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Abstract

Several modified particle swarm optimizers are proposed in this paper. In DVPSO, a distribution vector is used in the update of velocity. This

vector is adjusted automatically according to the distribution of particles in each dimension. In COPSO, the probabilistic use of a ‘crossing over’

update is introduced to escape from local minima. The landscape adaptive particle swarm optimizer (LAPSO) combines these two schemes with

the aim of achieving more robust and efficient search. Empirical performance comparisons between these new modified PSO methods, and also the

inertia weight PSO (IFPSO), the constriction factor PSO (CFPSO) and a covariance matrix adaptation evolution strategy (CMAES) are presented

on several benchmark problems. All the experimental results show that LAPSO is an efficient method to escape from convergence to local optima

and approaches the global optimum rapidly on the problems used.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Particle swarm optimization

Particle swarm optimization (PSO) is a population-based

global optimization method based on a simple simulation of bird

flocking or fish schooling behavior [1]. In PSO, the search points

are known as particles, and each particle is initialized with a

random position and random initial velocity in the D-

dimensional search space. The position and velocity of all the

particles are usually updated synchronously in each iteration of

the algorithm. A particle adjusts its velocity according to its own

flight experience and the flight experience of other particles in the

swarm in such a way that it accelerates towards positions that

have had high objective (fitness) values in previous iterations.

There are two kinds of position towards which a particle is

accelerated in common use. The first one, a particle’s

personal best position achieved up to the current iteration, is

called p
*

best. The other is the global best position obtained so

far by all particles, called g
*

best. Kennedy and Eberhart [1]

devised the following update rule which forms the kernel of

PSO.

v
*ðt þ 1Þ ¼ v

*ðtÞ þ c1R
*

1ð p
*

best � x
*ðtÞÞ þ c2R

*
2ðg
*

best � x
*ðtÞÞ;

(1)

where v
*

is the velocity of a particle and x
*

its position and R
*

1

and R
*

2 are random numbers in the range [0, 1] with the same

size of the swarm population. c1 and c2 are learning factors

which will be fixed through the whole process.

The new position for the particles is the addition of the

position at time t and the distance that the particles will fly with

the new velocity. The synchronous update of position is thus:

x
*
ðt þ 1Þ ¼ x

*
ðtÞ þ v

*
ðt þ 1Þ (2)

The pseudo code of PSO is shown in Fig. 1.

In order to improve the local search precision, Shi and

Eberhart [2] introduce the inertia weight w to Eq. (1) to give the

following update rule:

v
*ðt þ 1Þ ¼ vv

*ðtÞ þ c1R
*

1ð p
*

best � x
*ðtÞÞ þ c2R

*
2ðg
*

best � x
*ðtÞÞ

(3)

A value of w decreasing linearly from 0.95 to 0.4 is the best

reduction strategy of those tested in [2], over their suite of test

functions. In Chatterjee’s work [3], a dynamic change of inertia

weight is suggested.
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Clerc [4] indicates that the use of a constriction factor K may

also be necessary to ensure convergence of the particle swarm

algorithm, defined as when all particles have stopped moving.

Their update rule for velocity is:

v
*
ðt þ 1Þ ¼ K½v

*
ðtÞ þ c1R

*
1ð p
*

best � x
*
ðtÞÞ

þ c2R
*

2ðg
*

best � x
*ðtÞÞ� (4)

K ¼ 2

j2� ’�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’2 � 4’

p
j
; (5)

where w = c1 + c2 and w > 4.

In addition to the global version of PSO, Kennedy [5] has

also introduced the use of a local variable ðl*bestÞ, which confers

more ability to escape from local optima. In this approach, g
*

best

is replaced by l
*

best in Eq. (1):

v
*ðt þ 1Þ ¼ v

*ðtÞ þ c1R
*

1ð p
*

best � x
*ðtÞÞ þ c2R

*
2ðl
*

best � x
*ðtÞÞ;

(6)

where l
*

best is the best position achieved by a ‘neighboring’

particle and the definition of the neighborhood varies in dif-

ferent implementations of the approach.

