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Abstract 

Diffuse reflectance-absorbance Fourier transform infrared spectroscopy (FT-IR) was used to analyse 19 hospital isolates 

which had been identified by conventional means to one of Enterococcus faecalis, E. faecium, Streptococcus bocis, S. mitis, 

S. pneumoniae, or S. pyogenes. Principal components analysis of the FT-IR spectra showed that this ‘unsupervised’ learning 
method failed to form six separable clusters (one for each species) and thus could not be used to identify these bacteria based 
on their FT-IR spectra. By contrast, artificial neural networks (ANNs) could be trained by ‘supervised’ learning (using the 
back-propagation algorithm) with the principal components scores of derivatised spectra to recognise the strains from their 
m-IR spectra. These results demonstrate that the combination of FT-IR and ANNs provides a rapid, novel and accurate 
bacterial identification technique. 
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1. Introduction 

The ideal method for the examination of the 
relationships between bacterial strains would have 
minimum sample preparation, would analyse sam- 

ples directly (i.e. would not require reagents), would 
be rapid, automated, non-invasive, quantitative and 
(at least relatively) inexpensive [I]. These require- 
ments indicate a spectroscopic solution, the com- 
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monest such approach being pyrolysis mass spec- 
trometry @MS) [2,3]. However, this is but one of 
several physico-chemical methods for microbial 
identification, often referred to as whole-organism 
fingerprinting and which include UV resonance Ra- 

man spectroscopy [4], and Fourier transform infrared 
spectroscopy @I’-IR) 151. 

FT-IR allows the chemically-based discrimination 
of intact microbial cells, without their destruction, 
and produces complex biochemical fingerprints 
which are reproducible and distinct for different 
bacteria. Naumann and co-workers (e.g. [5,6]) have 
shown that FT-IR absorbance spectroscopy (in the 
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mid-IR range, usually defined as 4000-400 cm ’ ) 
provides a powerful tool with sufficient resolving 

power to distinguish intact microbial cells at the 
strain level. However. like PyMS. the interpretation 

of the FT-IR spectra has conventionally been by the 

application of ‘unsupervised’ pattern recognition 
methods of correspondence analysis maps and clus- 

ter analysis [6]. With ‘unsupervised learning‘ meth- 
ods of this sort the relevant multivariate algorithms 

seek ‘clusters’ in the data [7]. thereby allowing the 

investigator to group objects together on the basis of 
their perceived closeness; this process is often sub- 

jective because it relies upon the interpretation of 

complicated scatter plots and dendrograms. 
More recently. various related but much more 

powerful methods, most often referred to within the 

framework of chemometrics, have been applied to 
the ‘supervised’ analysis of PyMS data [I]. Ar- 

guably, the most significant of these is the applica- 

tion of (artificial) neural networks (ANNs). The first 
demonstration of the ability of ANNs to discriminate 
between biological samples from their pyrolysis mass 

spectra was by Goodacre et al. [8], who successfully 
used PyMS and ANNs for the assessment of the 

presence of lower-grade seed oils as adulterants in 
extra virgin olive oils. Several studies have now 

shown that the combination of PyMS and ANNs is 
very effective for the rapid identification of a variety 

of bacterial strains, as reviewed in [1,3]. 
Typically, the sample preparation for FT-IR ab- 

sorbance measurements involves grinding the dried 

sample to a fine powder and mixing with KBr. 

although Naumann et al. [6] have replaced this slow 
and rather tedious method with the application of 
liquid samples (which are then dried) to one of 16 
ZnSe windows on a rotating disc. However, we 
consider that a much more elegant approach, which 
is automated and can allow many more samples 

(> 100) to be analysed in one data collection run, is 
to use reflectance methods. Diffuse reflectance-ab- 
sorbance can be achieved by applying the sample 
onto a sand-blasted metal plate which can then be 
loaded onto a motorised stage of a reflectance TLC 
accessory [9]. It is noteworthy that such an approach 
also allows spectra to be obtained as a function of 
spatial location. Moreover, it has been shown that 
reflectance methods can be both more sensitive and 
discriminatory than absorbances [lo]. 

