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Summary 

The implementation of artificial neural networks (ANNs) to the analysis of multivariate 
data is reviewed, with particular reference to the analysis of pyrolysis mass spectra. The 
need for and benefits of multivariate data analysis are explained followed by a discussion 
of ANNs and their optimisation. Finally, an example of the use of ANNs for the quantita
tive deconvolution of the pyrolysis mass spectra of Staphylococcus au reus mixed with 
Escherichia coli is demonstrated. 

Introduction 

Multivariate data consist of the results of observations of many different characters 
(variables) for a number of individuals (objects) (73,74). Each variable may be regard
ed as constituting a different dimension, such that if there are n variables each object 
may be said to reside at a unique position in an abstract entity referred to as n-di
mensional hyperspace. This hyperspace is necessarily difficult to visualise, and the 
underlying theme of multivariate analysis (MVA) is thus simplification (22) or dimen
sionality reduction, which usually means that we want to summarise a large body of 
data by means of relatively few parameters, preferably the two or three which lend 
themselves to graphical display, with minimal loss of information. 

In the case of spectroscopy, variables are usually represented by properties such as 
the absorbance at particular wavelengths (e. g. ref. 73). A spectral technique which 
seems ideally suited to analysis by multivariate methods is pyrolysis mass spectro
metry (PyMS). Pyrolysis is the thermal degradation of complex molecules in a vacuum 
which causes their cleavage to smaller, volatile fragments separable by a mass spec
trometer (80) on the basis oftheir mass-to-charge ratio (mlz). Almost all biologicalma
terials will produce pyrolytic degradation products such as methane, ammonia, water, 
methanol and HIS, whose mlz < 50, and fragments with mlz > 200 are rarely analyt
ically important for bacterial discrimination (8) unless very special conditions are em-
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ployed (98); the analytically useful multivariate data are then constituted by a set of 
150 normalised intensities versus mlz in the range 51 to 200. 

Conventionally, at least within microbiology and biotechnology, because PyMS has 
been used as a taxonomic aid (8, 43, 55, 64, 71, 80), the reduction of the multivariate 
data generated by the PyMS system (and indeed of those generated by other arrays 
of sensors; e. g. gas chromatography (70), spectroscopic methods (74), and nuclear 
magnetic resonance (67) is normally carried out using principal components analysis 
(PCA; 21, 22, 30, 34, 56, 74). This is a well-known technique for reducing the dimen
sionality of multivariate data whilst preserving most of the variance, and so is an ex
cellent technique for observing the natural relationships between multivariate samples. 
Whilst it does not take account of any groupings in the data, neither does it require 
that the populations be normally distributed, i. e. it is a non-parametric method (in ad
dition, it permits the loadings of each of the mlz ratios on the principal components to 
be determined, and thus the extraction of at least some chemically significant informa
tion). The closely-related canonical variates analysis (CVA) technique then separates 
the samples into groups on the basis of the principal components and some a priori 
knowledge of the appropriate number of groupings (70, 109). Provided that the data 
set contains "standards" (i. e. type or centro-strains) it is evident that one can estab
lish the closeness of any unknown samples to a known organism, and thus effect the 
identification of the former, a technique termed 'operational fingerprinting' by Meu
zelaar et al. (80). An excellent example of the discriminatory power of the approach 
is the demonstration (44) that one can use it to distinguish E. coli strains which differ 
only in the presence or absence of single antibiotic-resistance plasmids. However, on
ly rarely has the chemical basis for any such differences either been sought or found. 

Analyses of the above type fall into the category of "unsupervised learning", in 
which the relevant multivariate algorithms seek "clusters" in the data (30). This allows 
the investigator to group objects together on the basis of their perceived closeness in 
the n-dimensional hyperspace referred to above. Such methods, then, although in some 
sense quantitative, are better seen as qualitative since their chief purpose is merely to 
distinguish objects or populations. More recently, a variety of related but much more 
powerful methods, most often referred to within the framework of chemometrics, ha
ve been applied to the "supervised" analysis of multivariate data. In these methods, of 
which multiple linear regression (MLR), partial least squares regression (PLS) and 
principal components regression (PCR) are the most widely used, one seeks to relate 
the multivariate spectral inputs to the concentrations of target determinands, i. e. to 
generate a quantitative analysis, essentially via suitable types of multidimensional cur
ve fitting or regression analysis (14, 15, 17,74-76,79). Although non-linear versions 
of these techniques are increasingly available (e. g. 35, 63, 67, 100, 110, 111, 112), the 
usual implementations of these methods are linear in scope. A related approach to 
chemometrics, which is inherently nonlinear, however, is the use of (artificial) neural 
networks (ANNs) (see below). 

For a given analytical system there are some patterns (e. g. mass spectra) which have 
desired responses which are known (i. e. the concentration of target determinands). 
These two types of data (the representation of the objects and their responses in the 
system) form pairs which for the present purpose are called inputs and targets. The 
goal of supervised learning is to find a model or mapping that will correctly associate 
the inputs with the targets (Fig. 1). 

