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Rapid analysis of microbial systems using vibrational spectroscopy and 
supervised learning methods: application to the discrimination between 
methicillin-resistant and methicillin-susceptible Staphylococcus aureus. 

Royston Goodacre1°, Paul J. Rooney2 and Douglas B. Kell1 

1Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion, SY23 3DA, Wales, 
UK. & 2Bronglais General Hospital, Aberystwyth, Ceredigion, SY23 IER, Wales, UK. 

ABSTRACT 
Ff-IR spectra were obtained from 15 methicillin-resistant and 22 methicillin-susceptible Staphylococcus aureus strains 
using our DRASTIC (Diffuse Reflectance Absorbance Spectroscopy Taking In Chemometrics) approach1• Cluster analysis 
showed that the major source of variation between the IR spectra was not due to their resistance or susceptibility to 
methicillin; indeed early studies using pyrolysis mass spectrometry2 had shown that this unsupervised analysis gave 
information on the phage group of the bacteria. By contrast, artificial neural networks, based on supervised learning, 
could be trained to recognize those aspects of the IR spectra which differentiated methicillin-resistant from methicillin
susceptible strains. These results give the first demonstration that the combination of Ff-IR with neural networks can 
provide a very rapid and accurate antibiotic susceptibility testing technique. 
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1. INTRODUCTION 
For routine purposes the ideal method for microbial characterisation would have minimum sample preparation, would 
analyse samples directly (i.e. be reagentless), would be rapid, automated, and (at least relatively) inexpensive. With recent 
developments in analytical instrumentation, these requirements are being fulfilled by physico-chemical spectroscopic 
methods, often referred to as 'whole-organism fingerprinting' 3. The most common such methods are pyrolysis mass 
spectrometry (PyMS)4, Fourier transform infrared spectroscopy (Ff-IR)5·7 and UV resonance Raman spectroscopy8. 

Ff-IR and dispersive Raman microscopy are physico
chemical methods which measure predominantly the 
vibrations of bonds within functional groups, either through 
the absorbance of electromagnetic radiation (Ff-IR; Figure 
1) or from the inelastic scattering of light (Raman shift)9-13• 

Therefore they give quantitative information about the total 
biochemical composition of a sample. However, the 
interpretation of these multidimensional spectra, or what is 
known as hyperspectral data14-16, has conventionally been 
by the application of "unsupervised" pattern recognition 
methods such as principal components (PCA), discriminant 
function (DF A) and hierarchical cluster (HCA) analyses 
(see Figure 2 for a flowchart of the usual taxonomic 
procedure). With "unsupervised learning" methods of this 
sort the relevant multivariate algorithms seek "clusters" in 
the data, thereby allowing the investigator to group objects 
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Figure 1 Ff-IR diffuse reflectance-absorbance spectra of 
methicillin susceptible (MSSA) and methicillin resistant 
(MRSA) Staphylococcus aureus. 
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together on the basis of their perceived closeness17; this process is often subjective because it relies upon the interpretation 
of complicated scatter plots and dendrograms. More recently, various related but much more powerful methods, most 
often referred to within the framework of chemometrics, have been applied to the "supervised" analysis of these 
hyperspectral data1•18-24; arguably the most significant of these is the application of intelligent systems based on artificial 
neural networks (ANNs) which effect supervised learning25·26• 

Spectra are high dimensional: 

-150 masses from PyMS 

- 882 wavenumbers from Ff-IR 

- 2283 wavenumbers from Raman 

ANNs are a well-known means of uncovering complex, 
non-linear relationships in multivariate data, whilst still 
being able to map the linearities. ANNs can be considered 
as collections of very simple "computational units" which 
can take a numerical input and transform it (usually via 
summation) into an output25-29• 

}!.!!!!""•""""''"""'"""''""""!!W:fis PCA transforms the original set of 
rl • • variables to a new set of uncorrelated 

For a given analytical system there are some patterns (e.g. 
Ff-IR or Raman spectra) which have desired responses or 
values which are known (e.g. the identity of a micro
organism or the concentration of target determinands). 
These two types of data form pairs which are called inputs 
and targets. The goal of supervised learning is to find a 
model or mapping that will correctly associate the inputs 
with the targets. 