In recent research, Xu and Xin [6] point out that the

combined use of g
*

best and l
*

best may be helpful for the search

process, and the velocity should still be constricted by the

constriction factor:

v
*
ðt þ 1Þ ¼ K½v

*
ðtÞ þ c1R

*
1ð p
*

best � x
*
ðtÞÞ þ c2R

*
2ðg
*

best � x
*
ðtÞÞ

þ c3R
*

3ðl
*

best � x
*ðtÞÞ�

(7)

Fieldsend and Singh [7] introduce a stochastic variable,

turbulence, into the standard PSO. He et al. [8] modify the

stochastic variable to a passive congregation which improves

the PSO from both accuracy and convergence rate. Leontitsis

et al. [9] also put forward a concept of repellor in their paper.

The authors believe that the worst particles have the property of

repelling the particles to the local optima.

1.2. Related research

As the development of PSO, lots of techniques are

introduced into PSO, such as simplex search, evolutionary

algorithm, genetic algorithm and support vector machine, etc.

in the literature [10–13]. Various PSOs have been applied to

different research fields. In reference [14], PSO is implemented

to the parameter identification of the induction motor. Lin et al.

apply the modified PSO on the quantitative structure-activity

relationship (QSAR) models [15]. PSO is also implemented for

drug design [16]. In some research work, PSO, which is initially

dealt with a single-objective function, has also been extended to

deal with multi-objective problems [17–19].

Most of the PSO studies are empirical. To gain a better,

general understanding of the behavior of particle swarms,

theoretical analyses of particle trajectories are necessary. A few

theoretical studies of particle trajectories can be found [20,21].

These studies facilitated the derivation of heuristics to select

parameter values for guaranteed convergence to a stable point,

which is shown to be a weighted average of the personal best

and global best positions, where the weights are determined by

the values of the acceleration coefficients [22].

A comprehensive review is beyond the scope of this article.

1.3. Evolution Strategy

In the 1960s, the evolution strategy (ES) was originated as a

set of rules for the automatic design and analysis of consecutive

experiments with stepwise variable adjustments driving a

suitably flexible object/system into its optimal state in spite of

environmental noise [23].

Initially, Rechenberg [24] developed the (1 + 1)-ES, a

simple mutation plus selection scheme operating on one

individual that creates one offspring per generation by means of

Gaussian mutation. He also proposed a (m + 1)-ES where

m � 1 parent individuals recombine to form one offspring,

which, after mutation, eventually replaces the worst parent

individual. This strategy is thought to be the foundation of the

well-known (m + l)-ES and (m, l)-ES introduced and

investigated by Schwefel [25,26], which became the state-of-

the-art in ES research [27].

In an evolution strategy, the population is randomly

initialized. Then a number of generations involving recombi-

nation, mutation and selection are performed. Selection is

based on the fitness value of each individual. The best

individual from the offspring population ((m, l)-ES), or parent

and offspring populations ((m + l)-ES) are selected to

continue: this is called truncation selection.

In each ES generation, l offspring are generated from the set

of m parent individuals. Parameters m and l as well as r (the

mixing number which defines the size of the parent family that

is chosen from the parent pool of size m to create l offspring)

are called ‘‘exogenous strategy parameters’’, and are kept

constant during the evolution run. In ESs there are also

‘‘endogenous strategy parameters’’, which are used to control

the genetic operators, especially those of the mutation operator.

Endogenous strategy parameters can evolve during the

evolution process and are needed in a self-adaptive ES.

During the past years, the improvement of self-adaptation led

to the development of the Covariance Matrix Adaptation (CMA)

[28]. The objective of CMA is to fit the search distribution to the

contour lines of the objective function f to be minimized. Here,

the (m, l)-ES with covariance matrix adaptation (CMA-ES) is

Fig. 1. The pseudo code of PSO.
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treated as a representative ES to compare with the PSO methods

described above and those introduced next.