Thus the basic idea in these supervised learning techniques is that there are minimal
ly 4 data sets to be studied, as follows. The "training data" consist of (i) a matrix of s 
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Fig. 1. The process of multivariate calibration via supervised learning consists of two 
stages. Calibration: establishing a CALIBRATION MODEL for later prediction of "results" 
(e. g., amount of determinand) from "spectra" by matching spectral standards and the 
known results wanted from a set of calibration samples (the training set) in some sort of 
supervised learning calibration program; this may be by using a neural network simulation, 
or with a program that performs multiple linear regression, partial least squares or princi
pal component regression. Some background knowledge may be used in the formation of 
the model such as a priori knowledge, variable selection and scaling, outlier detection and 
cross validation. 
Prediction: converting instrumental data for new samples into predictions of wanted results 
(e. g., in terms of determinand concentration) using the above previously established CAL
IBRATION MODEL in the computer program. 
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rows and n columns in which s is the number of objects and n the number of variables 
(these may be the absorbance at particular wavelengths, or in the present case the nor
malised ion intensities at a particular rn/z; Fig. 1), and (ii) a second matrix, again con
sisting of s rows and typically 1 or two columns, in which the columns represent the 
variable(s) whose value(s) it is desired to know (these are the result(s) wanted; Fig. 1) 
and which for the training set have actually been determined by some existing, "bench
mark" method. This variable may be the concentration of a target determinand, and 
is always paired with the patterns in the same row in (i). The "test data" also consist 
of two matrices, (iii) and (iv), corresponding to those in (i) and (ii) above, but the test 
set contains different objects. As the name suggests, this second pair is used to test the 
accuracy of the system; alternatively they may be used to cross-validate the model. 
That is to say, after construction of the model using the training set (i, ii) the test data 
(iii) (these may be new spectra; Fig. 1) are then "passed" through the calibration mod
el so as to obtained the model's prediction of results. These may then be compared with 
the known, expected responses (iv). 

As in all other data analysis techniques, these supervised learning methods are not 
immune from sensitivity to badly chosen initial data (113). Therefore the exemplars 
for the training set must be carefully chosen; the golden rule is "garbage in - garbage 
out". An excellent example of an unrepresentative training set was discussed some 
time ago on the BBe television programme Horizon; a neural network was trained to 
attempt to distinguish tanks from trees. Pictures were taken of forest scenes lacking 
military hardware and of similar but perhaps less bucolic landscapes which also con
tained more-or-less camouflaged battle tanks. A neural network was trained with 
these input data and found to differentiate most successfully between tanks and trees. 
However, when a new set of pictures was analysed by the network, it failed to distin
guish the tanks from the trees. After further investigation, it was found that the first 
set of pictures containing tanks had been taken on a sunny day whilst those contain
ing no tanks were obtained when it was overcast. The neural network had therefore 
thus learned simply to recognise the weather! We can conclude from this that the 
training and tests sets should be carefully selected to contain representative exemplars 
encompassing the appropriate variance over all relevant properties for the problem at 
hand. 

It is also imperative that the objects fill the sample space. If a neural net is trained 
with samples in the concentration range from 0 to 50% it is unlikely to give a accu
rate estimates for samples whose concentrations are greater than 50%, that is to say 
the network is unable to extrapolate. Furthermore for the network to provide good 
interpolation it needs to be trained with a number of samples covering the desired con
centration range (47). 

Artificial neural networks 

ANNs are an increasingly well-known means of uncovering complex, non-linear re
lationships in multivariate data, whilst still being able to map the linearities. ANNs 
can be considered as collections of very simple "computational units" which can take 
a numerical input and transform it, usually via summation, into an output (see 1, 2, 6, 
20,24,28,40,59,60,66, 78, 87, 88, 93, 97, 102 and 103 for excellent introductions; 
and 4, 7,9-12, 18,23,25,29,37,42,45,47,52,65,69, 77,85,89,92,96,99, 105 
and 114 for applications in analytical chemistry and microbiology). 
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The relevant principle of "supervised" learning in ANNs is that, as with the multi
variate calibration described above, they take numerical inputs (the training data, 
which are usually multivariate) and transform them into "desired" (known, predeter
mined) outputs. The input and output nodes may be connected to the "external world" 
and to other nodes within the network (for a diagrammatic representation see Fig. 2). 
The way in which each node transforms its input depends on the so-called "connection 
weights" (or "connection strength") and "bias" of the node, which are modifiable. The 
output of each node to another node or the external world then depends on both its 

INPUTS 

It 

In 

nodes or 
neurons 

INPUT 
LAYER 

connections 
or synapses 

IDDDEN .' OUTPUT 
LAYER . LAYER 

output signal 

O. 

On 

Fig. 2. A neural network consisting of 3 inputs (data for PyMS actually consisted of 150 in
puts/masses) and 2 outputs (for the PyMS study this was a single node which represented 
the %S. aureus) connected to each other by 1 hidden layer consisting of 3 nodes (for PyMS 
this was actually 8). In the architecture shown, adjacent layers of the network are fully inter
connected although other architectures are possible. One of the nodes in the hidden layer 
is given in more detail showing the information processing by node. An individual node 
sums its input (the ~ function) from nodes in the previous layer, including the bias (~), trans
forms them via a "sigmoidal" squashing function, and outputs them to the next node to 
which it is linked via a connection weight. 