• variables called PCs. PCA is a data 
reduction process and the first few PCs 
will typically account for >95% variance. 

="""'""""'""""' ............. ..., •. ;. DF A has a priori infonnation based on 
·= : spectral replicates and uses this to 

The relevant principle of "supervised" learning in ANNs is 
thus that the ANNs take numerical inputs (the training 
data) and transform them into "desired" (known, 
predetermined) outputs. The input and output nodes may 
be connected to the "external world" and to other nodes 

:·· • minimise within group variance and 
maximise between group variance. 

within the network (for a diagrammatic representation see 
· ,. Figure 3). The way in which each node transforms its input 

A similarity matrix can be constructed depends on the so-called "connection weights" (or 
from the DF A space. HCA can then use "connection strength") and ''bias" of the node, which are 
this to produce a dendrogram, using modifiable. The output of each node to another node or the 
average linkage clustering. external world then depends on both its weight strength and 

Figure 2 Flowchart of unsupervised learning analysis used bias and on the weighted sum of all its inputs, which are 
to cluster hyperspectral data then transformed by a (normally non-linear) weighting 
function referred to as its activation or squashing function. The great 
power of neural networks stems from the fact that it is possible to "train" 
them. One can acquire sets of multivariate data (i.e., hyperspectral data) 
from standard materials of known identities and train ANNs using these 
identities as the desired outputs. Training is effected by continually 
presenting the networks with the "known" inputs and outputs and 
modifying the connection weights between the individual nodes and the 
biases, typically according to some kind of back-propagation 
algorithm27'30, until the output nodes of the network match the desired 
outputs to a stated degree of accuracy. The trained ANNs may then be 
exposed to unknown inputs (i.e. spectra) when they will immediately 
provide the globally optimal best fit to the outputs. 

There has been a dramatic increase in the incidence of nosocomial 
infections caused by strains of Staphylococcus aureus which are 
resistant to multiple antibiotics, usually due to transfer (acquisition) of 
resistance genes31 • Methicillin-resistant S. aureus (MRSA) were first 
isolated in 1961 following the introduction of this &-lactam for the 

Input layer Hidden layer Output layer 
(linear) with summation and (linear or 

(non-linear squashing) non-linear) 

Figure 3 A multilayer perceptron ANN 
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treatment of staphylococcal infections32, and intrinsic resistance in MRSA strains was later found to be due to the presence 
of a novel additional penicillin binding protein (PBP) PBP 2' 33•34• PBP 2' is encoded by the mecA gene, which is part of 
the chromosomal DNA mec sequence, a 30- to 40- kb piece of DNA whose origin is as yet unknown35. 

In a previous study2 we used PyMS to discriminate between methicillin-susceptible and -resistant S. aureus strains. The 
aim of this study was to use Ff-IR to examine the same collection ofMSSA and MRSA strains. Thirty seven strains were 
examined; these covered a wide range of epidemiologically distinct organisms, and had been classified as either MRSA or 
MSSA using conventional means. Cluster analysis and artificial neural networks were used to determine whether the 
infrared spectra could be used to discriminate these strains on the basis of their antibiotic susceptibility. 

2. MATERIALS AND METHODS 
2.1 Organisms and cultivation 

Twenty two methicillin-susceptible (MSSA) and 15 methicillin-resistant S. 
aureus (MRSA) were used in this study; these cultures were chosen to represent 
a diverse range of MSSA and MRSA strains; moreover, they possessed a wide 
range of resistances to other antibiotics (data not shown). The National 
Collection of Type Cultures set of 22 propagating strains for phage typing were 
used as examples of MSSA36. Three recent clinical isolates of MRSA (H34, 
E9/95/94, and ElS/103/94) were supplied by Bronglais General Hospital along 
with a national standard MRSA (NCTC 10042), whilst the remainder were 
supplied by Dr Judith Richardson (Laboratory of Hospital Infection, Central 
Public Health Laboratory, 61 Colindale Avenue, London, NW9 5HT, U.K.). 
Details of the strain names, phage group, and resistance or susceptibility to 
methicillin are given in Tables 1and2. 

