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Abstract: In previous work, we studied the behaviour of a model of part of the NF-kB signalling
pathway. The model displayed oscillations that varied both in number, amplitude and frequency
when its parameters were varied. Sensitivity analysis showed that just nine of the 64 reaction
parameters were mainly responsible for the control of the oscillations when these parameters
were varied individually. However, the control of the properties of any complex system is distrib-
uted, and, as many of these reactions are highly non-linear, we expect that their interactions will be
too. Pairwise modulation of these nine parameters gives a search space some 50 times smaller (81
against 4096) than that required for the pairwise modulation of all 64 reactions, and this permitted
their study (which would otherwise have been effectively intractable). Strikingly synergistic effects
were observed, in which the effect of one of the parameters was strongly (and even qualitatively)
dependent on the values of another parameter. Regions of parameter space could be found in which
the amplitude, but not the frequency (timing), of oscillations varied, and vice versa. Such modelling
will permit the design and performance of experiments aimed at disentangling the role of the
dynamics of oscillations, rather than simply their amplitude, in determining cell fate. Overall,
the analyses reveal a level of complexity in these dynamic models that is not apparent from
study of their individual parameters alone and point to the value of manipulating multiple elements
of complex networks to achieve desired physiological effects.

1 Introduction

Given the speed with which the elements of signal trans-
duction pathways and genetic circuits are being unravelled,
it has become increasingly important to attain a theoretical
understanding of their often rather complex dynamics.
Consequently, as the proportion of the identified com-
ponents involved in any of these networks continues to
increase, the daunting challenge of developing useful
models, both conceptual and mathematical, for how they
work is attracting interest (see, for example, [1–8]).

The architecture of signal transduction networks is often
highly complex owing to the large number of participating
protein complexes, cross-interactions between pathways
and the very non-linear functioning of regulatory circuits
[9]. It is this complexity that makes the understanding of
cellular signalling a challenging task [7, 10–12].

Networks of genetic interactions represent interconnected
dynamic systems that generally can exhibit oscillating
instabilities. These oscillations can be characterised by
their amplitude and their phase, where the amplitude is

the maximum value the variable attains during a particular
period, and the phase is the state of the oscillation relative to
the beginning of the period.

Typical signals, such as those detected by a radio [13],
can be encoded in terms of their amplitude (amplitude-
modulated (AM)) or frequency (FM). Although the encoding
of biological signals in terms of frequency is well estab-
lished in areas such as neurophysiology or Ca2þ signalling
[14] and is potentially more accurate [15], only recently has
experimental evidence come forward for the importance of
frequency encoding in protein signalling pathways. Such
evidence mainly comes from observations in single cells
of the spatio-temporal dynamics of signalling molecules
tagged with GFP and its derivatives, where substantial
and sustained oscillations in their concentration can be
detected. This requirement for single-cell measurements
arises because such oscillations are typically out of phase
with each other [16–18], and pooling observations from
hundreds or thousands of cells by sampling them simul-
taneously means that such oscillations are damped, often
to the point of invisibility. We ourselves have detected
such oscillations in a variety of components of the NF-kB
signalling pathway [19, 20] (and see [21]), and indicated
that the frequency components have functional significance
for downstream events, i.e. the signal is not simply in the
amplitude (and see [22]). Experimental observations of
oscillations have also been made for the p53 [23, 24] and
MAP kinase [25] signalling pathways and can also be
seen in mathematical models of such processes [23, 25–28].

The source of oscillations in many of the pathways exhi-
biting them is a coupled transcription–translation system
with delayed feedback [29, 30] (although we note that, in
at least one circadian system, oscillatory behaviour is
based on a phosphorylation/dephosphorylation cycle [31,
32]), and this coupled transcription–translation system
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with delayed feedback is the essential basis for the oscil-
lations we observe in the NF-kB system.

Indeed, such transcription factor pathways typically
contain a network motif [33] in the form of a negative
feedback loop composed of one transcription arm and one
protein-interaction arm [23]. Oscillators based on auto-
inhibition with time delay possess the striking property
that the oscillation period is mainly determined by the
time delay and depends only weakly on the average
protein expression rates [34].

