
© The Author (2008). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 1 

Original Papers 

Bayesian Inference of the Sites of Perturbations in Metabolic 
Pathways via Markov Chain Monte Carlo 
Bayu Jayawardhana1,2,*, Douglas B. Kell1,2, and Magnus Rattray3, 
1Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St., Manchester M1 7DN, 
UK. 
2School of Chemistry, The University of Manchester, Manchester M13 9PL, UK. 
3School of Computer Science, The University of Manchester, Manchester M13 9PL, UK. 
Associate Editor: Prof. Thomas Lengauer 

ABSTRACT 
Motivation: Genetic modifications or pharmaceutical interventions 
can influence multiple sites in metabolic pathways, and often these 
are ‘distant’ from the primary effect. In this regard, the ability to 
identify target and off-target effects of a specific compound or gene 
therapy is both a major challenge and critical in drug discovery.  
Results: We applied Markov Chain Monte Carlo (MCMC) for 
parameter estimation and perturbation identification in the kinetic 
modeling of metabolic pathways. Variability in the steady-state 
measurements in cells taken from a population can be caused by 
differences in initial conditions within the population, by variation of 
parameters among individuals and by possible measurement noise. 
MCMC-based parameter estimation is proposed as a method to help 
in inferring parameter distributions, taking into account uncertainties 
in the initial conditions and in the measurement data. The inferred 
parameter distributions are then used to predict changes in the 
network via a simple classification method. The proposed technique 
is applied to analyze changes in the pathways of pyruvate 
metabolism of mutants of Lactococcus lactis, based on previously 
published experimental data.  
Availability: MATLAB code used in the simulations is available from 
ftp://anonymous@dbkweb.mib.man.ac.uk/pub/Bioinformatics_BJ.zip 
Contact: bayujw@ieee.org, dbk@manchester.ac.uk, 
magnus.rattray@manchester.ac.uk  
Supplementary information: Supplementary material is available 
from the journal website. 

1 INTRODUCTION  
Drug discovery is now recognised as a problem of integrative 

systems biology requiring genome-wide analyses (see, e.g., 
Butcher, 2005; Dobson & Kell, 2008; Williams, 2005). In 
particular, genomics, transcriptomics, proteomics and 
metabolomics are being exploited to identify the mode-of-action 
and toxicity of possible compounds.  

A number of articles describe genome-wide studies for detecting 
mode-of-action (Baetz et al., 2004; Clarke et al., 2001; Giaever et 
al., 1999; Marton et al., 1998; Parsons et al., 2004; Parsons et al., 
2006). For instance, chemical-genetic profiling (Parsons et al., 
2004; Parsons et al., 2006) and genomic screening via induced 
haploinsufficiency (Baetz et al., 2004; Giaever et al., 1999) have 
been proposed to detect the sites of interaction of a compound in 

biochemical pathways. These techniques compare a large number 
of mutant strains or induced haplo-insufficient organisms for 
hypersensitivity to a set of compounds. The strains that show 
greater sensitivity to a compound are used to identify the 
implicated pathways. This approach relies on the availability of 
large numbers of mutants or haploinsufficient strains. 

A related approach is to use DNA microarray analysis for 
validating drug targets and off-targets as pursued by Betts et al. 
(2002) and Marton et al. (1998). Gene expression profiles from the 
untreated and the drug-treated cells are analyzed and clustered 
based on the levels of expression. The functionality of genes which 
have large changes in their expression level is taken to indicate the 
chemical pathway(s) affected by the compound. Based on a similar 
principle, the use of proteomics in mode-of-action studies involves 
the identification of proteins that are significantly altered in the 
drug-treated organism  (Chapal et al., 2004).  

Metabolomics studies have been performed from a similar 
perspective (Aranibar et al., 2001; Ott et al., 2003) and knowledge 
of metabolite transactions and metabolomics are also important in 
drug discovery (Kell, 2006). The metabolites represent the product 
of biochemical pathways in an organism and, potentially, can be 
used to infer the changes in the activities of enzymes in specific 
chemical pathways consequent upon pharmacological or genetic 
perturbations.  