Strains were cultured on Mueller Hinton agar (Oxoid-Unipath Ltd., 
Basingstoke, UK) plus 2% NaCl, which favours the expression of PBP 2' 33•34, 

and incubated aerobically for 16 h. The bacteria were carefully removed from 
the agar surface with a plastic loop and suspended in physiological saline (0.9% 
NaCl) to approximately 20 mg/mL. The samples were then ready for analysis 
by Ff-IR. 

Table 1 Identity of the S. aureus used 
in the training set as judged by ANNs 
S. aureus Lytic Type ANNs 
strain 0 type estimates 
PS 47 III S 0.00 
PS 81 Misc S 0.00 
PS 84 III S 0.00 
PS 55 II S 0.01 
PS 3C II S 0.02 
PS 52 I S 0.01 
PS 29 I S 0.01 
PS 83A III S 0.00 
PS 85X III S 0. 00 
PS 77X III S 0.01 
PS 42E III S 0.01 
CRF 634 PS III R 1. 00 
ST 85 1774 NT R 0.99 
CRF 627 PS III R 0.98 
ST 84 6144 NT R 0.98 
CRF 619 PS III R 1.00 
H34 NT R 1.00 
El8/103/94 III R 0.99 
NCTC 10442 III R 0.99 

2.2 Diffuse reflectance-absorbance Fourier transform infrared (FT-IR) spectroscopy 

Typically, the sample preparation for Ff-IR absorbance measurements involves grinding the dried sample to a fine powder 
and mixing with K.Br, although Naumann et al. 7 have replaced this slow and rather tedious method with the application of 
liquid samples (which are then dried) to one of 16 ZnSe windows on a rotating disc. However, we consider that a much 
more elegant approach, which is automated and can allow many more samples (>> 100) to be analysed in one data 
collection run, is to use reflectance methods. Diffuse reflectance-absorbance can be achieved by applying the sample onto 
a sand-blasted metal plate which can then be loaded onto a motorised stage of a reflectance TLC accessory37• It is 
noteworthy that such an approach also allows spectra to be obtained as a function of spatial location. Moreover, it has 
been shown that reflectance methods can be both more sensitive and discriminatory than absorbances38•39• 

Ten microlitres of the above bacterial samples were evenly applied onto a sand-blasted aluminium plate. Prior to analysis 
the samples were oven-dried at 50°C for 30 min. Samples were run in triplicate. The Ff -IR instrument used was the 
Bruker IFS28 Ff-IR spectrometer (Bruker Spectrospin Ltd., Banner Lane, Coventry, UK) equipped with an MCT 
(mercury-cadmium-telluride) detector cooled with liquid N2• The aluminium plate was then loaded onto the motorised 
stage of a reflectance TLC accessory1•23•40• 
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Table 2 Identity of the S. aureus used 
in the test set as h!d~ed by ANNs 
S. aureus Lytic Type ANNs 
strain 0 !l'.Ee estimates 
PS 54 III s 0.00 
PS 71 II s 0.00 
PS 95 Misc s 0.00 
PS 6 III s 0.00 
PS 52N79 I s 0.00 
PS3A II s 0.00 
PS 80 I s 0.00 
PS 96 v s 0.01 
PS94 v s 0.00 
PS 75 III s 0.99 
PS 53 III s 0.05 
CRF631 PS I R 0.99 
ST 84 6255 III R 1.00 
CRF621 PS NT R 1.00 
ST 84 6983 R 1.00 
CRF633 PS III R 1.00 
ST 85 3566 NT R 0.94 
E9/95/94 NT R 1.00 
The averages of the 10 ANNs are shown. 

The IBM-compatible personal computer used to control the IFS28, was also 
programmed (using OPUS version 2.1 software running under IBM OS/2 
Warp provided by the manufacturers) to collect spectra over the wavenumber 
range 4000 cm-1 to 600 cm-1. Spectra were acquired at a rate of 20 s-1. The 
spectral resolution used was 4 cm-1• To improve the signal-to-noise ratio, 256 
spectra were co-added and averaged. Each sample was thus represented by a 
spectrum containing 882 points and spectra were displayed in terms of 
absorbance as calculated from the reflectance-absorbance spectra using the 
Opus software. Typical Ff -IR spectra are shown in Figure 1. 