The aim of this study was thus to use diffuse 

reflectance-absorbance FT-IR to examine a collec- 
tion of streptococcal and enterococcal hospital iso- 

lates. Nineteen isolates were analysed which had 
been identified by conventional means to belong to 

one of Enterococcus ,f&calis. E. ,fitecium. Streplo- 

c0cc’u.s hor~is, S. mitis. S. pneumoniae. Or S. p\‘o- 

genes. The FT-IR spectra were then analysed ‘by 

principal components analysis (PCA) to observe any 

clusters and to elucidate if PCA could be used to 
identify these bacteria. Finally, we investigated the 
ability of artificial neural networks to identify these 

streptococci from their n-IR spectra. 

2. Materials and methods 

2.1. Organisms and cultivation 

Nineteen strains were isolated from Ysbyty 

Bronglais and classified as streptococci or entero- 
cocci by conventional means. These means were 
colonial and microscopic morphology, and biochemi- 
cal characteristics: Lancefield groupings were eluci- 

dated using haemolysis with the Streptex kit (Oxoid). 

The API STREP kit (BioMCrieux, Basingstoke, 
Hants., UK) was used to identify all of the isolates. 
with the exception of the pneumococci which were 
identified using Optochin disks. The 19 strains were 

thus identified to belong to the following six species 
(Ysbyty Bronglais identifier given in brackets): En- 

terococcus ,$lecali.s (3. 16, 17, 19), Streptococcus 

pyogenes (7. 14. 15. L 19), Streptococcus pneumo- 

niue (18, 20. H6, L18), Streptococcus mitis (5. 8. 
I I ), Streptococcus bwis (2, 4). and Enterococcus 

jilecium (IO, 13). 
To remove any effects of variable phenotype all 

strains were incubated aerobically with 7% CO, for 

16 h at 37°C on a single batch of Lab M blood agar 
base, supplemented with 5% horse blood. After 
growth, biomass was carefully collected in physio- 
logical saline (0.9% NaCI) and frozen at - 20°C. 

2.2. D#use r~~ectance-absorbarzce FT-IR 

Aliquots (20 ~1) of the bacterial suspensions were 
evenly applied onto a sand-blasted aluminium plate 
(measuring IO X 10 cm). To reduce the possible 
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effects on the FT-IR spectra of concentration-depen- 

dent phenomena all bacterial slurries were approxi- 
mately 40 mg ml-‘. Prior to analysis the samples 
were oven-dried at 50°C for 30 min. Samples were 

run in triplicate. The FT-IR instrument used was the 
Bruker IFS28 FT-IR spectrometer (Bruker Spectro- 

spin Ltd., Banner Lane, Coventry, UK) equipped 

with an MCT (mercury-cadmium-telluride) detector 

cooled with liquid N,. The aluminium plate was then 

loaded onto the motorised stage of a reflectance TLC 
accessory [9,1 I]. 

spectra were displayed in terms of absorbance as 
calculated from the reflectance-absorbance spectra 
using the Opus software and Kubelka-Munk theory 

[Ia. 

2.3. Pre-processing and exploratory analysis 

The IBM-compatible PC used to control the IFS28 

was also programmed (using OPUS version 2. I soft- 
ware running under IBM O/S2 Warp provided by 

the manufacturers) to collect spectra over the 
wavenumber range 4000 cm- ’ to 600 cm- ’ . Spectra 

were acquired at a rate of 20 s-‘. The spectral 
resolution used was 8 cm-‘, whilst the data point 

spacing in the Fourier transform of the interferogram 

(after using a zero-filling factor of 2) was 4 cm-‘. 
To improve the signal-to-noise ratio 256 spectra 

were co-added and averaged. Each sample was rep- 
resented by a spectrum containing 882 points, and 

ASCII data were exported from the Opus software 

used to control the FT-IR instrument and imported 

into Matlab version 4.2~. 1 (The MathWorks, Inc., 24 
Prime Park Way, Natick, MA), which runs under 
Microsoft Windows NT on an IBM-compatible PC. 
To minimize problems arising from baseline shifts, 

Matlab was used to take the smoothed second deriva- 
tives of the original FT-IR spectra using the Sav- 

itzky-Golay algorithm [ 131 using 5-point smoothing. 

Matlab was also employed to perform principal com- 
ponents analysis (PCA) so that exploratory data anal- 
ysis could be conducted [14]. 