In metabolomics, one typically observes the metabolite 
concentrations or fluxes in a quasi-steady-state. Because of the 
rapid turnover of cellular pools, it is fairly difficult to extract the 
metabolites reliably during transients, as these can occur on a time 
scale smaller than the ability to inhibit metabolism. Therefore, only 
steady-state data will be considered in this paper, although the 
technique is sufficiently general to deal with time-series data 
where they exist.  

Given measurement data statistics and a kinetic model of the 
metabolic pathways, we will use Bayesian inference to reflect the 
degree of uncertainty in the model parameters due to uncertainties 
in the measurements and in the initial conditions. We show that by 
comparing the inferred parameter distribution of the normal and 
drug-induced metabolic pathways, significant parameter changes 
can be identified and such perturbations can be taken to reflect the 
mode-of-action of a drug.  

Simulation results using the glycolytic pathway of S. cerevisiae 
show the effectiveness of the proposed method to predict 
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perturbations with reasonable accuracy and high sensitivity. The 
technique is then applied to analyze changes in the pathways of 
pyruvate metabolism of mutants of Lactococcus lactis, based on 
experimental data taken from Hoefnagel et al. (2002).  

Coleman and Block (2006) and Battogtokh et al. (2002) showed 
how the Markov Chain Monte Carlo (MCMC) strategy can be used 
to estimate the posterior distribution of parameters in nonlinear 
systems described by differential equations. However, due to the 
nature of the problems considered in those papers, our method uses 
several features that are not available there. First, we focus on 
steady-state data without any information about the sampling time. 
Secondly, our technique deals with observable external variables 
that are not components of the state vector but that are parts of the 
state equations. Thirdly, metabolic pathways have stoichiometric 
constraints called moiety conservations and therefore parameter 
distributions and MCMC proposals should respect these 
constraints.  

Liebermeister and Klipp (2006) have introduced a Bayesian 
inference method for parameter estimation in systems biology 
models. They approximate the posterior distribution by a Gaussian 
distribution centred around a local maximum of the posterior. 
Their approach assumes that the problem of interest has a 
unimodal and localized posterior distribution which may not be the 
case in complex systems such as metabolic pathways, especially 
when data are scarce. Tamaddoni-Nezhad et al. (2006) provide an 
alternative way to infer drug inhibitory effects in metabolic 
pathways using inductive logic programming. They construct 
logic-based reasonings based on the relative changes in metabolite 
concentrations and assume unidirectional reactions. This over-
simplification can fail to recognize the effect of feedback 
mechanisms, cofactors and reversible reactions on the behavior of 
metabolites. A recent related work applying MCMC to systems 
biology, due to Vyshemirsky and Girolami (2007), implements 
MCMC for model selection whereas here we focus on parameter 
estimation and identifying significant parameter changes. 

2 METHODS 

2.1 Problem formulation and parameter estimation 
Leaving aside stochastic systems in which the number of molecules is 
insufficiently large to be approximated by a continuous quantity, a kinetic 
model of metabolic pathways is conveniently cast in terms of coupled 
ordinary differential equations in a state space form:   
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where x denotes the metabolite concentrations, θ are the system parameters, 
yext are the observable external metabolite fluxes and concentrations, yint are 
the observation variables and x0 is the initial state of the model. For the j-th 
algebraic constraint, Aj is the index set of components of x and Cj is a 
positive constant. In the above formulation, the function f represents the 

enzyme kinetics laws governing the reactions while the function h 
represents the observation data that are normally full or partial information 
on the metabolite concentrations and fluxes.  

In kinetic modeling of metabolic pathways, the M algebraic constraints 
in (2) are called moiety conservations. These are groups of variables whose 
overall quantities are assumed to be constant throughout the time course 
(Hofmeyr et al., 1986). The conservation of adenine and pyridine 
nucleotide moieties are examples.  

Suppose that for some θ, yext and x0, the state equations (1), (2) converge 
to a steady-state. Let us denote the steady-state value by xss. The 
dependence of xss on θ, yext and x0 implies that the corresponding steady-
state observation yss can be described as a mapping from (θ, yext, x0). In 
other words, yss = g(θ, yext, x0) for some function g. Note that it is generally 
difficult to derive the function g analytically. Hence, one is forced to do 
numerical simulations of the kinetic model to obtain the steady-state values 
of the observables. 