A prototypical signalling scheme is that represented by
the nuclear transcription factor NF-kB system [35–37],
which both plays an important role in the immune system
[38] and regulates the expression of cytokines, growth
factors, effector enzymes and of many genes not thought
to be directly pertinent to the immune system. It is normally
held inactive in the cytoplasm by being bound to an inhibi-
tory factor IkB [39] (which has several isoforms such as
a, b, 1). Following receptor activation by a suitable ligand
such as TNF-a, a downstream kinase IkB kinase (IKK)
phosphorylates IkB, leading to its ultimate degradation
and thus the release of free NF-kB, which can enter the
nucleus and effect the transcription of a variety of genes
[40]. NF-kB stimulation also triggers negative feedback
pathways in some cells that go on to terminate the NF-kB
response by increasing the transcription/stability of newly
synthesised IkBa [41, 42]; IkBa becomes a transcriptional
target for NF-kB, creating a negative feedback loop [43].
This feedback loop operates by increasing the rate of syn-
thesis or activation of the inhibitor (IkBa) when the
pathway is activated, thereby down-regulating its own
activity (see Fig. 1). The time required to synthesise or acti-
vate the inhibitor can generate a delay in the system [34,
44]. The result of this can be a series of oscillations that
can be observed both in single cells [43] and in mathemat-
ical models [21, 43, 45, 46]. As the downstream events

affected by changes in the transcription of NF-kB are multi-
farious (and include both apoptosis and proliferation), it is
an open question as to exactly what features of the dynamics
are responsible for cell fate decision making.

In previous work [21], based on an earlier model [45],
we reconstructed a mathematical model of IkB-NF-kB,
integrating the IKK-induced activation of NF-kB and
resynthesis of IkBa. Sensitivity analysis allowed the identifi-
cation of the most significant reactions following stimulation
and showed that just nine (out of 64) of these dominated
the response in terms of their effects on the amplitude or
frequency of the oscillations. Further, the dynamics of just
two molecular species (free [IKK] and free [IkBa]) were inti-
mately coupled to the oscillations in the free nuclear NF-kB
levels (see Fig. 9 of [21]). In addition, this mathematical
model was useful for the design of new experiments [43],
and the results therefrom were at least broadly consistent
with this comparatively simple model.

However, we know from the theory underlying metabolic
control analysis (which is closely related to the type of sen-
sitivity analysis that we used) [47–50], as well as from
experiment [51], that the control exerted by individual reac-
tion parameters depends not only on their own magnitude but
on that of all the others. As well as the sensitivity analyses,
we also studied the effects of changing some of the individual
parameters over two orders of magnitude either side of their
‘basal’ value (41 runs per parameter) [21, 43]. To study the
interactions between these reaction parameters, the next
level of complexity is clearly to do this in a pairwise
manner. However, analysing the interactions between each
of the 64 reactions in this way pairwise would be computa-
tionally prohibitive using a standard PC. This is because
such a study would involve 41 � 41 � 63 � 64/2 ¼
3 388 896 runs, and even at 1 s per run, it would require
about 6 weeks just to acquire the data, before the analysis
ever started. In addition, each model requires �20 kbytes
and each dataset derived therefrom requires �200 kbytes
of storage, and so even the storage requirements,
�750 Gbytes, would be considerable. However, the recog-
nition that only nine of the reactions exert major control
when studied alone allowed a more realistic study of the pair-
wise interactions between just these nine reactions (giving a
50-fold decrease in the computational size of the task and
thus making it tractable). This paper therefore discusses the
outcome of this study of the interactions between the critical
parameters observed to influence the system’s dynamics. The

input signal

IKKg

IKKa IKKb

IKKg

IKKa IKKb

P
P

I Bk

p65 p50 P P

p65 p50

p65
p50

P P ub
ub

ub

26S proteasome

effector proteins e.g.
I B proteinsk a

cytoplasm
nucleus

output

p65 p50

Fig. 1 Schematic representation of NF-kB auto-regulatory
network

Fig. 2 Time course of nuclear NF-kB in ‘base’ model as
implemented herein, showing definitions of amplitudes A, times T
and periods P used in subsequent analysis [21]
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Fig. 3 Dual modulation of critical reaction parameters over two orders of magnitude

a, b, e, f Parameters 9 (IKKIkBa-NF-kB catalytic rate constant) and 28 (IkBa (IkBa-t) inducible mRNA synthesis rate constant)
c, d, g, h Parameters 9 and 52 (IKKIkBa-NF-kB association rate constant)
Plots of timing: a, c T1; e, g T2; and amplitude: b, d A1; f, h A2 at first and second oscillatory peaks of dual-modulated reactions
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chief findings are that indeed these parameters interact in a
non-linear, synergistic manner, and that specific pertur-
bations that vary the period, the amplitude or both features
of the time series can be observed.