2.4. Artificial neural networks 

All ANN analyses were carried out with a user- 
friendly, neural network simulation program, 

Table I 
Identify of the bacteria used in the training and test sets as judged by artificial neural networks 

Strain Estimates from artificial neural networks (standard deviation) ’ 

E. faecalis s. pyogenes S. pneumoniae S. mitis S. bol,is E. faecium 

Training set: 

E. faecalis 3 

E. faeculis 19 

S. pyogenes 7 

S. pyogene.7 15 

S. pneumoniae 18 

S. pneumoniae L I8 

S. mitis 8 

S. mitis I I 
S. h0l.k 2 

E. ,faecium IO 
Test set: 

E. ,faecalis 16 
E. fiecalis 17 

S. pyogenes 13 

S. pyogenes L 19 

S. pneumoniae 20 

S. pneumoniae H6 

S. mitis 5 

S. bor,is 4 

E. foecium I3 

1.08 

0.99 

0.01 

0.01 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.99 0.01 

0.87 (0.14) 0.30 (0.29) 

0.01 1.00 

0.00 0.99 

0.00 0.00 

0.01 0.00 

0.00 0.09 to. 12) 

0.03 0.14 (0.16) 

0.00 0.00 

0.00 
0.01 

1.00 

0.98 

0.00 

0.00 

0.01 

0.01 

0.00 

0.00 

0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 

0.00 0.01 0.00 0.00 

0.00 0.01 0.00 0.00 

1.00 0.00 0.00 0.00 
0.98 0.0 1 0.00 0.01 

0.00 0.99 0.00 0.00 

0.0 1 0.97 0.00 0.01 

0.00 0.00 0.99 0.01 

0.02 0.02 0.01 0.98 

0.00 

0.00 

0.00 
0.00 
1.00 

0.99 

0.00 

0.00 

0.03 

0.00 

0.00 

0.00 
0.02 

0.00 

0.00 

0.99 

0.00 

0.02 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.00 

0.00 0.02 

0.00 0.00 

0.82 (0.22) 0.05 (0.06) 

0.01 0.96 (0.08) 

a Bold values indicate the winning node. The values given are the averages from training 10 ANNs with different random starting weights. 

The values in brackets are the standard deviations for the averages, and are only displayed if the standard deviation was greater than 0.05. 



NeuFrame version l.l,O,O (Neural Computer Sci- 
ences. Totton, Hants.. UK), which runs under Mi- 
crosoft Windows NT on an IBM-compatible PC. 

In-depth descriptions of the modus operandi of this 
type of ANN analysis are given elsewhere [IS- 171. 

For training the ANNs. each of the inputs were 
the first five principal components scores from the 
second derivative of the FT-IR reflectance-ab- 

sorbance spectra derived from a total of IO examples 
of the six different species (details are given in Table 
1) and were paired with each of the desired outputs. 

These were binary encoded such that E. ,furcalis was 

coded as 100000. S. p.vogenes as 010000, S. pnru- 
moniae as 001000, S. mitis as 000100. S. horis as 

000010, and E. ,fuecium as 000001. These training 
pairs collectively made up the training set. The 
structure of the ANN used in this study to analyse 

the FT-IR spectra therefore consisted of three layers: 
five input nodes, six output nodes (one for each 
strain). and one ‘hidden’ layer containing nine nodes 
(i.e., a S-9-6 architecture, and see Fig. 3). For pre- 
sent purposes these S-9-6 ANNs were trained to a 
RMS error of 0.01. This process was conducted IO 

times so as (a) to observe whether training was 

reproducible: and (b) to use the ‘committee’ ap- 
proach for prediction [IX], where the outputs from 
the 10 5-9-6 ANNs were averaged. 

3. Results and discussion 

The three replicate FT-IR spectra for S. pwu777~~- 

niae 18 and S. pytgetzes 7 are shown in Fig. I. 
These and the spectra from the other 17 bacteria all 
showed broad and complex contours. There was 

relatively little qualitative difference between all the 
spectra and such spectra readily illustrate the need to 
employ multivariate statistical techniques for the 
analysis of FT-IR data. 