It is also assumed that the initial state x0 and the system parameters θ are 
also uncertain and therefore probabilistic quantities. Let the prior 
distribution of x0 be denoted by px0(.) and the prior distribution of θ be 
denoted by pθ(.). The prior distributions represent our best knowledge or 
estimate of the distribution of x0 and θ before making any observations of 
the system. Lognormal, gamma or Gaussian distributions expanded around 
parameters obtained from in vitro experiments are some possible choices 
for these priors. For initial states that are subject to a linear constraint, a 
Dirichlet distribution can be used along with a scale parameter. For the 
vaguest parameters and initial states we use uniform distributions with 
estimated lower and upper bounds.  

The measurement data are summarized by statistical models Dint and 
Dext with distribution functions pint(.) and pext(.) that capture the statistics of 
a sufficiently large number of steady-state observations yss and external 
observations yext, respectively. We use distribution functions, instead of a 
set of data points, because steady-state measurement data published in the 
literature are often summarized by means and standard deviations. These 
are naturally mapped onto a Gaussian distribution. Note that the 
distributions represent the metabolism of an aggregation of cells, where 
each cell has a different steady-state (the ODEs give the unicellular kinetic 
model) (Davey & Kell, 1996). Our model is a simplification in which we 
assume a single ODE with a measurement distribution capturing all sources 
of experimental variation.   

The Bayesian inference problem (see, e.g., Gelman, 2004) asks whether 
we can compute the posterior distribution p(θ|Dint, Dext). Define the 
conditional distribution of θ given (Dint, Dext) by 
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By prior independence of θ and x0, we can write  
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Since p(Dint, Dext) is a normalizing constant, the posterior distribution 
p(θ|Dint, Dext) is proportional to the right-hand side of (3).  

The integral on the right hand side of (3) is the likelihood function 
p(Dint, Dext| θ). It depends on the existence of steady-state values in the 
dynamical equations  and  with parameter θ, for all sampled initial 
conditions x0. This condition creates a problem since most nonlinear 
systems have unstable regions (including oscillatory behaviour). For a 
given θ, yext, x0, let us define p(Dint | θ, yext, x0) = 0 if no steady-state is 
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reached and p(Dint | θ, yext, x0) = pint(g(θ,yext,x0)) if a steady state is obtained. 
Then this problem can be avoided with the likelihood function given by   

 ( )0 0 0 0 extp( , | ) p | , , p ( )p ( ) d dy .int ext int ext x ext exty x x y xθ θ= ∫ ∫D D D  (4) 

Markov Chain Monte Carlo (MCMC) can be used to draw samples from 
the posterior distribution p(θ|Dint, Dext) and use it to approximate various 
statistical properties related to p(θ|Dint, Dext), for example, approximating 
the confidence interval, median and expected value. Coleman and Block 
(2006) and Battogtokh et al. (2002) give an overview of the MCMC 
technique applied to nonlinear systems. Various techniques for MCMC can 
be found in Gelman (2004) and Spiegelhalter et al. (1996). In this work we 
use a standard Metropolis-Hastings algorithm.  

In order to draw samples from the posterior distribution using MCMC, 
we would like to avoid dealing explicitly with (4) since the integral that 
appears on the right-hand side is computationally intractable. Notice that 
this integral corresponds to the marginalization of p(Dint | θ, yext, 
x0)px0(x0)pext(yext) over x0 and yext. Therefore, drawing samples from the 
posterior distribution p(θ|Dint, Dext) is equivalent to getting samples from 

 ( )0 x0 0p | , , p ( ) p ( )p ( )int ext ext exty x x y θθ θD  (5) 

and marginalizing the samples over the initial state x0 and over the external 
variables yext. We will refer to (5) as the target distribution ptarget(w) where 
w = (θ, yext, x0). 

In this paper, we use the Metropolis-Hastings algorithm to generate 
several parallel Markov chains and the convergence of the parallel chains 
to a target distribution is monitored using the measure proposed by Gelman 
(2004). Details about the prior and proposal distributions (including those 
for conserved variables), the Metropolis-Hastings algorithm, and the 
convergence measure are given in the Supplementary Material.  

2.2 Prediction of perturbations 
The method described so far enables us to approximate the distribution of 
the system parameters given measurement data summarized by Dint and 
Dext. This leads to the next problem where one has two measurement data 
sets that we may summarize as (Dint, Dext)normal and (Dint, Dext)perturbed  
corresponding to two different conditions that one may take as a reference 
state and a perturbed state, respectively.  