2.3 Cluster analysis 

ASCII data were exported from the OPUS software used to control the Ff-IR 
instrument and imported into Matlab version 4.2c. l (The MathWorks, Inc., 
24 Prime Par Way, Natick, MA, USA), which runs under Microsoft Windows 
NT on an IBM-compatible personal computer. To minimize problems arising 
from baseline shifts the following procedure was implemented: (i) the spectra 
were first normalised so that the smallest absorbance was set to 0 and the 
highest to + 1 for each spectrum, (ii) next these normalised spectra were 
detrended by subtracting a linearly increasing baseline from 4000 cm-1 to 600 
cm-1, (iii) finally the smoothed first derivatives of these normalised and 
detrended spectra were calculated using the Savit.zky-Golay algorithm41 with 
5-point smoothing. 

To reduce the dimensionality of the Ff-IR data Matlab was also employed to perform PCA (according to the NIPALS 
algorithm42); of the original 882 spectral points 96.8 % of the total variance was retained in the first 30 principal 
components (PCs). Figure 4a is a plot of explained variance versus PCs extracted from these Ff-IR data and highlights 
the power of this technique and shows that 30 PCs adequately describe the majority of the varaince from the original data. 
Next these 30 PCs were used as inputs to the DF A algorithm with the a priori knowledge of which spectra were replicates. 
DFA was programmed according to Martly's principles43• 

2.4 Creation of training and test data sets for artificial neural network analyses. 

It is well known that if the number of weights in a neural network is significantly higher than the number of exemplars in 
the training set then over-fitting can more easily occur26'44• In this case if the full spectra were used as input data then the 
882-12-1 ANN would contain 10609 weights (10584 between input and hidden layers+ 12 weights between hidden and 
output layer+ 13 between the bias and the nodes in the hidden and output layers). Therefore, to obey the parsimony 
principle as described by Seasholtz & Kowalski44 and to account for any further baseline effects the next stage was to 
reduce the number of inputs to the ANNs the averages of the first 15 discriminant function (DF) scores constructed from 
the first 30 PCs and were used as the input data. The fifteen DFs were used because when too few DFs are used not 
enough information is present, and when more DFs are employed the later DFs contribute only noise to the model, thus 
increasing the probability of chance correlations between input and ouptut data. This is shown diagrammatically in Figure 
4b. 

In addition, it is important that the training data encompass the full range under study26•45•46 since although supervised 
methods are excellent at being able to interpolate they are likely to give poor estimates outside their 'realm of knowledge', 
i.e. they can not extrapolate sufficiently well. Since the 37 strains of S. aureus encompassed a diverse range of 
epidemiologically distinct strains it was imperative that the training set of MSSA and MRSA represented 
multidimensional space sufficiently well to allow interpolation. 

Duplex is a method for choosing an optimal split between training and test data sets47 , and an extension to this 
methodology called "Multiplex" has been developed in-house (Jones A., Kell D.B. & Rowland J., in preparation). Briefly 
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this method starts by placing the two most separated samples into the training set. It then places the next two most 
separated remaining samples into the test set. This is performed iteratively until all samples have been split. This ensures 
that the training set range covers the test set range, and that both sets are representative. The first fifteen DF scores from 
the IR spectra were sorted using "Multiplex" so that the training and test data were split in the ratio 1: 1. Data may be split 
on both the X-matrix (DF scores) and the Y-matrix (bacterial type); so as not to bias the partitioning process data were 
split on the X-matrix only. The reason that the "Multiplex" method is superior to standard techniques such as n-fold cross 
validation (CV) is because, although both methods will lead to comparable solutions, n-fold CV is more computationally 
intense and especially when ANNs are used this process will take appreciably longer. 
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2.5 Artificial neural networks (ANNs) 

30 

All ANN analyses were carried out with a user-friendly, neural network simulation program, NeuFrame version l,1,0,0 
(Neural Computer Sciences, Lulworth Business Centre, Nutwood Way, Totton, Southampton, Hants), which runs under 
Microsoft Windows NT on an IBM-compatible PC. In-depth descriptions of the modus operandi of this type of multilayer 
perceptron (MLP) analysis are given elsewhere19•48-50. 

