed above, the symmetry requirements follow from the usual requirement of 
“linearity”. 

2.5. 

As intimated, real systems, and especially biological ones, are complicated and 
contain many polarizations. As witnessed by Equation 26, this leads to the 
broadening of peaks and of transitions in the dielectric spectra. Biological work 
tends to describe the inevitable broadening of a given dielectric dispersion in 
terms of a distribution of relaxation times according to the superposition 
principle. Whilst [63] a host of relaxation time distribution functions can account 
for almost any data (on a given dispersion) within experimental error, it has 
become common in biological work to use the empirical Cole-Cole [64] 
relationship, which for the frequency-dependent complex permittivity E, of which 
the Debye equations (12 and 13) are a special case, is: 

Empirical descriptions of actual dielectric spectra 

E(Q) = E ,  + ( E ~  - ~ , ) / [ l  + (jQt)’-a] (32) 
The Cole-Cole a accounts for (or at least is used to describe the magnitude of) 
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the distribution of relaxation times, and has the property that a line drawn 
between the points ( E ~ ,  0) or (em, 0) and the center of the semi-circular locus in a plot 
of the imaginary part E” versus the real part E’ of the permittivity (after any DC 
conductivity has been subtracted) makes an angle a x / 2  radians with the abscissa. 
For the Debye equations, (Y = 0 and the characteristic frequency is that at which 
E” takes its maximum value. A similar ‘complex conductivity’ or admittance plot 
of the imaginary versus the real part of the conductivity may also be drawn 

It is of interest that except for some values of (Y the expression given by Cole 
and Cole [64] for the permittivity (i.e., Equation 32) is not consistent with the 
symmetry properties (Equation 28) of E(Q) required for the proof of the 
Kronig-Kramers relationship: E( - Q) in Equation 32 is not the complex 
conjugate of E(Q) (601. The dielectric dispersion proposed by Davidson and Cole 
[69]: 

is consistent with the Kronig-Kramers relationships [60]. Boyd [70] d‘ iscusses a 
variety of other empirical modifications of the Debye equation that have found 
use in polymer work, whilst Grant and colleagues [27] describe circumstances in 
which various dielectric relaxations are deconvoluted in terms of overlapping 
Debye-like and Cole-Cole dispersions together with the statistical arguments 
which may be used to defend such a procedure. 

In general, any asymmetry in a complex permittivity plot may be ascribed to a 
variable (frequency-dependent) interaction or coupling of the motions of the 
dipolar species with the surrounding (and possibly itself) dipolar medium or 
matrix. Jonscher [35] and Dissado and Hill [71] give arguments in favor of the 
view that such motions are a general property of solids, whilst Dissado [72] 
summarises this view for proteins. 

As discussed for instance by Schanne and Ceretti [73] and by Foster and 
Schwan [30], the relaxation time determined from permittivity measurements is 
not normally equal to that determined from conductivity measurements when 
(Y # 0, and although it is stated [30] that “in general” the characteristic frequency 
determined from the complex admittance plane is higher than that obtained from 
the complex permittivity plane, a general truth does not yet seem to have been 
discerned. We will argue shortly in an accompanying article [74] that additional 
complexities, which have thus far apparently escaped discussion, lead to the view 
that many real biological systems might possess dipolar structures whose 
constitution is such that they cannot even in principle be expected to possess only 
the simple dielectric behavior alluded to above. 

[30,37,65-681. 

e(Q) = (1 + j Q t ) - p  with 0 > /3 > 1 (33) 

2.6. Free-energy exchange 

In dielectrics, electric work is performed on the sample. Taken per unit of time, 
this work becomes power and is denoted by Win: 

W& = Re(E) Re(dDldt) (34) 
Re(z) refers to the real component of a complex quantity z. Here it has been used 
(Equation 15) that the current is the time derivative of the dielectric displace- 
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FIGURE 3 Free-energy exchange and absorption in dielectrics. E represents the electrical field 
(-), W, the power reversibly exchanged between the field and the system (- - - - -) and W, the 
power irreversibly absorbed by the system (. . . . .). 

ment, i.e., DC leakage currents are not considered. The input free energy will be 
the integral of w.,, over time. Within each field cycle, the input power will vary 
with time. If the system is in a stationary state, then the input free energy per 
field cycle will be the same for subsequent cycles. 