2 Methods

For the analysis and better understanding of this signalling
network, a kinetic pathway model was constructed using the
modelling system Gepasi 3.3 [52–54]. The model of the
IkBa-NF-kB signal transduction network [21, 45] was
thus translated into a system of coupled ordinary differential
equations (ODEs), whose solution produced a time series of
the nuclear NF-kB concentration and indeed of all the other
system variables [21]. The ‘base’ parameters of the model
were those given previously and were varied logarithmi-
cally by two orders either side of their ‘basal’ value [21].
The output data (in ascii format) were imported into MS-
Excel and/or Matlab to allow calculation of the periods
and amplitudes of the relevant time series. Occasionally,
the automated procedure devised for this did not work,
leading to the occasional missing value and to a certain
type of quantisation in the values obtained. These did not
affect the overall conclusions and were ignored.

2.1 Control analysis

To quantify the amount of control exerted by a step in
a pathway, Kacser and Burns [55] and Heinrich and
Rapoport [56] introduced the concept of control strength.
The control strength Ci

Xj of a step in a metabolic pathway,
for example, quantifies the extent to which a reaction
parameter i (e.g. a rate or rate constant) controls a steady
state or other variable Xj [55, 57] and is numerically
equal to its sensitivity [58, 59]:

C
Xj
i ¼

dXj=Xj

dvi=vi
¼

d ln Xj

d ln½vi�
ð1Þ

The essence of this approach is the substitution of the
inadequate abstraction of a ‘rate-limiting step’ in metabolic
or signalling pathways by a quantitative measure, the
control coefficient. In other words, the sensitivity of the
changes in the variable (metabolite concentration and
fluxes) of an ‘existing’ metabolic system due to changes

in the parameter (external factors) is quantified by control
coefficients [55, 56, 60]. In the present case, we used
‘large’ changes (see [47, 48]) in the activity of pairs of reac-
tions to seek areas of the parameter space that were ‘inter-
esting’. In addition, the sensitivities were modified to
recognise that we were modulating more than one reaction,
here two designated i and p, although this was done by the
same amount z in each case (10% or 100%, see below):

C
Xj
i;p;z ¼

dXj=Xj

dvði; p; zÞ=vði; pÞ
¼

d ln Xj

d ln½vi; p; z�
ð2Þ

3 Results and discussion

As previously, we characterise the time course of the
changes in nuclear NF-kB according to their period and
amplitude (Fig. 2), and these represent the Xj values in (2).

As described above, we narrowed the search space of
‘possible’ models to those involving just the nine reactions
with the greatest sensitivities and studied their interactions
in two ways

† The nine critical parameters were modulated pairwise
(‘dual modulated’) over two orders of magnitude either
side of their ‘basal’ values to establish the degree to
which they interacted.

† The nine critical parameters were varied pairwise by
either 10% or 100%, and sensitivity analysis was applied
to the system.

3.1 Impact of dual modulation of critical
parameters over two orders of magnitude
on signalling mechanism

Each of the proposed parameter pairs of the nine ‘critical’
parameters of this IkBa-NF-kB model were varied over

Fig. 5 Peak timing T1 and amplitude A1 of first simulated peak
for certain critical reaction parameters

Peak variables T1 and A1 at varied rate constant a k9 and b k38,
modulated by two orders of magnitude on either side of ‘standard’
rate constant at fixed k36 (1 � 1025 s21) (a) or k62 (1 � 1025 s21) (b)

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

A
1

2000 4000 6000 8000 10000 12000 14000 16000
T1

Fig. 4 Peak amplitude A1 against timing T1 of first simulated
peak for dual-modulated reaction parameter 9 (IKKIkBa-NF-kB
catalytic rate constant) and 28 (IkBa (IkBa-t) inducible mRNA
synthesis rate constant)

Parameters were varied in range shown in Figs. 3A and C, parameters
being encoded by colour from red to blue with increasing rate constant
9 and by size by increasing rate constant 28
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two orders of magnitude on either side of the standard
‘basal’ rate constants. Variation of the rate constants was
carried out using the scan utility of Gepasi, and, for this
investigation, 41 values per parameter were used, from
each of which a time course was created. The variable
values time T, amplitude A and period P (see Fig. 2) were
subsequently measured for each of the resulting 1681
(412) scans and used to construct scatter plots relating
each of these to the values of the chosen parameters. We
here consider results from the dual modulation of reactions
9 and 28 and 9 and 52 (Fig. 3).