2. Development of landscape adaptive particle swarm
optimizer

2.1. Distribution vector

In the original PSO algorithm, the flight of each particle

depends only upon its own history and the influence of a small

number of leading particles. The behavior of the population as a

whole is not taken into account.

We make the hypothesis that the distribution of the whole

group may provide important additional information. Con-

sidering an asymmetrical space, for example a flat rectangle,

the distribution of randomly moving particles should most

probably be close to a rectangle. This means that on the longer

direction the particles may be more scattered; while on the

shorter direction, the particles may be closer together. In this

kind of space, PSO may slow down and even fail to find the

optimum if the particles move uniformly in each direction.

Thus, we suggest that if the velocities of the particles were

responsive to the shape of the manifold in which the particles

lie, better performance may be achieved.

During the search process in PSO, the distribution of

particles keeps changing. We define a distribution vector D
*

to

describe the particles’ spatial arrangement at a given time:

D j ¼
maxn

i¼1ðxi jÞ �minn
i¼1ðxi jÞ

absðmaxn
i¼1ðxi jÞÞ þ absðminn

i¼1ðxi jÞÞ

ð j ¼ 1; 2; . . . ; mÞ;
(8)

where m is the dimension of particles and n is the population

size. The dimension of D
*

is m.

The value of each component of the distribution vector D
*

is

between 0 and 1. A large component gives the information that

in this direction, particles extend widely.

Compared to the constriction factor update, the readjustment

of velocity with the distribution vector D
*

depends not only on

the numerical value, but also on the direction.

Thus, the update of velocity becomes:

v
*
ðt þ 1Þ ¼ D

*
½v
*
ðtÞ þ c1R

*
1ð p
*

best � x
*
ðtÞÞ

þ c2R
*

2ðg
*

best � x
*ðtÞÞ�: (9)

Notice, however, that if many particles become trapped in a

local minimum, the distribution vector will be very small, near

zero, and so the ability to adjust the velocities will be lost. This

would lead to premature convergence. Meanwhile, too large

velocities might cause oscillation within the search manifold

and make it unlikely for the PSO to find minima.

In order to avoid the situation mentioned above, we modify

the definition of distribution vector D
*

as following:

D j ¼
D max; if D j <D min;
D min; if D j >D max;
D j otherwise:

8<
: (10)

Numerical values of these two parameters are discussed in

Section 3.

The modified PSO with the application of distribution vector

is called DVPSO here.

2.2. Crossing over ability

All the particles in the PSOs mentioned above tend to follow

the best particles but in different ways. We can easily imagine

that if the leader is not good enough, say, falling in to local

optimum, particles following the leader will be adversely

influenced. Thus, the information from the leaders does not

always have positive effects.

Considering of this, a possibility to escape the misdirecting

influence should be allowed. In reference [29], some randomly

flying particles have been used to avoid the premature

convergence. But when the dimension of the searching space

is very large, the distribution of several free particles will be too

sparse to significantly increase the probability to find a new

optimum.

In our method, we give the opportunity not to follow the

leader, but instead crossing over with the leader as follows:

v
*ðt þ 1Þ ¼ v

*ðtÞ þ c1R
*

1ð p
*

best þ x
*ðtÞÞ þ c2R

*
2ðg
*

best þ x
*ðtÞÞ:

(11)

After experimental tests, a probability of 0.1 of using this

update, while in 0.9 cases using Eq. (1) to update the velocity,

was observed to result in good performance. This modified PSO

method is called COPSO because of the so-called crossing over

ability.

2.3. Landscape adaptive PSO

Putting the two update rules described above together,

results in a new method hypothesized to have both organization

and innovation ability. We call this modified PSO, the

landscape adaptive PSO (LAPSO).

In the LAPSO, the velocity of next step is generated from

the distribution of present particles with the introduction of

the distribution vector which can ensure better spread of

particles according their distribution in the searching space.

And lower bound and upper bound for the distribution vector

are provided to avoid local convergence and unstable

oscillation. Considering of the possible ill effect of local

minima, a probability of 0.1 to step out of the leadership for

the particle group is given as shown in Eq. (11). So there are

two effective techniques, the limitation of the distribution

vector and the crossing over ability, to escape from the local

minima in LAPSO.