Quantitative Analysis of Multivariate Data Using Neutral Nets 521 

weight strength, bias and on the weighted sum of all its inputs, which are then trans
formed by a (normally non-linear) weighting function referred to as its activation, 
threshold or squashing function. As with other supervised learning methods, the great 
power of neural networks stems from the fact that it is possible to "train" them. One 
can acquire sets of multivariate data (which may be pyrolysis mass spectra) from stan
dard materials of known identities and train ANNs using these identities as the desired 
outputs. Training is effected by continually presenting the networks with the "known" 
inputs and outputs and modifying the connection weights between the individual nodes 
and the biases, typically according to some kind of back-propagation algorithm (93), 
until the output nodes of the network match the desired outputs to a stated degree of 
accuracy. The trained ANNs may then be exposed to unknown inputs (i. e. spectra) and 
they and will immediately provide the globally optimal best fit to the outputs. 

Provided the ANN gives the correct results for "unknown" data (i. e. data unseen 
by the calibration system, but known by the operator) it may be said to have "gener
alised". The operator can now be confident that when genuine unknown spectra are 
passed through the neural network, the predictions will be accurate and precise, pro
vided of course that these spectra bear some relationship to the training set. 

The so-called false-sample problem often poses a major stumbling block for the rou
tine application of these numerical techniques for the analysis of multivariate data 
(27). This occurs, for example, when an operator makes a calibration model to quan
tify substance a in b, but then tests the model on (say) c mixed with b. It should be ob
vious that the neural network calibration model is now being asked to extrapolate be
yond the knowledge domain on which it was trained, and will thus fail to give an ac
curate prediction of the determinand. As well as exploiting appropriate software me
thods (e. g. statistical ones) to detect whether a test sample falls within the domain of 
validity of the training set, it is also possible to include suitable "false" samples and 
corresponding "dummy" output variables in the training set; this practice should al
low the neural network to detect widely different samples (53). In this sense, then, 
analysis with ANNs of this type can fairly be regarded within the framework of the 
multivariate calibration approach as outlined in Figure 1. 

The following summarises the fundamental nomenclature and the rudimentary 
mathematical concepts that are used to describe and analyse ANN processing. 

The processing units 

ANNs employ processing nodes (neurons or units), connected using abstract inter
connections (connections or synapses). Connections each have an associated real val
ue, termed the weight (wJ, that scales the input (iJ passing through them (Fig. 2); this 
also includes the bias (,)), which also has a modifiable weight. Nodes sum the signals 
feeding to them (Net): 

n 

= L iiwi + {} 
i= 1 

Activation functions 

The sum of the scaled inputs and the node's bias, are then scaled to lie between 0 
and +1 (or sometimes between -1 and +1) by an activation function to give the nodes 
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output (Out); this scaling is typically achieved using a logistic "squashing" (or sig
moidal) function: 

Out = __ 1 __ 
(1 + exp -Net) 

It is widely thought that a continuously differentiable sigmoidal squashing function 
(93,97, 102) is most appropriate, although some advantage may accrue to the use of 
a linear activation function on the output nodes. 

Neural network topology 

ANN topologies, or architectures, are formed by organising nodes into layers (also 
termed fields or slabs) and linking these layers of neurons with modifiable weighted 
interconnections. A diagrammatic representation of a neural network consisting of 3 
inputs and 2 outputs connected to each other by 1 hidden layer consisting of 3 nodes 
is shown in Figure 2. In the fully connected topology shown each of the 3 nodes in the 
input layer is connected to the 3 in the hidden layer, by 9 connection weights, which 
in turn are connected to the 2 output nodes, by a further 6 connection weights. In ad
dition, there is also a bias (extra node), which always has an activation level of +1, 
which is connected to nodes in the hidden and output layers (but not the input layer) 
via modifiable weighted connections (5 in the example shown in Fig. 2). Such an ar
chitecture can be written as a 3-3-2 ANN, and is commonly referred to as a fully inter
connected feedforward multilayer perceptron. 

Other architectures are possible such as direct linear feed through, where in addi
tion to the above the nodes in the input layer is also connected directly to the output 
layer. There are many other topologies where not all the nodes between layers are con
nected, the connections may be chosen or random. 

It is known from the statistical literature that better predictions can often be ob
tained when only the most relevant input variables are considered (81, 90, 95). There
fore neural networks that prune larger networks are an active area of study (e. g., 33, 
57, 18,68, 84, 91, 104). It is also possible to grow neural networks from small ones 
(16,32,36, 82, 83). 

The most widely used neural network topology is one that is fully connected (Fig. 2) 
and where the input and output nodes are connected via a single hidden layer. One rea
son that this architecture is so attractive for the quantitative analysis of multivariate 
spectral data is that it has been shown mathematically (26, 39, 61, 62, 108) that a neu
ral network consisting of only one hidden layer, with an arbitrarily large number of 
nodes, can learn any, arbitrary (and hence non-linear) mapping of a continuous func
tion to an arbitrary degree of accuracy. It is the presence of this hidden layer which 
permits the nonlinear mapping, since similar networks lacking a hidden layer can on
ly effect a multivariate linear mapping (93). In addition, such ANNs are widely con
sidered to be relatively robust to noisy data, such as those which may be generated by 
mass spectrometry or gas chromatography. 