For training the ANNs, each of the inputs was the averages of the first fifteen DF scores split above using the multiplex 
program (details of the training and test sets are given in Tables 1and2) and was paired with each of the desired outputs. 
These were binary-encoded such that the MSSA strains were coded as 0 and MRSA coded as 1 at the output node. These 
training pairs collectively made up the training set. The structure of the ANN used in this study consisted of 3 layers; 15 
input nodes, 1 output node, and one "hidden" layer containing 4 nodes (i.e., a 15-4-1 architecture). Before training 
commenced the values applied to the output nodes were normalised between 0 and 1. The scaling regime used for the 
input layer was to scale each node such that the lowest DF was set to 0 and the highest to 1. For present purposes these 
ANNs were trained to a RMSEF (RMS error of formation of the model) of 0.01, which typically took ca. 3.102 epochs. 
Initially MLPs were trained until the RMSEF was 0.005 (0.5%), and their ability to generalise was assessed on the test set. 
It was found that MLPs trained until the RMSEF was 0.01 (1%) were still able to generalise well, and since these MLPs 
obviously took less time to train and were less likely to overfit the input data (i.e., fitting to noise or the fitting of a model 
to outliers46•50), all MLPs were trained until the RMS was 0.01 (1%). Training was conducted 10 times (a) to observe 
whether this process was reproducible and (b) to use the "committee" approach for prediction26, where the outputs from the 
ten 15-4-1 ANNs were averaged. 
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3. RES UL TS AND DISCUSSION 
Typical normalised FT -IR spectra for methicillin-susceptible S. aureus strain PS 4 7 and methicillin-resistant S. aureus 
strain E9/95/94 are shown in Figure 1. These and all the FT-IR spectra of the other S. aureus show broad and complex 
contours and although there was very little qualitative difference between these spectra, small complex quantitative 
differences between the spectra were observed. Such spectra, uninterpretable by the naked eye, readily illustrate the need 
to employ multivariate statistical techniques for the analysis of FT-IR data. 

After collection of the infrared spectra, each of the 37 
strains, each represented by three replicate spectra. 
were coded to give 3 7 individual groups, and 
analysed by OF A; the resulting ordination plot is 
shown in Figure 5. The coding in this plot is simply 
for whether the strain is MSSA (indicated by a 'S') or 
MR.SA ('R'), and shows that DF A cannot be used to 
cluster these bacteria according to whether they were 
resistant or susceptible to methicillin because two 
distinct groups were not formed. It is of course 
possible that this differentiation may happen if the 
lower discriminant functions were viewed; however, 
these graphs were plotted (data not shown) and 
separation based on drug resistance or susceptibility 
was not evident. 

The next stage was therefore to examine the ability of 
artificial neural networks (ANNs), a supervised 
method which should uncover non-linear 
relationships between the two classes of bacteria and 
which has been demonstrated to be greatly superior to 
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Figure 5 Discriminant function plot based on FT-IR data 
showing the relationship between the 3 7 S. aureus strains. The 
first 30 PCs were used as the inputs for the OF A algorithm and 
accounted for 96.8% of the variance. 
'S' refers to MSSA and 'R' to MRSA. 

clustering techniques in classification problems of this type2.51 •52• 

As detailed above, the 37 strains encompassed a diverse range of epidemiologically distinct strains and it is thus 
imperative that the training set for the ANNs will represent the FT-IR multidimensional space sufficiently well to allow 
interpolation, and that the range of test set was enclosed by the training set. Therefore the program "Multiplex" was used 
to split the data equally into training and test sets. Details of the two data sets can be found in Tables 1 and 2. 

ANNs were trained with the first fifteen discriminant function scores from the infrared spectra (as processed above) from 
the training set; the 11 MSSA were coded Oat the output node, and the 8 MR.SA were coded 1. The 15-4-1 ANNs were 
trained using the standard back-propagation algorithm, and the effectiveness of training was expressed in terms of the 
RMS error between the actual and the desired outputs; training was stopped after the RMS error had reached 0.01 (or 1%). 
Training was effected ten times, using randomised, small initial values for the starting weights; the ten learning curves 
were seen to superimpose (data not shown) and it was clear that despite the randomised starting connection weights, 
training was executed (i.e. the error surface in weight space was negotiated) in a rather reproducible manner. Moreover, 
these ANNs typically took 320 epochs to train to an RMS error of 0.01 within a spread of only ±10 epochs. 