We also made some small modification on the particles

which are out of the searching area. In the searching progress,

some particles will leave the searching area. Usually, they are

limited to the exact boundary as follows:

x
*
ðx
*
< lower boundÞ ¼ lower bound

x
*ðx*> upper boundÞ ¼ upper bound

(12)
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Here, we recommend redistributing these particles as:

The pseudo code of the LAPSO is given in Fig. 2.

3. Experiments

We test the PSO methods, DVPSO, COPSO and LAPSO,

introduced above on a suite of benchmark functions and

compare them with the inertia weight PSO (IWPSO),

Constriction Factor PSO (CFPSO) and CMA-ES (running

each algorithm 100 times for each function).

3.1. Benchmark functions

We use the eight non-linear benchmark functions given in

Table 1. The functions selected are very often encountered in

optimization algorithm benchmarks. They are named after the

authors that introduced them as benchmark functions.

Functions f1 to f5 are origin-centered functions. Functions f6

to f8 have minimal solutions not at the origin which are believed

to be more difficult to obtain the optima if bias exists in the

searching procedure.

In real-world problems, there are unimodal and multi-

modal problems, with correlated or uncorrelated variables.

Most of the benchmark functions, with distinct character-

istics, are put forward to mimic the real problems. De Jong’s

Sphere function f1 is the most basic problem. It contains no

local optima and provides a smooth gradient towards a broad

global optimum. The Griewank function, f2, introduces

interdependency between the variables; this is why, this

function disrupts the optimization techniques working on one

variable at a time. The Rastrigin function, f3, has lattice-

shaped semi-optimum solutions around the global optima,

and there is no correlation among design variables. The

Ackley function, f4, is also multimodal at low resolution. The

search space defined by the De Jong F2 function ( f6) is

unimordal and has correlation among its design variables.

Schwefel function f7 has a semi-optimum solution far from

the global optima where many search algorithms are trapped.

Moreover, the global optimum exists near the bounds of the

domain. There is no correlation among its design variables

[30].

x
*
ðx
*
< lower boundÞ ¼ lower boundþ randðupper bound� lower boundÞ

x
*ðx* > upper boundÞ ¼ upper bound� randðupper bound� lower boundÞ

(13)

Table 1

Standard multi-modal objective functions

No. Function Equation ( f* gives the minima) Parameters

f1 DeJong F1 f ðx
*
Þ ¼

Pn
i¼1x2

i ; f �ð0; 0; . . . ; 0Þ ¼ 0 Dimensions = 30

Xmax = 100

f2 Griewank f ðx
*
Þ ¼ 1

4000

Pn
i¼1x2

i �
Qn

i¼1cos xiffi
i
p
� �

þ 1; f �ð0; 0; . . . ; 0Þ ¼ 0 Dimensions = 30

Xmax = 600

f3 Rastrigin f ðx
*
Þ ¼

Pn
i¼1ðx2

i � 10 cosð2pxiÞ þ 10Þ; f �ð0; 0; . . . ; 0Þ ¼ 0 Dimensions = 30

Xmax = 5.12

f4 Ackley
f ðx
*
Þ ¼ �20exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
30

P30
i¼1x2

i

q� �
� exp 1

30

P30
i¼1cos 2pxi

� �
þ 20þ e;

f �ð0; 0; . . . ; 0Þ ¼ 0

Dimensions = 30

Xmax = 32

f5 Schaffer F6
f ðx; yÞ ¼ 0:5� ðsin

ffiffiffiffiffiffiffiffiffiffi
x2þy2
p

Þ
2
�0:5

ð1:0þ0:001ðx2þy2ÞÞ2
; f �ð0; 0Þ ¼ 0

Dimensions = 2

Xmax = 100

f6 DeJong F2 f ðx; yÞ ¼ 100ðx2 � yÞ2 þ ð1� xÞ2; f �ð1; 1Þ ¼ 0 Dimensions = 2

Xmax = 100

f7 Schwefel f ðx
*
Þ ¼

Pn
i¼1ðxi sinð

ffiffiffiffiffiffi
jxij

p
ÞÞ; f �ð420:9687; 420:9687; . . . ; 420:9687Þ ¼ �12; 569:5 Dimensions = 30

Xmax = 500

f8 Foxholes

leftf f ðx
*
Þ ¼ 1

500
þ
X25

j¼1

1

jþ
P2

i¼1 ðxi � ai jÞ6

" #�1

;