The above 3-3-2 architecture is rather simple and the question arises "How does one 
choose the number of nodes in the hidden layer?" For pyrolysis mass spectra there are 
150 mlz values and thus 150 nodes in the input layer. It is important not to have too 
many nodes in the hidden layer(s) because this may allow the neural network to learn 
by example only and not to generalise (5). We have found that a suitable rule of thumb 
is that good generalisation often comes from using a number of nodes in the hidden 
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layer that approximates to the natural logarithm of the number of nodes in the input 
layer. Thus with 150 input nodes this equates to 8. For a single determinand (output 
node) this architecture would be represented as a 150-8-1 ANN. However, it is note
worthy that during our work we have found that fewer nodes in the hidden layer (in
deed often even zero) can be used to quantify PyMS data successfully. 

Preparation of data 

As mentioned previously it is of paramount importance to have the correct exem
plars in the training and test sets. It is necessary also that these samples fill the sample 
space. Neural networks are very bad at extrapolating and to ensure good interpola
tion they need to be trained with samples equally-spaced over the desired concentra
tion range; for a range of binary mixtures, it has been found, using PyMS, that 11 sam
ples spaced every 10% will allow the network to generalise well (47). 

Once the data used to train the ANN are collected, and the concentrations of the 
determinand ascertained using "wet chemistry", they are split into two data sets in 
which one half of the pair are the inputs (stimulus) of the network (for present pur
poses this would be the pyrolysis mass spectra normalised to the total ion count) and 
the other are the known or expected responses (i. e. the concentrations of the determi
nand[s]). 

At this stage it is important to determine whether the training andlor test sets con
tain any outlying samples; these are usually detected using principal components anal
ysis. It is known that if outliers are included in the construction of a calibration mod
el then inaccuracies in the predictions from new multivariate data using the model are 
likely to occur (74). 

Some of the mlz values may be omitted from the training data, a practice termed 
"pruning". It is unlikely however that the operator will know a priori which masses 
to remove so at least for typical back-propagation neural networks it is best to start 
with the intensities from all 1 SO masses. 

The input and output nodes are next normalised between 0 and +1. It has been 
found (47, 52) that network generalisation is improved if the output layer is scaled to 
exploit less than the full range of the normalised scale, and the optimum for PyMS ap
pears typically to be between +0.1 and +0.9. We have also found on occasion that scal
ing input nodes individually, i. e. over their own range rather than over the whole range 
encompassed in the entire input space, has improved learning rates dramatically 
(>100 fold) (52, 86). 

Training the neural network 

The first step is to choose the algorithm to be used for training the ANN. There are 
numerous algorithms available, and indeed the list of new ones expands continually. 
The most commonly employed is the standard back-propagation (BP) algorithm (93, 
106, 107). Other algorithms which we have exploited include stochastic back-propa
gation, also termed learning hy pattern (78), quick propagation (31), and Weigend 
weight elimination (104). The following describes training ANNs with the standard 
back-propagation algorithm. 

Before training commences the connection weights are set to small random values, 
including the weights connecting the bias to the hidden and output layers (102). Next 
the stimulus pattern is applied to the network, which is allowed to run until an output 
is produced at each output node. The differences between the actual output and that 
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expected, taken over the entire set of patterns, are fed back through the network in the 
reverse direction to signal flow (hence back-propagation) modifying the weights as 
they go. This process is repeated until a suitable level of error is achieved (93,97, 102). 

For any given ANN, set of connection weight values, and training set there exists an 
overall RMS error of prediction. An error surface can be constructed by using one di
mension in a multidimensional space to represent each connection weight, and an ad
ditional one for the RMS error. The BP algorithm performs gradient descent on this 
error surface by modifying each weight in proportion to the gradient of the surface at 
its location. Two constants, learning rate and momentum, control this process; for 
standard BP a learning rate of 0.1 and a momentum of 0.9 often give the best results. 
Learning rate scales the magnitude of the step down the error surface taken after each 
complete calculation in the network (epoch), and momentum acts like a low pass fil
ter, smoothing out progress over small bumps in the error surface by remembering the 
previous weight change. 

It is known that gradient descent can sometimes cause networks to get "stuck" in a 
depression in the error surface should such a depression exist. These are termed "lo
cal minima" (97, 102). However, it has been found empirically that local minima are 
seldom problematic for larger networks dealing with problems such as those present
ly under discussion, since the chance of encountering a multidimensional depression 
that is bounded in every dimension is relatively small. 

One complete calculation in the network is called an epoch. This is equivalent to 
one complete pass through all the training data, calculating for each member of the 
training set. For a 150-8-1 ANN topology, trained with the standard back-propaga
tion algorithm (93, 106, 107), where the weights are updated after all the training da
ta are seen, one epoch represents 1217 connection weight updatings (1200 weights be
tween the input and hidden layer (150 X 8), 8 weights between the hidden layer and 
the output node (8 x 1), and 9 weights from the bias to the 8 nodes in the hidden lay
er and the single output node) and a recalculation of the root mean squared (RMS) er
ror between the true and desired outputs over the entire training set. In contrast, one 
epoch for an ANN trained using the stochastic back-propagation (78) would also in
duce the weight updatings after each of the training pairs is passed through the neu
ral network. 