Using Equation 15, the power can be distinguished into two terms, W, and W,: 

W, = + E ~ S L E ~ ~ E ’  sin(28t) (35) 

(36) w = ’  (I 2E0QEOE”[l+ 2 cos(2Qt)l 

In Figure 3 W, (- - -) and W, (- - .) are shown together with the input potential 
(-) for an example where the phase angle happens to be 45”. In the first 
quarter of the field cycle W, is positive (increasing towards & o Q / ~ ‘ E i ) ,  but in 
the second quarter W, turns negative and even such that the time integral of W, 
over half a field cycle equals zero: W, is free energy that is reversibly exchanged 
between the input electric field and the dielectric sample. 

In contrast, W, never becomes negative: it represents free energy irreversibly 
absorbed from the electric field. The time integral of W, over 2m half field cycles 
amounts to: 

G,(m) = rrn W, dt = m n ~ “ ~ ~ E g  (37) 

Thus, the free-energy absorbed from the field over complete field cycles is 
directly proportional to the “dielectric loss” factor E ” ,  which reflects a “resistive” 
element. Conversely, the real component of the dielectric permittivity, E ‘, should 
be thought of as a capacitative (storage) factor rather than a loss. Indeed, when a 
dielectric system with a single relaxation time is modelled by a resistor and a 
capacitor in series, E ’  and E” are proportional to l/(QC) and R respectively (at 
any given frequency). It should be noted however, that in general E’ is not 
independent of the magnitudes of resistances in the actual system, nor is E” in 
general independent of capacitances [37]. 

It has been shown, both experimentally [75] and theoretically [26,76,77] that 
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biological systems can transduce free energy from an oscillating electric field to 
net chemical or transport work. We shall now ask whether such free-energy 
transduction is described by equations of the type used in “linear” dielectric 
theory. For free-energy transduction to occur, an output process, such as the 
conversion of S to P, must be coupled to the absorption of free energy from the 
field. Such coupling may be mediated by a catalyst, such as an enzyme. The 
simplest case is that of a 2-state enzyme (cf., Figure 3 of the accompanying 
paper). Thus, one mechanism for transition of such a protein from its state 1 to its 
state 2 may involve the association of S to the protein, the conversion of S to P 
and the dissociation of P from the protein. If the protein can go back to state 1 
through some other route (i.e., without reconverting P to S), then it becomes an 
enzyme capable of interconverting S and P catalytically. Denoting the enzyme’s 
state probabilities by their polarizations PI and P2 respectively (cf. Equation 25), 
the rate at which the conversion of S to P occurs will be given by: 

21 = k,P,[S] - k-,P2[P] + kEE (38) 
Although in principle, k, and k- ,  should be parameters that are dependent on the 
electric field (see section 2.1 of the accompanying paper [74]), the “linearity” 
requirement of linear dielectric descriptions, demands that we naively approxi- 
mate the field dependence by the additive linear term k,E. As indicated by 
Equation 26, P, and P2 are both equal to the complex electric field multiplied by 
a time independent complex number. Taking the average of Equation 38 over a 
complete field cycle and using that the rate constants and the concentrations of S 
and P are time independent, it is found that the average reaction rate ( v )  will 
amount to zero. 

Consequently, to the extent that an enzyme catalytic flux can be modelled by 
equations deriving from linear dielectrics, that enzyme cannot transduce free- 
energy from the exciting electric field to any output process, nor can the 
oscillating electric field be shown to have any catalytic effects [cf., 561. 