By using MCMC, we can estimate the posterior distribution for the 
normal (wild-type) organism p(θ|(Dint, Dext)normal) and the posterior 
distribution for the drug-treated (mutant) organism p(θ|(Dint, Dext)perturbed). 
Given these two posterior distributions, one can compare both distributions 
to infer the effect of the perturbation.  

Let the subscript i denote the index of element in θ. Then we can infer 
whether the enzymatic reaction with parameter θi has been perturbed by 
computing  
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where p(θi|(Dint, Dext)) is the marginalization of p(θ|(Dint, Dext)) over the 
complement of θi. The above method was used by Liu et al. (2006) to 
determine the significance of differential gene expression in samples 
exposed to a treatment compared with those from a control. For brevity, we 
use the notation p(θi,perturbed> θi,normal) to represent the left-hand term of (6). 

Suppose that the MCMC samples for both cases are given by wnormal(n) 
and wperturbed(n) where n = 1,2,…,N and N is the total number of samples. 
Then  can be approximated by  

 ,perturbed ,normal ,perturbed ,normal
1

1p( ) ( ( ) ( ))
N

i i i i
n

w n w n
N

θ θ χ
=

> ≈ −∑   

where wi is the i-th component of w and χ is an indicator function given by 
χ(s) = 1 for all s≥0 and χ(s) = 0 elsewhere.  

Since p(θi,normal > θi,perturbed) = 1 - p(θi,perturbed > θi,normal), the MCMC 
samples can be classified into three classes based on the value of p(θi,perturbed 
> θi,normal) with a cut-off 0 < ε < 0.5: 

(A1) If p(θi,perturbed > θi,normal) > 0.5 + ε then θi,perturbed  is 
up-regulated; 

(A2) If p(θi,perturbed > θi,normal) < 0.5 – ε then θi,perturbed  is 
down-regulated; 

(A3) Otherwise θi,perturbed  is unchanged. 

This classification can be used to predict whether the enzymatic reaction 
which corresponds to the parameter θi is up-regulated, relatively unchanged 
or down-regulated in the perturbed case compared to the normal one.  

In the next section, an optimal ε is computed based on the glycolysis 
pathway model of sixteen strains of in-silico organism. A total of 240 
ordered pairs of datasets are obtained from the permutation of sixteen sets 
of MCMC samples. By considering the classification of these pairs of 
datasets for being up-regulated and for being not up-regulated, an ROC 
curve (Broadhurst & Kell, 2006) can be drawn by varying ε. Note that if 
one computes an ROC curve that compares the case of being down-
regulated and being not down-regulated, the symmetry of the classification 
algorithm and the symmetry of the permuted ordered pair of datasets ensure 
that the same curve is obtained. If the accuracy acc is defined by acc = c1 
TPR + c2 TNR where TPR is the true positive rate (sensitivity), TNR is the 
true negative rate (specificity), and c1, c2 are the weighting constants, the 
optimal ε that maximizes acc can be found from the ROC curve. 

3 RESULTS 

3.1 Glycolytic pathways in Saccharomyces cerevisiae 
In this subsection, the perturbation analysis is evaluated using 
simulated glycolysis data. The glycolysis model is taken from 
Pritchard and Kell (2002) and Teusink et al. (2000).  

The parameters are the limiting step constants Vmax and the 
concentrations of external glucose, F26BP, glycerol and ethanol. 
The prior distributions for Vmax are lognormal distributions with the 
log-mean values taken from the in vitro measurements presented 
by Teusink et al. (2000) and the log-variance values set between 
0.4805 and 7.68721.  The prior distribution for the concentrations 
of external glucose, F26BP, glycerol and ethanol are uniform 
distributions with intervals: (0.01,1000) for external glucose, 
(0.001,10) for F26BP, (0.01,100) for glycerol and (0.01,10) for 
ethanol. The prior distributions for initial metabolite concentrations 
are uniform distributions.  