Stability and convergence 

During training a plot of the RMS error versus the number of epochs represents the 
"learning curve", and may be used to estimate the extent of training. Training may be 
said to have finished when the network has found the lowest RMS error. Provided the 
network has not become stuck in a local minimum, this point is refered to as the glo
bal minimum on the error surface. 

It is known (45, 52, 93, 102) that neural networks can become over-trained. An 
over-trained neural network has usually learnt perfectly the stimulus pattern it has seen 
but can not give accurate predictions for unseen stimuli, and it is no longer able to gen
eralise. For ANNs accurately to learn the concentrations of determinands in biologi
cal systems networks must obviously be trained to the correct point. It is therefore im
perative that ANNs should be trained several (perhaps many) times to ascertain wheth
er they converge reproducibly. In addition, a superior method to reveal when the neu
ral network will best generalise is to use the (or a) test set to cross-validate the model. 
During training the network may be interrogated with new stimulus patterns so as to 
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generate outputs at the output node. The stimuli used may be pyrolysis mass spectra, 
whose determinand concentration is known to the operator but not to the neural net
work. The error between the output seen and that expected may then be calculated 
thus allowing a second learning curve for the test set to be drawn. Training is stopped 
when the RMS error on the test or cross-validation data is lowest. 

Table 1. Some parameters which one may vary during the production of a feedforward 
back-propagation neural network calibration model to improve learning/convergence and 
generalisation 

1. Number of hidden layers: 

One is thought sufficient for most problems. 
More give a big increase in computational load. 

2. Number of nodes in hidden layer: 

Rule of thumb says In (number of inputs). 

3. Architecture: 

Fully interconnected feedforward net is most common. 
Many others exist such as adaptive resonance theory, Boltzmann machine, direct linear 
feedthrough, Hopfield networks, Kohonen networks. 

4. Number of exemplars in training set: 

Need enough to fill parameter space and to allow generalisation. 
When fewer are used then the network can "store" all the knowledge. 

5. Number of input variables: 

Those that do not contribute positively to discrimination may impair generalisation and 
are best removed by pruning the input data. 

6. Scaling of input and output variables: 

Individual scaling on inputs improves learning speed dramatically. 
There is a need to leave headroom, especially on the output layer. 

7. Updating algorithm: 

There are many variants on the original "vanilla-flavoured" back-propagation (BP) -
most of which give small but worthwhile improvements. Others include radial basis 
functions, quick-prop, stochastic BP, Weigend weight eliminator. 
Standard back-propagation (93) is still the most popular. 

8. Learning rate and momentum: 

Need to be carefully chosen so that the net does not get stuck in local minima nor "shoot" 
off in the wrong direction when encountering small bumps on the error surface. 
For standard BP a learning rate of 0.1 and a momentum of 0.9 are best. 

9. Stability: 

Best to reserve some of the training data for cross-validation. 
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Once trained to the best generalisation point, the neural network may then be chal
lenged with stimuli whose determinand concentrations are unknown, thereby allow
ing the operator accurately to predict the concentration of the determinand, without 
recourse to labour-intensive and often difficult wet chemistry. 

It is evident that there are a large number of parameters which one may vary dur
ing the production of a neural network calibration model. For convenience, the most 
relevant for simple back-propagation networks are summarised in Table 1. 

Outside the rather inaccessible mathematical literature, there has been relatively lit
tle work on the statistical validation of neural network predictions. So although they 
can be trained to the optimal point, when challenged with a new stimulus the network 
will give its answer, but as yet, it is not possible to put accurate confidence limits on 
the prediction (59). However, the link between statistics and neural networks is now 
becoming increasingly realised (13, 19,41, 52, 85), and it is arguably, therefore, only 
a matter of time before true statistical confidence limits (beyond simple mean ± stand
ard deviation on replicates) will be applied to neural network outputs. 

The quantification of a binary mixture of bacterial cells by neural network 
analysis of their pyrolysis mass spectra 

Our own aims have been to expand the application of the PyMS technique from 
(bacterial) taxonomy to the rapid and quantitative analysis of the chemical constitu
ents of microbial and other samples, and we have therefore sought to apply ANNs to 
the deconvolution and interpretation of pyrolysis mass spectra. Thus, we have been 
able to follow the production of indole in a number of strains of E. coli grown on me
dia incorporating various amounts of tryptophan (45), to estimate the amount of cas
amino acids in mixtures with glycogen (47), to quantify the (bio)chemical constitu
ents of complex biochemical binary mixtures of proteins and nucleic acids in glyco
gen, and to measure the concentrations of tertiary mixtures of bacterial cells (52). 
More recently, within biotechnology, we have used PyMS and ANNs for the quanti
tative analysis of recombinant cytochrome bs expression in E. coli (49), and for effect
ing the rapid screening of the high-level production of desired substances in fermen
tor broths (54). 

With regard to classifications and discriminations, we have also exploited the combi
nation of PyMS and ANNs for the rapid and accurate assessment of the presence of lo
wer-grade seed oils as adulterants in extra virgin olive oils (50, 51), for the identification 
of strains of Mycobacterium (37) and Propionibacterium spp. (48,53). In the later stud
ies we also exploited Kohonen's self-organising feature map (66) succesfully to carry out 
unsupervised learning, and hence the classification of the P. acnes strains (48,53). 