ðai; jÞ ¼
�32; �16; 0; 16; 32; �32; . . . ; 32; �32; �16; 0; 16; 32

�32; . . . ; �32; �16; . . . ; �16; 0; . . . ; 0; 16; . . . ; 16; 32; . . . ; 32

� �
ði ¼ 1; 2; j ¼ 1; 2; . . . ; 25Þ f �ð�32; �32Þ ¼ 0:998g

Dimensions = 2

Xmax = 65.536

Xmax gives the limitation of search space of X, which means �Xmax �X � Xmax. For each PSO method, Vmax is equal to Xmax.
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3.2. Parameter settings

3.2.1. Parameters of PSO

In PSO, there are not many parameters to be tuned. Some

parameters are determined by the problem, such as the

dimension of particles, the range of particles and the stopping

condition. Since theoretical guidelines are still absent,

experimental work is necessary to find the appropriate

parameters. We have taken into account some earlier results

reported in the literature to choose parameter settings, as

follows.

In most cases, increasing the number of particles decreases

the number of required algorithm iterations [31]. But more

particles require more function evaluations. The typical range is

suggested as [20–40].

Vmax determines the maximum change one particle can take.

Usually, Vmax may be set as Xmax. Although the constriction

factor is proposed to overcome the limit of Vmax, it has been

reported that better results may be obtained while setting Vmax

as Xmax [32].

Learning factors: usually c1 is set equal to c2 (popularly

being 2) and ranges from [0,4] following the suggestion of

Carlisle and Dozier [33]. He also suggests that c1 = 2.8 and

c2 = 1.3 produce good results. Jiang explains the parameter

selection guideline by stochastic convergence analysis [34].

Global version versus local version: the global versions

faster but might converge to a local optimum for some

problems; the local version is a little bit slower but not easily

trapped into a local optimum. When using the local PSO

version, 2 is thought to be enough for the number of neighbors.

Given these considerations, our detailed parameter settings

are as following:

(i) In all the tested methods, the global version is adopted.

(ii) c1 = c2 = 2.00.

(iii) The determination of global best solution is implemented

asynchronously.

(iv) In each experiment, the population of particles is set as 30

thus there will be 30 function evaluations for each

repetition.

(v) The number of iterations is set as 5000. The number of

repetitions is set as 100.

(vi) In IWPSO, the inertia weight is decreased linearly from

0.95 to 0.4. Based on some experimental tests (data not

shown), the decreasing velocity is set as (0.95–0.4)/1000.

That means the inertia weight will meet 0.4 after 1000

iterations and keep this value until termination.

(vii) In LAPSO, the value of D_max and D_min is important.

They are used to limit the magnitude of D
*

which is a

multiplier of the velocity. According to the research of

inertia weight and constriction factor [32], such a

multiplier should be in the range of [0.4–1.0]. Based on

this result, several combinations of D_max and D_min

were tested. These experiments showed that

D_max = 0.95, D_min = 0.4 are good settings (data not

shown).

3.2.2. Parameters of CMA-ES

The population of the offspring number l is set as 30 in order

to keep the function evaluations consistent with PSO methods.

The population of the parents, m is 15.

For the other parameters we use the original calculations

reported in Hanson’s work [35].

3.3. Experiments

3.3.1. Experiment No.1

For each function, the stopping condition is the maximum

number of iterations set at 5000. Test results are shown in Fig. 3

which gives the performance of different algorithms for each

function over 100 repetitions.