Fig. 3 is a plot of the peak timing (T1, Fig. 3a) and ampli-
tude (A1, Fig. 3b) for the first simulated peak for the different
rate constant values of the dual-modulated reactions 9
(IKKIkBa-NF-kB catalytic rate constant) and 28 (IkBa
(IkBa-t) inducible mRNA synthesis rate constant). Figs 3c
and d show similar results for the effect on T1 and A1,
respectively, of the dual modulation of reaction 9 with reac-
tion 52 (IKKIkBa-NF-kB association rate constant). It can

first be noted that the overall model was only capable of sup-
porting sustained oscillations over a restricted set of values
of the critical parameters [21, 43] (refer to Figs. 3e–h),
and so it makes sense to start with the initial oscillation.
Figs. 3e (T2) and f (A2) similarly show the timing and ampli-
tude of the second peak for the different rate constant values
of the dual-modulated reactions 9 and 28. Figs 3g and h show
similar results for the effect on T2 and A2, respectively, of the
dual-modulated reactions 9 and 52.

Impact of the rate constant variation of reactions 9 and
28 and 9 and 52 on the time observed for peak 1(Figs. 3a
and c): A number of points emerge from this analysis.
First, there are substantial non-linear interactions between
the paired rate constants. This is observed through the
non-linearity in the shapes of these plots. Although, as we
would expect, the time of the peak of the first oscillation
tended to increase as any of the rate constants was
decreased, this was not at all the case when the partner of
reaction 9 was changed from reaction 28 (Fig. 3a) to
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Dual modulation of reaction parameters over two orders of magnitude
a, b Non-critical reaction parameter 27 (IkBa (IkBa-t) constitutive mRNA synthesis rate constant) and critical reaction parameter 28 (IkBa (IkBa-t)
inducible mRNA synthesis rate constant)
c, d Non-critical parameters 54 (IkBan-NF-kBn nuclear export rate constant) and 57 (IkBbn-NF-kBn nuclear export rate constant)
a, c Timing T1 at first oscillatory peak of dual-modulated reactions
b, d Amplitude A1 at first oscillatory peak

IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005 157



reaction 52 (Fig. 3c). Thus even the form of the non-linear-
ity depends strikingly on the nature of the modulations:
although the data from k9/k28 are monotonic (decreasing
either always causes T1 to increase), a decrease in k52
causes T1 to increase when k9 is high but to decrease
when k9 is low. A variety of types of non-linearity were
observed for the effects of the rest of the nine paired rate
constants on T1 (data not shown), suggesting that such
synergy was the norm. In this case, the amplitude data
(Figs. 3b and d) are somewhat more robust to these
changes than are the timings, although synergistic beha-
viour is also observed here. Another way of looking at
such data is to look at the covariation of T1 and A1 (Fig. 4).

Inspection of these kinds of plot suggested that some
reaction combinations, when dual modulated, would influ-
ence A1 and not T1, and vice versa (Fig. 5). Thus the par-
ameter combination 9 and 36 (Fig. 5a) impacted the
timing observed for the first simulated peak but not the
amplitude, and vice versa for 38 and 62 (Fig. 5b). This is
of significance when we are seeking to modulate specific
reactions to disentangle the importance of frequency and
amplitude to downstream cellular events [22, 43].

Having established substantial non-linear interactions
between paired ‘critical’ rate constants and shown how the
kind of non-linearity depended on the nature of the modu-
lations, it was of interest to know whether interactions
between one ‘critical’ and one ‘non-critical’ reaction led to
significant synergy. We therefore studied (for a small
number of these) the effect of combining non-critical and
critical parameter modulations on the model. As NF-kB

stimulation induces its own inhibitor (IkBa) to regulate cellu-
lar activation, we examined the effect of dual modulations of
reactions 27 (IkBa (IkBa-t) constitutive mRNA synthesis rate
constant) and 28 (IkBa (IkBa-t) inducible mRNA synthesis
rate constant). We found that reaction 27 had little effect on
the values of T1 at a given value of k28 (Fig. 6a), although it
resulted in the appearance of quantised plots as a consequence
of the software used when peak picking. There were slight
interactions between k27 and k28, as observed in A1 when
both rate constants were large, but overall these effects were
small compared with those interactions seen when pairs of
‘critical’ parameters were modulated.