We wish to stress that this is a limitation of the theory rather than a limitation 
of the enzyme. Because in any enzyme catalytic cycle, there are at least two 
routes connecting two different enzyme states, the flux through a single enzyme 
transition cannot be equated to the change in time of a polarization, hence is not 
a dielectric property of the system. Indeed, it is possible that a system for which 
the dielectric properties are perfectly well described by the linear theory, may 
nevertheless be able to transduce work from the exciting field. In the accompany- 
ing paper, we shall indicate which deviations from the ‘‘linear’’ equations may 
allow one to describe a system to transduce free energy from the electric field to a 
chemical or transport process. 

In the absence of transduction to an output process, the free energy absorbed 
from the field must either be exported as a travelling wave (which would amount 
to scattering), or (which is more likely in the usual case) be dissipated. 

3. NONLINEAR DIELECTRIC PROPERTIES 
Notwithstanding the advantage that its description is relatively simple, the 
“linear” dielectric domain has the disadvantage that it is relatively uninformative 
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about molecular mechanisms. Many (linear) dielectric relaxation mechanisms are 
presently even in principle indistinguishable from one another by electrical 
methods alone (since they are observed macroscopically simply by measuring E‘  

and a’ as a function of frequency). At frequencies of present interest (say 
<lo-20 GHz), it is argued implicitly, the system succeeds in remaining in thermal 
equilibrium because typical molecules can exchange heat quanta with the solvent 
bath at infra-red frequencies Hz) through the bending, stretching, and 
rotational modes of chemical bonds. In particular, frequency-domain measure- 
ments are made with V,, the dielectric current i,, and 8 being the macroscopic 
observables and with the assumption that the system actually is in a (strongly) 
stationary state [28]. Any field-induced temperature rise, caused by dissipative 
processes, is considered to be negligibly small or at least expressed only through 
the Boltzmann factor, in which case the rotational relaxation time of the dipoles 
would be reduced. In the hope that the nonlinear domain will prove much more 
informative with regards to molecular mechanisms, we shall now discuss 
nonlinear dielectric phenomena in somewhat more detail. 

3.1. 

We considered above the simplest example of dielectric relaxation, namely the 
orientation of a spherical dipole (representing an aqueous globular protein) by an 
alternating field. As discussed in extenso in reviews of the dielectric behavior of 
proteins [27,54,78,79], changing the shape of the protein dipole to a spheroid or 
ellipsoid merely serves to broaden such dielectric relaxations until (for high axial 
ratios) two separable dispersions may be observed. All of the other implicit 
assumptions remain, including that pertaining to the lack of effect of the electric 
field on the permanent dipole moment of the protein, and that the system attains 
a genuine steady state which is unchanged from the initial condition by the 
application of the periodic field (( E)  = 0). If we put our protein in a biological 
membrane constituting a vesicle, some important differences arise (Figure 4A & 
B). As discussed elsewhere [32,46], the forces acting on membrane proteins are 
such that any lateral motions they may have will be confined to the spherical shell 
bilayer. If such proteins themselves possess a net charge or dipole moment 
oriented as in Figure 4, the imposition of the exogenous electrical field will, as 
pointed out by Zimmermann and Vienken [80], tend to drive them towards the 
poles of the vesicle even though the field oscillations may be symmetric about 
zero. This is because the field-induced force depends upon the cosine of the angle 
between the dipole moment and the field and this is constantly changing as the 
proteins move. Thus, the “passive” electrical properties of such an arrangement 
are changed by the electrical field and the dipolar structure of the system is 
changed by the applied electrical field. (Obviously, this alone could lead in a 
simple manner to significant changes in enzymatic activities [32,81-841). Given 
that one generally measures the dielectric properties at a certain frequency after a 
few cycles (in frequency-domain methods) or at a constantly changing time (in 
time-domain methods), it is evident that the assumption of genuine linearity for 
such a system is untenable (except if p E  << kBT):  the dielectric behavior of the 
system is not a constant but changes due to the imposition of the electric field. A 

Prelude: Motions of proteins in spherical shell bilayers 
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(a) 
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(b) 

r----------i I I L--iNO FIELD t-----~~, sin w tj--------! 