3.3.2. Experiment No.2

The final minimal fitness values after 5000 iterations are

analyzed using the Kruskal–Wallis test (K–W test) [36]. The

test statistic T is defined as:

T ¼ 1

S2

�Xk

i¼1

R2
i

ni
� N
ðN þ 1Þ2

4

�
(14)

S2 ¼ 1

N � 1

� X
all ranks

RðXi jÞ2 � N
ðN þ 1Þ2

4

�
(15)

where k is the number of groups, N the total number of samples,

ni the sample size for group I, Ri the sum of the ranks for group I

and R(Xij) is the rank of all samples.

Reject H0 at the level a if T is greater than its 1 � a quantile

from the null distribution.

Box plots of the distribution of fitness values are given in

Fig. 4. The top of the notch is at the 75th percentile and

bottom is at the 25th percentile. The median is plotted as a

horizontal line inside the box. Lines extend from the box to

the maximum and minimum values of the data, except when

outliers are detected. An outlier is defined as any point that is

Fig. 2. The pseudo code of LAPSO.
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Fig. 3. Plots of performance of each stochastic method on different benchmark functions.
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Fig. 4. Box plots of the distribution of the fitness values for each stochastic method on different benchmark functions.

J. Yisu et al. / Applied Soft Computing 8 (2008) 295–304 301



Author's personal copy

above the 75th percentile by 1.5 times the interquartile

interval, or similarly below the 25th percentile. When

there are outliers, the outlying points are plotted with ‘+’ and

the lines extend only to the cutoff value for defining an

outlier.

Multiple comparisons (MC) will be implemented only if the

null hypothesis is rejected. The null hypothesis of no difference

between a pair of optimizers may be rejected if the following

inequality condition holds:

����Ri

ni
� R j

n j

����> t1�ða=2Þ

�
S2 N � 1� T

N � k

�1=2�
1

ni
þ 1

n j

�1=2

(16)

where k is the number of groups and t1�a/2 is the (1 � a/2)

quantile of the t distribution with N � k degrees of freedom.

The values of Ri/ni–Rj/nj are listed in Table 2.

4. Results and discussion

It can be seen in Fig. 3 that in almost all of the functions,

LAPSO gives the fastest convergence toward the minimum and

can find the global minima successfully. CMA-ES is thought to

be a very efficient optimizer but only has visible advantage in

function DeJong F2.

In function Rastrigin, Schwefel and Foxholes, COPSO is

very efficient. We should notice that all these three functions

contain many local minima. The results suggest that Crossing

Over ability helps avoid local convergence. But COPSO failed

in function Schaffer F6, which has many steep-sided basins of

attraction. The reason could be that it lacks local searching

ability which is very important especially when the searching

area is very narrow and deep. In contrast, DVPSO which is

thought to be efficient in local searching ability succeeds in this

function and also in functions DeJong F2 and Ackley. But

because of lacking exploring ability, DVPSO falls into local

convergence as can be seen on other functions.

LAPSO with the two abilities combined is more robust to the

above mentioned conditions. It displays a good performance on

all the test functions.

In the box plots, the y-value of the narrowest part of each box

shows the median of 100 fitness values for each method, while

the extent of y-axis shows the reliability of the method to some

degree.

In Table 2, with the results of KW–MC test, the difference

between each algorithm is displayed. If the absolute value of the

numbers in this table is smaller than the L value in the

corresponding column, the null hypothesis of no difference

cannot be rejected.

If we focus on the first five rows which show the comparison

results of LAPSO with other methods, almost all the test values

are negative and significant, which means LAPSO has better

performance than other methods in most cases.

It is also interesting to see that there are never all negative or

positive values in the same row. That means no method is

always better or worse than the others on this selection of

problems. Even for LAPSO, the convergence speed on

function DeJong F2 is slow and the fitness value is higher

than COPSO on the function Rastrigin. Nevertheless, the

performances on other functions show that LAPSO has high

convergence speed and good exploring capability to find the

global minima.