An example of the exploitation of ANNs for the deconvolution of the pyrolysis mass 
spectra of Staphylococcus aureus mixed in Escherichia coli is given below. 

Preparation of the bacterial binary mixtures 

The bacteria used were E. coli W3110 and S. aureus NCTC6571. Both strains were 
grown in 2 L liquid media (glucose (BDH), 10.0 g; peptone (LabM), 5.0 g; beef extract 
(LabM), 3.0 g; H20, 1 L) for 16 h at 37°C in a shaker. After growth the cultures were 
harvested by centrifugation and washed in phosphate buffered saline (PBS). The dry 
weight of the cells were estimated gravimetrically and used to adjust the weight of the 
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final slurries using PBS to approximately 40 mg/mL. Two sets of mixtures were then 
prepared. The training set consisted of x% E. coli and y% S. au reus, where x: y were 
100: 0, 75: 25,50: 50,25: 75, and 0: 100. The second, "unknown" test set consisted 
of (x% E. coli: y% S. aureus) where x:y were 90: 10, 80: 20, 70: 30,60: 40,40: 60, 
30: 70,20: 80, and 10: 90. 

Pyrolysis mass spectrometry 

Aliquots (5 Ill) of the bacterial suspensions were evenly applied onto iron-nickel 
foils. Prior to pyrolysis the samples were oven dried at 50°C for 30 min. Samples we
re run in triplicate. The pyrolysis mass spectrometer used in this study was the Hori
zon Instruments PYMS-200X, as initially described by Aries et al. (3); for full opera
tional procedures see Freeman et al. (38), Goodacre and Kell (45), Goodacre et al. (46, 
53) and Magee et al. (72). The sample tube carrying the foil was heated, prior to pyr
olysis, at 100°C for 5 s. Curie-point pyrolysis was at 530°C for 3 s. Data were collect
ed over the mlz range 51 to 200. 

Data Analysis 

The data from PyMS may be displayed as quantitative pyrolysis mass spectra (e. g. 
see Fig. 3). The abscissa represents the mlz ratio (mass) whilst the ordinate contains in
formation on the ion count for any particular mlz value ranging from 51 to 200. Da
ta were normalised as a percentage of total ion count to minimise the influence of sam
ple size per se. 

The data (normalised as above but not weighted by their standard deviations) were 
analysed by principal components analysis (PCA) using the program Unscrambler II 
Version 4.0 (CAMO AlS, Olav Tryggvasonsgt. 24, N-7011 Trondheim, Norway; and 
see 74) which runs under Microsoft MS-DOS 6.2 on an IBM-compatible Pc. PCA was 
employed as a method to detect outliers. If any outlying samples were discovered these 
would be removed from the construction of the neural network calibration model to 
prevent (gross) inaccuracies in future predictions. 

Neural network simulations 

All ANN analyses were carried out using a user-friendly, neural network simulation 
program, NeuralDesk (Neural Computer Sciences, lulworth Business Centre, Nut
wood Way, Totton, Southampton, Hams, U.K.), which runs under Microsoft Windows 
3.1 (or Windows NT) on an IBM-compatible Pc. To ensure maximum speed, an ac
celerator board for the PC (NeuSprint) based on the AT & T DSP32C chip, which ef
fects a speed enhancement of some 100-fold over a 386 processor, permitting the anal
ysis (and updating) of some 400,000 weights per second, was used. Data were also 
processed prior to analysis using the Microsoft Excel 4.0 spreadsheet. 

The structure of the ANN (see above) consisted of 3 layers made up of the 150 in
put nodes (normalised pyrolysis mass spectra), 1 output node (the determinand; i. e., 
the percentage of S. aureus mixed with E. coli), and one "hidden" layer containing 8 
nodes (150-8-1). The algorithm used was standard back-propagation (BP) (93). The 
input layer was scaled hetween 0 and lover the whole dataset (i. e. not on individual 
nodes) whilst the output layer was scaled to exploit less than the full range of the nor
malised scale between 0 and 1 (47,52), that is, from -10 to 110% of S. au reus (thus 
the normalised scaling range was from 0.1 to 0.9). 
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For training the ANNs, the training set consisted of the inputs which were the nor
malised triplicate pyrolysis mass spectra derived from 0,25, 50, 75 and 100% S. aure
us in E. coli, and the desired outputs which were the actual (true) percentage of S. au
reus. The network was trained and the RMS error of the training and test sets were 
calculated in order to ascertain when the network would best generalise. Finally after 
training, all pyrolysis mass spectra of the S. aureuslE. coli mixture were used as the 
"unknown" inputs (test data); the network then output its estimate in terms of the per
centage of S. au reus mixed with E. coli. 