                                                           
1They are set such that the true value lies within the interval (exp(-m√σ) , 
exp(m√σ)) where σ is the log-variance and m is the log-mean. Note that 
exp(√0.4805) ≈ 2 and exp(√7.6872) ≈ 16. 
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Following the method described in Section 2.1, MCMC is used 
to draw samples from the target distribution ptarget(w) in (5). This 
implies that the proposed move is defined in the space of 
parameters θ, external observable metabolite concentrations and 
fluxes yext, and initial metabolite concentrations x0. We use 
lognormal distributions as the proposal distributions for 
parameters, external observable variables and the initial 
concentrations of non-conserved metabolites. The conserved 
variables, which are a consequence of the conservation of adenine 
and pyridine nucleotides, have initial concentrations parametrized 
according to the method described in the Supplementary Material.  

The full measurement data are the concentrations of internal 
glucose, ATP, G6P, ADP, F6P, F16BP, AMP, DHAP, GAP, NAD, 
BPG, NADH, P3G, P2G, PEP, PYR, acetaldehyde and the fluxes 
of glucose, glycerol, succinate, pyruvate, glycogen, trehalose. In 
this model, there are external observable metabolite fluxes yext viz. 
the measured glycogen and trehalose fluxes.  

Table 1. Limiting step values used in five different simulation setups. 

Parameters Case A Case B Case C Case D Case E 

V1
max 101.3 81.3 121.3 110.75 120.81 

V2
max 670.5 570.5 770.5 340.83 690.77 

V3
max 1933 1633 2433 200.29 1270.64 

V4
max 121.5 101.5 181.5 552.06 284.36 

V5
max 101 81 161 161.25 384.52 

V7,f
max 2336 1336 3336 2074.87 1712.2 

V7,r
max 3298 2298 4298 3333.92 4936.26 

V8
max 2291 1291 2991 958.51 819.58 

V9
max 2423 1423 3223 2278.63 1494.45 

V10
max 240.4 180.4 290.4 238.36 297.29 

V11
max 700.5 650.5 790.5 790.02 816.08 

V12
max 869.9 809.9 969.9 1448.25 5939.07 

V13
max 50.2 40.2 70.2 113.76 781.56 

V14
max 47.2 37.2 57.2 53.91 94.63 

The unit for Vmax is mmol(l-internal vol)-1min-1. The limiting step constant V1
max 

corresponds to glucose transport, V2
max corresponds to hexokinase, V3

max corresponds 
to phosphogluco isomerase, V4

max corresponds to phosphofructokinase, V5
max 

corresponds to fructose-1,6-biphosphate aldolase, V7,f
max and V7,r

max correspond to the 

forward and reverse reaction of D-glyceraldehyde-3-phosphate dehydrogenase, V8
max 

corresponds to phosphoglycerate kinase, V9
max corresponds to phosphoglycerate 

mutase, V10
max corresponds to phosphopyruvate hydratase, V11

max corresponds to 
pyruvate kinase, V12

max corresponds to pyruvate decarboxylase, V13
max corresponds to 

the reverse reaction of alcohol dehydrogenase and V14
max corresponds to glycerol 3-

phosphate dehydrogenase. 

Sixteen observation datasets are generated using randomly 
selected parameter values (except in the specific cases discussed 
below) with the rest of the constants (e.g., equilibrium constants 
Keq, Michaelis-Menten constants, Hill coefficients) set to the same 
values as used in Teusink et al. (2000). For each case, 30 samples 
are generated with uniformly distributed initial conditions and with 
normally distributed glycogen flux and trehalose flux. After the 
steady-state samples are obtained, additive Gaussian noise is added 
and the resulting dataset is summarized as a Gaussian distribution.  

Using the methodology described in the previous section, 
MCMC samples are generated to estimate the posterior distribution 
for each of the datasets. Three parallel chains were used for each 
case and simulations were run until the sequences converged. 

A permutation of sixteen sets of resulting MCMC samples with 
the permutation size of two is used to evaluate the classification 
method described in Section 2.2. The permutation gives 240 
ordered pairs of datasets, from which, the ROC curve that 
compares the case of being up-regulated and not being up-
regulated can be drawn by varying ε from -0.5 to 0.5. Figure 1 
shows the ROC curve with the approximate ROC area of 0.836 
(the area is estimated based on the trapezoidal area under the 
curve).  

Let us evaluate five out of sixteen observation datasets and use 
the capital letter to indicate each case. The first data set (Case A) 
can be regarded as the wild-type yeast, and the rest are in silico 
mutants. All limiting step constants in Case B are lower than those 
in Case A, while limiting step constants in Case C are higher than 
those in Case A. The Vmax values for all five cases are summarized 
in Table 1. Details of all sixteen cases are provided in the 
Supplementary Material. 