When collecting FT-IR spectra it is inevitable that 
baseline shifts will occur due to differences in the 
amount of sample which is interrogated by the spec- 
trometer. The triplicate spectra of S. ~~ogene.v 7 
show this phenomenon where two of the spectra 
overlap but the third, although similar in form, clearly 
does not. Therefore to minimize the problems arising 
from unavoidable baseline shifts the smoothed sec- 
ond derivatives were calculated using the Savitzky- 

PC1 

PC2 

PC3 

PC4 

PCS 

Input layer Hidden layer Output layer 

Fig. I. An artificial neural network conhihting of five inputs (one 

fc>r each of the principlll components) and six outputs (one for 

each type of four streptococci and two enterococci to he identi- 

fied) connected to each other by one hidden layer consisting ol 

nine nodes. In the architecture shown, adjacent layers of the 

network are fully interconnected although other architectures we 

pohhihle. 

Golay algorithm [ 131 from the original FT-IR spec- 
tra. PCA was then performed on the transformed 

spectra and the resulting PCA plot. in which the first 

two principal components (PCs) accounted for 78.6% 
of the total variation in the data, is shown in Fig. 2. 

Fig. 2 shows clearly that PCA cannot be used to 

cluster these bacteria based on their FT-IR spectra 
because the six different bacteria do not form distinct 
groups. Moreover. in Fig. 2 lines are drawn which 

1.6 

208 

0” 
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1: 
d 0.4. 
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O- 

1 
-‘4%00 4000 3500 3000 2500 2000 1500 1000 

J 
50 '0 

Fig. 2. Typical FT-IR diffuse reHectance-absorbance spectra of 

Strrpro~occus ~vwutnor~icw I8 and Streptococc-us ,,~ogwr,s I. 

Spectra were obtained as described in the text. 
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-0.06 b 
-0.08 -0.04 0 0.04 0.08 

Principal component 1 

0 E. faecalis l S. pyogenes 0 S. pneumoniae 

m S. mitis A S. bovis * E. faecium 

Fig. 3. Principal components plot based on the smoothed (five 

points) second derivative of the FT-IR data analysed by MAT- 

LAB showing the relationship between the 19 hospital isolates. 

The first two principal components are displayed and account for 

55.8% and 22.8% (78.6% total) of the total variance respectively. 

The lines connect the triplicate spectra and thus form a triangle 

showing the spread over the replicates. 

connect the triplicate spectra and a triangle is con- 
structed which illustrates the reproducibility of the 

replicate FT-IR spectra. In some instances the repli- 

cates of bacteria from one species overlap with 
replicates from bacteria from different species. When 

other PCs were plotted (data not shown) these also 

failed to discriminate between these bacteria, and the 

replicates also overlapped. 
To compare the effect on PCA of taking the 

second derivative spectrum, PCA was also carried 

out on the raw normalised FT-IR spectra. The first 
PC accounted for 91.9% of the total variation com- 
pared with 55.8% for the second derivative; it is 
likely that this difference of 36. I % in PC 1 was due 
largely to the removal of baseline variations and 

indeed highlights the point that PCA on raw data 

detected the overall absorbance as being a significant 

feature in all the spectra. 
The most important conclusion to be drawn from 

the above PCA analyses on the FT-IR spectra is that 
this ‘unsupervised’ learning method failed to classify 
these bacteria and therefore could not be used to 
identify them. There is thus a requirement for numer- 

ical methods based on ‘supervised learning’ which 
allow easy direct interpretation of the identification 
of bacteria from their FT-IR spectra. 

ANNs were trained with the raw normalised ET-IR 
spectra from the ten bacteria in the training set (see 

Table 1 for details). The six classes of species were 

binary encoded at the six output nodes as described 
above. The 882-10-6 ANN was trained using the 
standard back-propagation algorithm, and the effec- 

tiveness of training was expressed in terms of the 

average RMS error between the actual and the de- 
sired outputs. Training was stopped after the average 

error had reached 0.01; this typically took between 
5 X 103-1 X lo4 epochs and because of the large 
network topology took 5-6 h on a 486-based PC. 

The network was then interrogated using the FT-IR 
spectral data from the bacteria from both the training 

and test sets. Although the training set was correctly 

identified, these ANNs identified only the two S. 
pyogenes isolates in the test set (nine bacteria in 

total); it is likely that these ANNs failed because of 
the baseline shifts described above. 