Results and Discussion 

Pyrolysis mass spectral fingerprints of 200 f..I.g E. coli, pure S. aureus and of 100 f..I.g 
S. aureus mixed with 100 f..I.g E. coli (50%: 50% mix) are shown in Fig. 3. These pyro
lysis mass spectra are very complex, such that their visual distinction is very difficult. 
At first there appears to be relatively little difference between them, with the particu
lar exception of mlz 129 which is quite intense in the spectra from axenic E. coli 
(Fig. 3a) and the 50: 50 mixture of S. aureus and E. coli (Fig. 3c), but much reduced in 
the spectra of pure S. aureus (Fig.3b). 

Figure 4 shows a simple subtraction of the normalised averages of three spectra of 
E. coli from three of S. aureus. The positive half of the graph indicates the peaks that 
are more intense in the spectra of S. aureus and shows some similarities to the pyroly
sis mass spectrum of axenic S. aureus (Fig. 3b); these were notably mlz 59 and 68. Sim
ilarly the negative half of the subtraction spectra (Fig. 4) shows some analogies to the 
spectrum of pure E. coli (Fig.3a); the most distinct peaks in the difference spectrum 
being mlz 73 and 129. 

If these masses can be considered characteristic for S. aureus and E. coli, the inten
sities of mlz 59 and mlz 68 for S. aureus, and mlz 73 and mlz 129 for E. coli should be 
proportional to the relative proportion of these two bacteria in the mixtures. Plots of 
the average intensities of these four masses against the percentage of S. aureus in the 
binary mixtures, with standard error bars and the best linear fits, are shown in Figure 
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5. It can be seen that mlz 59 and mlz 68 do indeed alter in a fashion that is approxi
mately linear with the % S. aureus, and that the intensities of mlz 73 and mlz 129 do 
decrease in a roughly linear manner. 

One might hazard that it is possible simply to use the intensities of either mlz 59 or 
mlz 68 to estimate the percentage of S. aureus in these bacterial mixtures. However, 

B 

c 

59 axenic S. aureus 4 
68 

- 3 73 ro ...... 
o ...... 
II) 

~ 
~ 
II) 
U 
I-< 
II) 

0... 

2 

1 

o 
60 80 100 120 140 160 180 200 

Mass (m/z) 

59 50% S. aureus + 50% E. coli 

129 

60 80 100 120 140 160 180 200 

Mass (mlz) 

Fig. 3. Normalised pyrolysis mass spectra of 200 I-Ig E. coli (A), 200 I-Ig S. au reus (B), and of 
100 I-Ig S. aureus mixed with 100 I-Ig E. coli (C). These spectra were obtained as described 
using a Curie-point temperature of 530°C for 3 s with the Horizon Instruments PYMS-
200X pyrolysis mass spectrometer. 
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Fig. 4. A subtraction spectrum of the normalised average of three pyrolysis mass spectra of 
E. coli (Fig. 3a) from the average spectra of three from S. aureus (Fig. 3b). 

there are two main problems with this: the first is that the variation in the intensity of 
these two masses is quite large, particularly above 70% S. aureus where the standard 
deviation error bars are very big. The other, albeit minor, problem is that although the 
relationships between the % ion counts of these masses and the % S. aureus are linear, 
they are not proportional (i. e., the line does not pass through the origin), which means 
that the source of rnJz 59 and rnJz 68 is not purely from S. aureus, and there is some 
contribution from E. coli; this can be clearly seen in the spectra of pure E. coli (Fig. 3a) 
which contribute 1.0% and 1.7% to rnJz 59 and rnJz 68 respectively (Fig. 5). Likewise, 
the masses derived from the pyrolysis of cells of E. coli (i. e., rnJz 73 and rnJz 129) do 
not alter in a proportional manner, and there is some contribution from S. aureus 
(1.3% and 0.3% respectively [Fig. 5]); again this can be observed in the spectra of ax
enic S. aureus (Fig. 3b). Thus, changes in these single ions can not be used accurately 
to estimate the percentage of cells of S. aureus mixed with E. coli. In other, less favour
able cases, there may be interactions between constituents of the pyrolysate, which 
would change the mass spectra in a non-linear fashion (54, 94, 101). 

The next stage was to look at the relationship between the pyrolysis mass spectra of 
the binary bacterial mixtures using principal components analysis (PCA). PCA is the 
best method for reducing the dimensionality of multivariate data whilst preserving 
most of the variance; in our pyrolysis mass spectral data this reduction was from the 
150 mlz values to the first 2 or 3 principal components (PCs). Plots of the first two 
PCs of the variance in the PyMS for S. aureus in E. coli which account for 89.6% and 
7.2% of the total variation respectively, are shown in Figure 6; this graph show that 
most of the variation was preserved in the first Pc. It was also evident that the first PC 
served roughly to account for (or describe) the difference in the amount of S. aureus 
mixed with E. coli. The second PC did, however, contain some information in some of 
the samples (especially in mixtures containing 25,75 and 80% S. aureus). That the sec
ond PC only accounted for 7.2% of the total variation indicates that the 25, 75 and 
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Fig. 5. Plots of the percentage intensity of mJz 59 and 73 (A) and of mJz 68 and 129 (B) 
against the percentage of S. aureus mixed with E. coli. Error bars show standard deviation 
based on triplicates. The best linear fits are shown. 

80% S. aureus mixtures were not significantly outlying; thus the inclusion of the py
rolysis mass spectra of the 25 and 75% mixtures in the training set should not adverse
ly affect the calibration model produced by the neural network analysis. 