Figure 2 shows the result of MCMC for parameter estimation in 
Case A. The estimation uses the mean of the samples as the 
estimated parameter for each Vi

max and the credible interval is 
approximated by the 2.5th and 97.5th percentile of the 

Figure 1. ROC curve of MCMC-based perturbations identification using 
full information (solid line) and using minimal information (dashed line). 
Circles – maximum accuracy using the weighting ratio (c1:c2) of 1:1; Trian-
gle – maximum accuracy using the weighting ratio (c1:c2) of 2:3. The area 
under the ROC curve for full information is 0.8357 and for minimal infor-
mation is 0.6114. 
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marginalized samples. Figure 2 shows that MCMC is indeed able 
to produce credible intervals where the true values lie.  

The capability of MCMC to produce parameter distribution 
taking into account uncertainties in the measurement data and in 
the initial conditions is illustrated in Figure 3 which shows the 
MCMC samples from Case A. It compares the statistical model of 
measurement data (which are Gaussian distributions calculated 
from thirty measurements) with the posterior predictive 
distribution (i.e. simulated output samples yint using the parameters 
from MCMC samples).  

The classification algorithm presented in the previous section is 
used to show whether Vmax in the mutant case is higher, relatively 
constant or lower than that in wild-type case. Using the optimal ε = 
0.0043, the resulting classifications are shown in Figure 4.  

Figure 4(a) shows that thirteen out of fourteen perturbations are 
correctly predicted by the classification method. When all Vmax are 
up-regulated (Case C), the classification method is able to correctly 
identify ten parameter changes with four false negatives. In Cases 
D and E, where some Vmax are increased and some are decreased, 
the technique yields two and no false positives, respectively. These 
results show the efficacy of MCMC for identifying mode-of-action 
given steady-state data of realistic quality. 

We now repeat the whole experiment but with limited amounts 
of measurement data. Instead of having full measurement of 
metabolite concentrations and fluxes, we seek to infer the 
parameters based only on the measurement data of the fluxes of 
glucose, glycerol, succinate and pyruvate.  

It is found that the credible intervals obtained from the 
experiments using minimal informations is typically larger than 
that obtained from full measurements (data are available in the 
Supplementary Material). This shows that the extent of 
uncertainties in the parameter estimation increases as the 
availability of information decreases.  

It is interesting to observe that, based on minimal information, 
we are still able to infer the distribution of some metabolite 
concentrations and fluxes that are not available in the measurement 
data. Figure 5 shows the measurement data for (a) pyruvate and (b) 
ATP concentrations in Case A along with the inferred pyruvate and 
ATP concentration obtained from the MCMC simulation using full 
information and using minimal information. The inference using 
minimal information is able to estimate the uncertainties 
reasonably well, although information scarcity produces a long-tail 
distribution as shown in Figure 5(a). The discrepancy of the 
measured distribution of ATP concentration with the inferred one 
using full information suggests that measurement noise has a 
significant contribution to the uncertainties in the measurement 
data which cannot be explained by parameter uncertainties alone. 

The ROC curve for perturbation identification using minimal 
information is shown in Figure 1. The area under the curve is 0.611 
which is considerably lower than that obtained using full 
information. Due to this relatively poor performance, the optimal ε 
is computed using the ratio c1:c2 of 2:3 which puts higher weight 
on specificity. Based on this ratio, the optimal ε is 0.0465 with a 
specificity of 0.9075 and a sensitivity of 0.1928. In the following 
subsection, we use this optimal value for the analysis of 
perturbations in pyruvate pathways of L. lactis where the 
experimental data are minimal. In general the correct balance 
between specificity and sensitivity will depend on the application. 