FIGURE 4 Nonlinear dielectric behavior of proteins constrained in a spherical shell bilayer. (a) In 
the absence of an exogenous AC field, the “equilibrium” position of two proteins might be as 
indicated, if for no other reason than because of the electrostatic attraction between the charges 
indicated. (b) In the presence of an exogenous electrical field, the proteins will tend to move so as to 
minimise their dipolar interaction with the field vector. Because that interaction is greater the greater 
is the angle between the protein’s individual dipole and the field vector, any field-induced lateral 
motion of the proteins from their position(s) in (a) towards the poles of the cell adjacent to the 
electrodes will decrease the net dipole moment such that during the opposite cycle of the field the 
force tending to move the protein back to its ‘starting’ position will be less than that which moved it 
away from it in the first place. In other words, (i) there will be an “induced” dipole moment under 
such circumstances, (ii) this will tend to be “irreversible” and hence nonlinear with the field, and (iii) 
there may be changes in enzymatic activity consequent upon the disentanglement of the proteins in 
( 4 .  

steady state will, given sufficient time, be reached such that after enough cycles of 
the field the state of the system is identical to that pertaining at the same point in 
the preceding cycle. This steady state will not, however, be described by an 
effectively random orientation of dipoles at points where the field strength is zero. 
This contrasts with the situation of Figure 2 where we considered a permanent 
dipole which, after the application of say a positive-going AC cycle, would seek 
to return to a “random” orientation by thermal means, any such motions being 
accompanied by a dissipative current equal in magnitude but opposite in sign to 
that which accompanied its orientation in the first place. In our membrane- 
located system of Figure 4, however, the size of the vector dipole which is seeking 
to return to its “starting” position is now (Figure 4B) different from that at the 
start (Figure 4A). Indeed, the fact that we have moved our proteins from their 
original (field-free) and presumably “stable” positions means that they may now 
relax to a new disposition within the membrane, a position which would form the 
starting point for any new assessment of the dielectric behavior of the system. In 
particular, the frequencies (rate constants) for such motions are likely to be 
different from those existing prior to the imposition of the electric field, so that 
the displacement current arising from the return of the proteins to their starting 
positions will be at a different frequency from that which caused them to move in 
the first place during transitions from one steady state to another. As pointed out 
before [32], it is clear that a more detailed assessment than that currently 
practiced is required for the proper description of the dielectric behavior of 
membrane vesicle systems. 
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This is of course still a very simple example; additional complexities will arise 
(a) because real membrane vesicles are rarely strictly spherical, (b) because there 
are likely to be electroosmotic forces [32,46,85,86] which, though as yet uncertain 
in magnitude and even in nature, will act to oppose the “lateral electrophoresis” 
alluded to above, and (c) because the vesicle itself will tend to rotate (more 
slowly) due to the imposition of the electrical field. 

In the accompanying article [74], we will show, using elementary thermo- 
dynamic and kinetic principles, that energy input into a system of chemically 
reacting protein as a sinusoidal electric field may be dissipated through a 
displacement current with frequency components different from the input sine 
wave. This constitutes a clear transgression of the limits of “linear” dielectrics, in 
which output and input have the same frequency [37]. Additionally [76,87,88], 
energy from an oscillating or noisy electric field can be conserved as chemical or 
transport work through the action of a membrane enzyme. This is because the 
dynamic field may drive the enzyme backward through its catalytic cycle. Rather 
than a peculiarity, the interaction of nonstationary (local) electric fields and 
enzyme transitions may well be an essential element of biological free-energy 
transduction [26,56,77,89,90] 
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