When training had ceased (i.e. as determined by the attainment of an RMS error of 0.01 averaged over the training set) the 
ten neural networks were interrogated with the FT-IR spectra from both data sets. Not surprisingly, the network's estimate 
of the resistance or susceptibility to methicillin of the training set was the same as those known in all ten trainings (Table 
1). The results of the ANN's analyses of the unknown test set is also shown in Table 2. This table is the average of the 
ANN's predictions for each of the replicates of the 37 strains; small standard deviations were calculated (the largest was 
only 0.011) indicating that training was indeed reproducible. Rather than using a simple 'crisp' identification criterion 
where if the output is > 0.5 then the strain is a MR.SA and if the output is < 0.5 then the strain is a MSSA, a correct 
identification was taken to be that to belong to MR.SA the output must be ~ 0.9 and for MSSA to be ~ 0.1. This procedure 
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allows a more rigid classification to be used since if any output is close to 0.5 the ANN would be taken to indicate that it is 
'undecided' about the identification, and hence unable to discriminate that bacterial sample sufficiently well. 

It is evident from Table 2 that the ANNs had assessed correctly the seven methicillin-resistant S. aureus strains from the 
unseen test set, as being MR.SA isolates; the networks' output was >0.98 for all isolates. With the exception of the 
methicillin-susceptible strain PS 75, all the MSSA isolates were also characterised correclty; the networks' output was 
<0.05 for all isolates. These results show that there were no false negatives and a single false positive (PS 75). 

4. CONCLUSIONS 
DF cluster analyses of the FT-IR spectra from 37 S. aureus failed to separate these bacteria on the basis of their resistance 
or susceptibility to the antibiotic methicillin. By contrast, however, ANNs could be trained to assess whether an unknown 
strain was resistant to methicillin, and with one exception was able to assess the methicillin-susceptible S. aureus in an 
unseen test set. Although there was a single false positive, more importantly from the physicians point of view there were 
no false negatives. 

The application of FT-IR to microbiology is undoubtedly useful in the discrimination between bacteria and fungi at the 
genus, species and subspecies level, as has previously been demonstrated by Naumann and colleagues5'6'53• FT-IR has the 
advantage of speed and particularly with our diffuse reflectance-absorbance approach1•23•54 easily allows the acquisition of 
400 samples per hour on a single lOxlO cm aluminium plate. 

ANNs have proved very advantageous in the analysis of FT-IR data. These mathematical techniques based on artificial 
'intelligence' have allowed us to identify clinical isolates from hospital isolates of Enterococcus faeca/is, E. faecium, 
Streptococcus bovis, S. mitis, S. pneumoniae, or S. pyogenes23, to discriminate between common infectious agents 
associated with urinary tract infection55, to assess the physiological state of a wide range of Bacillus species56, and to 
determine the concentration of secondary metabolites in titre improvement programmes1•57•58 . 

In conclusion, ANNs can be used to extract very subtle physiological differences between strains of the same species of S. 
aureus from their FT-IR data, and in this case for the rapid and accurate methicillin susceptibility testing. 

Neural networks are only one group of techniques in the huge chemometrics tool box. Of the unsupervised cluster analysis 
methods the most common used are principal components analysis (PCA), Kohonen's self organizing feature maps, 
autoassociative neural networks (which effect non-linear PCA), and discriminant function analysis (DFA, or canonical variates 
analysis). The number of supervised learning algorithms is ever increasing and include methods based on linear regression (PCR 
and PLS59), rule induction methods that are based on crisp or fuzzy rules, classification and regression trees (CART), and radial 
basis functions. Some exciting methods which are emerging are based on evolutionary computing, and these include genetic 
algorithms and genetic programming which can be used to deconvolute (IR and MS) spectra in terms of which wavenumbers are 
important either in classification or quantification studies~2. In-depth tutorials and reviews on the above methods can be found 
on our WWW site via http://gepasi.dbs.aber.ac.uk/home.htm. 
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