The next stage was to apply the second deriva- 
tives to the input nodes of the ANNs. The same 

training and test sets were employed as above and 
the 874-10-6 ANNs trained to 0.01 (because five 
smoothing points were used this meant that the first 

and last four wavenumber points could not be 

smoothed and so were removed). Training was also 
slow (5-6 h) and typically took between 5 X 103-1 

X lo4 epochs. However, these ANNs performed 

better and correctly identified four of the nine bacte- 
ria in the test set; both E. fuecalis, one of the S. 

pyogenes and one of the S. pneumoniae were identi- 
fied. Although using the second derivative had re- 
moved the baseline shifts it is obvious that this 

approach was not satisfactory. The training set for 
this ANN contained only 30 spectra (10 bacteria in 
triplicate), and it is well known that if the number of 

parameters, or weights, in the calibration model is 

significantly higher than the number of exemplars in 
the training set then over-fitting can more easily 

occur [ 18,191. That the 874-10-6 ANNs employed 
here contained 8816 weights strongly suggests that 
this ANN had extracted features due to chance corre- 
lations or noise in the derivatized FT-IR spectra. 

To obey the parsimony principle as described by 
Seasholtz and Kowalski [19] the next stage was 
therefore to reduce the number of inputs to the ANN. 
As detailed above, PCA is an excellent dimensional- 
ity reduction technique; thus the first five PC scores 
from the second derivatives were used as the input 
data, since these accounted for 91.3% of the total 



variance. The use of PC scores as inputs to neural 
networks, without deterioration of the calibration 

model, has previously been applied to the analysis of 
UV/visible spectroscopic data [20]. The same train- 

ing and test sets were employed as above and S-9-6 
ANNs trained until the average error had reached 

0.01: training typically took between only 350 and 

600 epochs, and the actual time taken to train was 

now only 2-3 min. The reason that more nodes were 

used in the hidden layer than in the input layer was 

because PCs are uncorrelated; thus to have enough 

degrees of freedom more nodes are required. Other 
ANNs were trained with fewer and more PC applied 

to the input nodes. whilst keeping nine nodes in the 
hidden layer failed to generalise sufficiently. When 

too few PCs are used not enough information is 
present. and when more PCs are employed the later 
PCs contribute only noise to the model, thus increas- 

ing the probability of chance correlations between 

input and output data. 
When training had ceased, the network was inter- 

rogated and the estimated output for each sample 
was calculated. As expected. the network‘s estimate 

of the bacterial identity of the training set was the 
same as the known identities (Table 1). The results 
of the network’s final analysis of the unknown teqt 

set (given as the average of the outputs for the ten 
training runs> are shown in Table 1. where it is clear 

that all nine streptococci were correctly and unequiv- 
ocally identified. For E. ,firec~~/is 7 the node for E. 
fuecalis scored 0.87 whilst the node for S. p~~)genes 
scored 0.3. This strain was identified as E ,firrr&i.v 

because the node’s activation for E. ,fiwuli.s was 

significantly greater than for any of the others; more- 
over. although the S. pwgrtws node scored 0.3 the 
standard deviation on the 10 different ANNs was 
0.29. Likewise S. hozis 4 was also correctly identi- 
fied because the node for S. ho~,is scored 0.82. 

standard deviation 0.22: and 0.14, standard deviation 
0.16, on the S. pvngenes node. This highlights the 
benefit of training several ANNs and using the com- 
mittee approach for prediction as discussed by Bishop 

[l8]. 
This study clearly showed that diffuse reflec- 

tance-absorbance FT-IR spectroscopy can be used to 
obtain biochemical fingerprints from intact microbial 
cells. PCA could not be used to identify hospital 
isolates belonging to one of four streptococcal or two 

cnterococcal groups. However, back-propagation 

neural networks were also trained with the first five 
PCs from the smoothed second derivative FT-IR 

spectra to identify these strajns successfully. This is 

the first example of the application of ANNs to the 
analysis of FT-IR spectra for bacteria1 identification. 
We therefore conclude that the combination of FT-IR 

and ANNs provides an objective, rapid and accurate 

discriminatory technique. 
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