We therefore trained ANNs, using the standard back-propagation algorithm, with 
the normalised ion intensities from the triplicate pyrolysis mass spectra from the train
ing sets as the inputs and the amount of S. aureus (0, 25, 50, 75 and 100%) mixed with 
E. coli as the output, the latter being scaled to lie between 0.1 and 0.9. The effective
ness of training was expressed in terms of the RMS error between the actual and de
sired network outputs; this "learning curve" is shown in Figure 7 (continuous line). 
The "learning curve" of the test data (broken line) is also shown in Figure 7; it can be 



532 

N 

5 
5 
~ 
8 

2000 

1500 

1000 

500 

o 

1 -500 

~ -1000 

-1500 

-2000 

R.Goodacre, M.J.Neal, and D.B.KeU 

~o 
··-lOa 

, , , 
___ .I _____________ • _______ L ____________________ -' ____ ._. _____________ _ , , , , , , , , , 

·.··.£tt~~fll~~~.~()~t.()r.~:.~~re.~ ............. , ........ . 
.t. . .. ; ................... ..l ................... ,J, ............ m ••••• 

: 70 60! 50 40 [30 [ 
.............. f············ .. ·····T········· .... ······!·· ... 2(}t(t·····rO···· .... ·········· 

.... ·····g(}····f···· ········'············ .. ···2·~·············· .... ··•····· .. · ............ . 

' .......... t;:Ir 
-3000 -2000 -1000 o 1000 2000 3000 

Principal component 1 

Fig. 6. Principal components biplots based on PyMS data showing the relationship between 
the PyMS of various amounts of S. aureus mixed with E. coli. The first two principal com
ponents are displayed and they account for 89.6% and 7.2% of the total variation respec
tively. The numbers represent the percentage of S. aureus in the binary mixture. 
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Fig. 7. Typical learning curves for the ANN, using the standard back propagation algorithm 
and with one hidden layer consisting of eight nodes, trained to estimate the percentage of 
S. aureus mixed with E. coli. The continuous line represent the % RMS error of the data used 
to train the neural network (the training set) and the broken line the data from the test set. 
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seen that whereas the learning curve of the training set continues to decrease during 
training the test set's learning curve initially decreases for approximately 5.103 epochs 
and then increases. This indicates that after this point the ANN was being over-train
ed, and it is important not to over-train ANNs since (by definition) the network will 
not generalise well (45). 

Over-training was also detected when the RMS error of the test set is plotted against 
the RMS error of the training set (Fig. 8). The minimum RMS error in the test set was 
reached (1.55%) when the RMS error of the training set was 0.30% and optimal train
ing had occurred. The ANN was then interrogated with the training and test sets and 
a plot of the network's estimate versus the true amount of S. aureus mixed with E. co
li (Fig. 9) gave a linear fit which was indistinguishable from the expected proportion
al fit (i. e. y = x). It is therefore evident that the network's estimate of the percentage 
of S. aureus in the mixtures is very similar to the true quantity. This is true both for 
spectra that were used as the training set and, most importantly, for the "unknown" 
pyrolysis mass spectra. 

In summary, it is evident from these results that ANNs can be trained with the py
rolysis mass spectra of binary bacterial mixtures of S. aureus and E. coli so as to gain 
quantitative information of the percentage content of S. aureus. 

Concluding remarks 

The arrival of novel chemometric techniques employing supervised learning such as 
neural networks (and indeed other analysis methods such as multiple linear regression, 
partial least squares and principal components regression) allow quantitative as well 
as qualitative analysis of multivariate data. 
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Fig. 8. A plot of the percentage RMS error of the test set versus the percentage RMS error 
of the training set. This show that optimal training occurred (i. e. at 0.3% RMS error). The 
number of epochs (and hence extent training) increases from right to left. 
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Fig. 9. The estimates of trained 150-8-1 neural networks versus the true percentage of S. au
reus. ANNs were trained using the standard-back propagation algorithm, to 0.3% RMS er
ror (the point at which Figure 5 had indicated that optimal training took place). Data points 
are the averages of the triplicate pyrolysis mass spectra. Open circles represent spectra that 
were used to train the network and closed circles indicate "unknown" spectra which were 
not in the training set. Error bars show standard deviation. The expected proportional fit 
is shown. 

Pyrolysis mass spectrometry is a rapid, sensitive, relatively low cost, and instrument
based technique which produces a chemical fingerprint of the material to be analysed 
in less than 2 minutes. The data produced are multivariate and so ideally suited to anal
ysis by neural networks. 

The example given above demonstrates the ease with which neural networks can 
successfully be trained with the pyrolysis mass spectra of samples of a bacterial binary 
mixture of S. aureus and E. coli so as to be able accurately to quantify the concentra
tion of S. aureus. 

In conclusion, the combination of PyMS and ANNs constitutes a novel, powerful 
and increasingly accessible technology for the precise, accurate and quantitative anal
ysis of the concentrations of appropriate substrates, metabolites and products in 
(bio)chemical processes generally (54). This offers the microbiologist an alternative to 
the often labour intensive, slow and difficult methods used, for example, to quantify 
drugs produced in fermentors. 
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