5. Conclusion

In this paper, several modified PSO methods, DVPSO,

COPSO and LAPSO, are proposed. LAPSO performs better

behavior than other PSOs and CMA-ES, on aggregate, over a

suite of test problems. Compared to other PSO methods, the

readjustment of velocity with distribution vector D
*

is not only

on the numerical value but also on the direction. The

application of distribution vector seems to accelerate the

searching speed of PSO methods and strengthen the local

searching ability according to the experimental results.

Table 2

Multiple Comparison tests of each function

Optm_i-Optm_j f1
(L = 3.8966)

f2
(L = 24.945)

f3
(L = 17.979)

f4
(L = 18.736)

f5
(L = 18.663)

f6
(L = 9.7135)

f7
(L = 20.073)

f8
(L = 23.128)

LAPSO-IWPSO 0 �175.3950 �280.3900 �194.7750 0 7.6750 �212.5300 213.2000

LAPSO-CFPSO 0 �222.6550 �331.5350 �475.2700 �93.6800 7.6750 �212.7400 201.7800

LAPSO-DVPSO 0 �147.4300 �41.8400 �253.6350 �104.9500 5.1050 �225.9600 S7.8000
LAPSO-COPSO �350 �385.0700 98.6900 �387.3200 �237.0000 �300.8250 87.9100 �19.6000
LAPSO-CMAES �250 �38.6300 �196.6050 �189.0000 �386.3700 �24.5800 �357.6800 �173.3800

IWPSO-CFPSO 0 �47.2600 �51.1450 �280.4950 �93.6800 0 �0.2100 �11.4200
IWPSO-DVPSO 0 27.9650 238.5500 �58.8600 �104.9500 �2.5700 �13.4300 �221.0000

IWPSO-COPSO �350 �209.6750 379.0800 �192.5450 �237.0000 �308.5000 300.4400 �232.8000

IWPSO-CMAES �250 136.7650 83.7850 5.7750 �386.3700 �32.2550 �145.1500 �386.5800

CFPSO-DVPSO 0 75.2250 289.6950 221.6350 �11.2700 �2.5700 �13.2200 �209.5800

CFPSO-COPSO �350 �162.4150 430.2250 87.9500 �143.3200 �308.5000 300.6500 �221.3800

CFPSO-CMAES �250 184.0250 134.9300 286.2700 �292.6900 �32.2550 �144.9400 �375.1600

DVPSO-COPSO �350 �237.6400 140.5300 �133.6850 �132.0500 �305.9300 313.8700 �11.8000
DVPSO-CMAES �250 108.8000 �154.7650 64.6350 �281.4200 �29.6850 �131.7200 �165.5800

COPSO-CMAES 100 346.4400 �295.2950 198.3200 �149.3700 276.2450 �445.5900 �153.7800

The values in the table are the left part of inequality (16) and L denotes the right part of this inequality. Numbers in bold show that there is insufficient evidence to

reject the null hypothesis of no difference between the optimizers in the row.
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In addition, the ability to escape local minima is important

on some functions. Permission to escape the leaders’ control

and search other places is important. The crossing over ability

we introduce gives particles the possibility to stride over the

local best, as well as the probability to find a global minimum.

LAPSO, which combines these two improvements, performs

well on the test functions. Because of its fast searching speed

and well behavior of global searching, LAPSO is expected to be

applied on some real systems, such as molecular docking and

parameter estimation. Both of docking and parameter estima-

tion can be viewed as global search problems. In the docking

problem, where for a given energy function, one has to find the

most stable conformation of the receptor and ligand molecules.

The searching space is extremely complex and contains

thousands of local optima, and normally large amounts of

ligand molecules are needed to be analyzed. In the parameter

estimation problem, unknown parameters in the dynamic

systems, mostly ordinary differential equation (ODE) systems,

are needed to be obtained to fit the system to the experimental

data. The high-dimensional searching space is also complicated

for the probably exponential differences among these para-

meters values. Thus, for these situations, both efficiency and

accuracy is highly required for a chosen optimizer. Some

research work of applying LAPSO in these fields is under way.
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