We next determine further the impact of the rate constant
variation of non-critical reactions 54 (IkBan-NF-kBn

nuclear export rate constant) and 57 (IkBbn-NF-kBn

nuclear export rate constant) on the frequency and ampli-
tude of the oscillations. There were no synergistic inter-
actions between the parameters, and only at extreme
values (well away from the basal values) did they influence
the model at all (Figs 6c and d).

3.2 Sensitivity analysis of dual modulated
critical parameters

Using the parameter scan utility of Gepasi, three scans per
parameter were executed (initial value and then initial value
increased and decreased by 10% for the pairs of parameters
of interest). We here focus on the translocation of nuclear
NF-kB. For the individual plots obtained for the parameter
combinations, the values for time (T1–T4) and amplitude
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Fig. 7 Sensitivity coefficients with respect to dual-modulated critical parameters of peak timing and amplitude for second simulated
oscillation when changed by 10% or 100%

a, c Timing
b, d Amplitude
a, b 10% change
c, d 100% change
Plots are symmetric, in that labelled spots on left represent image of equivalent labelled spot on right along same plane
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(A1–A4) of each oscillatory peak and the periods (P1–P3,
data not shown) between each peak were measured. These
scans were also carried out for all the paired ‘critical’ par-
ameter combinations, with the sensitivities determined as
described in Section 2, using the averaged value for the
paired up and down modulations. Figs. 7a and b are sensi-
tivity analysis plots thereby obtained for the average timing
and amplitude at the second oscillation as a function of
‘reaction number’ combination (where each of the labelled
reaction combinations represents one of the critical par-
ameters in a pair). A second study was also carried out
where the critical parameters were either doubled or
halved (termed 100% variation) (Figs. 7c and d).

We previously reported the maximum sensitivity coeffi-
cients obtained when all of the different parameters affect-
ing nuclear NF-kB oscillations were considered [21] and
found reactions 28 and 38 to have the highest either positive
or negative sensitivity coefficient for modulations of both
10% and 100% when varied alone. However, when 28
and 38 are dual modulated, their combined sensitivity
value is reduced relative to that of 28 interacting with 36.
In addition, Fig. 7a, for example, shows that when 52 part-
ners 29, as opposed to 62, their combination gives a more
negative sensitivity value. In that the combinations differ
significantly depending on what is combined with a given
reaction, these findings overall demonstrate again that
synergy was the norm.

4 Conclusions

Investigation of the dynamics of complex systems has
shown that the interplay of many components in some
systems can lead readily to oscillatory behaviour. The
source of the emergence of oscillations in such complex
systems can be subtle as it depends crucially on the
dynamic properties of the interacting components and
their collective behaviour. Given, in particular, that even
simple non-linear systems can display very complicated
and unexpected dynamics (e.g. [61–63]), mathematical
modelling is an essential tool for their study (e.g. [64, 65]).

Even this comparatively small model of part of the
NF-kB system exhibits quite remarkably complex dynamics
when its parameters are varied significantly one at a time
[21, 43, 66]. Varying them all in pairs is computationally
close to intractable on a standard desktop machine, but
by concentrating on the subset of nine reactions previously
determined to exert the greatest control on the oscillations,
we have been able to observe complex and synergistic inter-
actions between these pairs of ‘critical’ parameters. In some
cases, the effects are even qualitative, in that a decrease in
k52 causes T1 to increase when k9 is high but to decrease
when k9 is low (Fig. 3).

Overall, the analyses reveal a level of complexity in these
dynamic models that is not determined by their individual
parameters alone. In terms of the search for novel drug
targets, we might expect that modulation of more than
one reaction alone will be able to give physiological
effects that cannot be obtained by modulating reactions
singly. Interestingly enough, this is exactly what is found
both in theory [67–70] and in practice [71–73].
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