3.2 Pyruvate pathways in Lactococcus lactis  
In this section, we try to identify the perturbation in the lactic acid 
bacteria represented by the removal of lactate dehydrogenase and 
the over-expression of NADH oxidase. The experimental data are 
taken from Hoefnagel et al. (2002) and the corresponding 
pathways are shown in Figure 6. Comparing our model with that in 
Hoefnagel et al. (2002), our model contains an additional pyruvate 
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based on the MCMC samples with full measurement data. (a). Glyco-
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(a) (b) 
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pyruvate concentration (mM)

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

Pyruvate concentration histogram inferred
from full measurement data

Distribution function of
measured pyruvate
concentration

Pyruvate concentration histogram inferred
from partial measurement data

1.5 2 2.5 3
0

1

2

3

4

5

6

ATP concentration (mM)

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

ATP concentration histogram inferred
from full measurement data

ATP concentration histogram inferred
from partial measurement data

Distribution function of
measured ATP concentration

Figure 5. Plots of the inferred measurement based on the MCMC samples 
using partial and full information. (a). Pyruvate concentration; (b). ATP 
concentration. 

Figure 4. The plot of (a). p(Vmax

i,Case B > Vmax

i,Case A); (b). p(Vmax

i,Case C > Vmax

i,Case 

A); (c). p(Vmax

i,Case D > Vmax

i,Case A); (d). p(Vmax

i,Case E > Vmax

i,Case A); using full meas-
urement data. The symbol (•) or (•) indicates that the true parameter in the 
corresponding in silico mutant is lower or higher, respectively, than that in 
the in silico wild type. The classification algorithm with  = 0.0043 gives 
the down-regulated region (striped area), up-regulated region (white area) 
and unchanged region (thick line). The label Vi in the figure corresponds 
to the limiting-step constant Vi

max (see also Table 1). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V1 V2 V3 V4 V5 V7f V7r V8 V9 V10 V11 V12 V13 V14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V1 V2 V3 V4 V5 V7f V7r V8 V9 V10 V11 V12 V13 V14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V1 V2 V3 V4 V5 V7f V7r V8 V9 V10 V11 V12 V13 V14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V1 V2 V3 V4 V5 V7f V7r V8 V9 V10 V11 V12 V13 V14

(a) (b)

(c) (d)

p(
C

as
eB

 >
 C

as
eA

)

p(
C

as
eC

 >
 C

as
eA

)

p(
C

as
eD

 >
 C

as
eA

)

p(
C

as
eE

 >
 C

as
eA

)



B. Jayawardhana et al. 

6 

carboxylase reaction which can serve as an alternative branch for 
the production of phosphoenolpyruvate. The branch is added to 
explain the missing carbon flux in the experimental data. In 
addition to the rate equations used in Hoefnagel, et al. (2002), the 
rate equation for pyruvate carboxylase is given by v14 = V14

max 
[pyruvate]/(Km+[pyruvate]) where Km is 0.31 mM (Sueda et al., 
2004).  

The parameters are the fourteen limiting step constants Vmax 
corresponding to fourteen reactions in the model and the external 
concentrations of glucose, lactate, acetoin, O2, phosphate, ethanol 
and butanediol. The prior distributions for Vmax is uniform 
distributions defined on (0,20000). The prior distribution for the 
concentrations of glucose, lactate, acetoin, O2, phosphate, ethanol 
and butanediol are uniform distributions with intervals: (0.1,100) 
for external glucose and phosphate, (0.01,10) for lactate, acetoin 
and ethanol, (0.002,2) for O2 and (0.0001,0.1) for butanediol. The 
prior distributions for initial metabolite concentrations are uniform 
distributions. 

We use lognormal distributions as the proposal distributions for 
parameters, external observable variables and the initial 
concentrations of non-conserved metabolites. Details on the 
strategies are available in the Supplementary Material.  

The conserved variables are the conserved moieties of adenine 
and pyridine nucleotides and the conservation of [Acetyl-CoA] + 
[CoA]. Their initial concentrations are parametrized according to 
the method described in the Supplementary Material.  

The measurement data are acetate flux, ethanol flux, acetoin flux 
and lactate flux. In this case, there are no external observable 
metabolite concentrations or fluxes yext. The data are summarized 
as Gaussian distributions with the mean values set to those 

measured in Hoefnagel et al. (2002) and the standard deviations set 
to approximately ten percent of the mean values (following the 
observation by de Koning and van Dam (1992) that metabolites 
measurements of this type have standard errors of approximately 
ten percent). While the objective in Hoefnagel et al. (2002) is to 
maximize the acetoin flux by manipulating the enzyme production, 
we try to recapture the changes in the pathways based only on the 
minimal measurement data and incomplete kinetic model.  

Figure 7 shows the inferred concentration of ADP and pyruvate 
in the wild-type case that are not measured in Hoefnagel et al. 
(2002). We can infer them by computing the distribution of 
simulated output samples yint using the parameters from MCMC 
samples. Based on the figure, the steady-state of ADP 
concentration has the highest posterior probability close to 0.2 mM 
while the highest posterior distribution of steady-state pyruvate 
concentration is close to 0.04 mM with the distribution having a 
long right-hand tail.  

The comparison of MCMC samples from the minimal 
measurement data in three different strains of L. lactis: wild-type, 
LDH knocked-out and NOX over-expressed, is shown in Figure 8.  

The result shown in Figure 8(a) suggests that knocking out the 
LDH gene in L. lactis produces pleiotropic effects apart from the 
down-regulation of the lactate dehydrogenase reaction itself. It is 
highly likely that there is also an increase in the reactions of 
NADH oxidase and pyruvate carboxylase following the knocking 
out of the LDH gene. The reactions of ‘lumped glycolysis’ and 
lactate dehydrogenase are also likely to be down-regulated in the 
LDH-mutant of L. lactis. On the other hand, Figure 8(b) shows that 
the overexpression of NOX gene results in only a minor pleiotropic 
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Figure 6. Pyruvate pathways model in L. lactis based on the model used 
in (Hoefnagel, et al., 2002) with an additional reaction of pyruvate car-
boxylase. Numbers in circles represents reactions: 1. ‘lumped glycolysis’; 
2. Lactate dehydrogenase; 3. pyruvate dehydrogenase; 4. phos-
photransacetylase; 5. acetate kinase; 6. acetaldehyde dehydrogenase; 7. 
alcohol dehydrogenase; 8. Acetolactate synthase; 9. acetolactate decar-
boxylase and non-enzymic acetolactate decarboxylation; 10. acetoin 
efflux; 11. acetoin dehydrogenase; 12. ATPase; 13. NADH oxidase; 14. 
pyruvate carboxylase. 
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effect. Our method shows that the NOX-mutant of L. lactis has 
significant effects only on increasing the NADH oxidase and 
pyruvate carboxylase reactions.  

DISCUSSION 
This paper focuses on the application of MCMC to parameter 

estimation and perturbation analysis in metabolic pathways. 
Compared to the existing literature, the technique developed in this 
paper has three distinguishing features. First, the systems are 
described by first-order nonlinear ODEs subject to algebraic 
constraints corresponding to the moiety conservations. Secondly, it 
focuses on steady-state measurement data without any information 
about the sampling time. Thirdly, it copes with observable external 
variables that are not components of the state vector but that do 
appear in the nonlinear ODEs.  

The ability to produce a broad credible region in parameter 
space is a feature distinguishing MCMC-based parameter 
estimation from most parameter identification techniques. This 
complements the standard parameter fitting methods, such as 
genetic or gradient descent-based algorithms, which can be used to 
obtain a point-estimate of the model parameters and for which the 
credibility of estimated parameters is less easily assessed. 
Approaches for estimating credible intervals based on expansions 
around a point-estimate, using e.g. the Hessian of the log-
likelihood, are essentially asymptotic in the size of data set and 
work under the assumption that the posterior distribution can be 
well-approximated by a Gaussian distribution. In the examples 
considered here, data were very limited and therefore the credible 
intervals obtained were broad and asymmetrical, reflecting the 
non-Gaussian nature of the posterior distribution. The posterior 
distribution also allows for the investigation of higher-order 
relationships between parameters, e.g. the correlation or mutual 
information between parameters (see Lüdtke et al., 2008). We have 
not pursued this here, as we have focused only on changes in the 
marginal distribution of each parameter. In addition, we have 
confined these studies to two comparatively small systems, and 
future work will determine the extent to which these methods scale 
to larger networks. 

The perturbation analyses are done via a simple classification 
algorithm applied to MCMC samples from the two cases. The 
algorithm relies on a parameter ε which can be selected based on 
simulated cases. It can be chosen at an appropriate level depending 
on the availability of measurement data and in order to balance 
specificity and sensitivity.  

Our analysis of measurement data from three strains of 
Lactococcus lactis gives insights into the possible pleiotropic 
effects due to genetic modification. It also confirms that the 
mutants have major alterations in the known target reactions.  
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